Probing the Topology of the Early Universe Using CMB Temperature and Polarization Anisotropies
Abstract
1. Introduction
2. Temperature Anisotropies
2.1. Infrared Cutoff in the Scalar Power Spectrum
2.2. Double Infrared Cutoff in the Scalar Power Spectrum
2.3. Incorporating Tensor Modes into the Analysis
2.4. Parity-Statistic Study
3. Early-Universe Topology from a Kaluza–Klein Model
Orbifold Compactification of the Fifth Dimension
- (i)
- Orbifold compactification requiring invariance under some parity operations in the fifth dimension; in particular, we will consider orbifold, developed below.
- (ii)
- Neumann/Dirichlet BCs at both ends of the compactified dimension. Both procedures actually lead to the same physics, as we shall see.
- : Reflection , with a fixed point at .
- : Defining followed by amounts to the reflection , with a fixed point at .
4. Boundary Conditions on a Flat Geometry
- Neumann–Neumann (+,+) with BCs: .The set of solutions and allowed mass spectrum (including zero mode) can be written asNote that all modes are even under both and .The combined parity turns out to be even.
- Dirichlet–Dirichlet (− ,−) with BCs: , .Solutions and mass spectrum (no zero mode):The combined parity is even.
- Neumann–Dirichlet (+,−) with BCs: , .Solutions and mass spectrum (no zero mode):The combined parity is odd.
- Dirichlet–Neumann (−,+) with BCs: , .Solutions and mass spectrum (no zero mode):The combined parity is odd.
Tensor Modes
5. Warped Geometries
Tensor Modes
6. Even and Odd Multipole Contributions to the Two-Point Angular Correlation Function
7. Polarization of the CMB Versus Early-Universe Topology
7.1. E-Mode Polarization
7.2. B-Mode Polarization
8. Discussion and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CMB | Cosmic Microwave Background |
COBE | COsmic Background Explorer |
GUT | Grand Unified Theory |
IR | Infrared |
KK | Kaluza–Klein |
PGW | Primordial Gravitational Wave |
Spatial parity of the 5D scalar field | |
Spatial parity of the 4D scalar field | |
Orbifold parity in the KK dimension | |
WMAP | Wilkinson Microwave Anisotropy Probe |
References
- Kolb, E.W.; Turner, M. The Early Universe. Fontiers in Physics; Westview Press: Boulder, CO, USA, 1994. [Google Scholar]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef]
- Linde, A.D. A new inflationary universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 1982, 108, 389–393. [Google Scholar] [CrossRef]
- Ryden, B. Introduction to Cosmology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Baumann, D. Inflation. arXiv 2009, arXiv:0907.5424. [Google Scholar] [PubMed]
- Kamionkowski, M.; Kovetz, E.D. The Quest for B Modes from Inflationary Gravitational Waves. Ann. Rev. Astron. Astrophys 2016, 54, 227–269. [Google Scholar] [CrossRef]
- Sanchis-Lozano, M.A. Stringy Signals from Large-Angle Correlations in the Cosmic Microwave Background? Universe 2022, 8, 396. [Google Scholar] [CrossRef]
- Sanchis-Lozano, M.A.; Sanz, V. Observable imprints of primordial gravitational waves on the temperature anisotropies of the cosmic microwave background. Phys. Rev. D 2024, 109, 063529. [Google Scholar] [CrossRef]
- Brandenberger, R.H. Topological defects and structrue formation. Int. J. Mod. Phys. A 1994, 9, 2117. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. [Planck]. Planck 2015 results—XVIII. Background geometry and topology of the Universe. Astron. Astrophys 2016, 594, A18. [Google Scholar]
- Hinshaw, G.; Banday, A.J.; Bennett, C.L.; Górski, K.M.; Kogut, A.; Smoot, G.F.; Wright, E.L. Two-Point Correlations in the COBE DMR Four-Year Anisotropy Maps. Astrophys. J. 1996, 464, L25. [Google Scholar] [CrossRef]
- Bennett, C.L.; Hill, R.S.; Hinshaw, G.; Nolta, M.R.; Odegard, N.; Page, L.; Spergel, D.N.; Weiland, J.L.; Wright, E.L.; Halpern, M.; et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. Astrophys. J. 2003, 148, 97. [Google Scholar] [CrossRef]
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. [Planck]. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar]
- Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; Benabed, K.; et al. [Planck], Planck 2018 results. VII. Isotropy and Statistics of the CMB. Astron. Astrophys. 2020, 641, A7. [Google Scholar]
- Ade, P.A.R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 2014, 571, A16. [Google Scholar]
- Land, K.; Magueijo, J. Is the Universe odd? Phys. Rev. D 2005, 72, 101302. [Google Scholar] [CrossRef]
- Kim, J.; Naselsky, P.; Hansen, M. Symmetry and Antisymmetry of the CMB Anisotropy Pattern. Adv. Astron. 2012, 2012, 960509. [Google Scholar] [CrossRef]
- Schwarz, D.J.; Copi, C.J.; Huterer, D.; Starkman, G.D. CMB anomalies after Planck. Class. Quantum Gravity 2016, 33, 184001. [Google Scholar] [CrossRef]
- Copi, C.J.; Gurian, J.; Kosowsky, A.; Starkman, G.D.; Zhang, H. Exploring suppressed long-distance correlations as the cause of suppressed large-angle correlations. Mon. Not. R. Astron. Soc. 2018, 490, 5174–5181. [Google Scholar] [CrossRef]
- Liu, J.; Melia, F. A truncated primordial power spectrum and its impact on B-mode polarization. Phys. Lett. B 2024, 853, 138645. [Google Scholar] [CrossRef]
- Liu, J.; Melia, F. A Truncated Primordial Power Spectrum and its Impact on CMB Polarization. arXiv 2025, arXiv:2507.19342. [Google Scholar] [CrossRef]
- Contaldi, C.R.; Peloso, M.; Kofman, L.; Linde, A.D. Suppressing the lower multipoles in the CMB anisotropies. J. Cosmol. Astropart. Phys. 2003, 7, 002. [Google Scholar] [CrossRef]
- Cline, J.M.; Crotty, P.; Lesgourgues, J. Does the small CMB quadrupole moment suggest new physics? J. Cosmol. Astropart. Phys. 2003, 9, 010. [Google Scholar] [CrossRef]
- Kuhnel, F.; Schwarz, D.J. Large-Scale Suppression from Stochastic Inflation. Phys. Rev. Lett. 2010, 105, 211302. [Google Scholar] [CrossRef] [PubMed]
- Hazra, D.K.; Shafieloo, A.; Souradeep, T. Primordial power spectrum from Planck. J. Cosmol. Astropart. Phys. 2014, 11, 011. [Google Scholar] [CrossRef]
- Gruppuso, A.; Kitazawa, N.; Mandolesi, N.; Natoli, P.; Sagnotti, A. Pre-Inflationary Relics in the CMB? Phys. Dark Universe 2016, 11, 68–73. [Google Scholar] [CrossRef]
- Ashtekar, A.; Gupt, B.; Sreenath, V. Cosmic Tango Between the Very Small and the Very Large: Addressing CMB Anomalies Through Loop Quantum Cosmology. Front. Astron. Space Sci. 2021, 8, 76. [Google Scholar] [CrossRef]
- Allys, E.; Arnold, K.; Aumont, J.; Aurlien, R.; Azzoni, S.; Baccigalupi, C.; Banday, A.J.; Banerji, R.; Barreiro, R.B.; Bartolo, N.; et al. [LiteBIRD]. Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey. Prog. Theor. Exp. Phys. 2023, 2023, 042F01. [Google Scholar]
- Sachs, R.K.; Wolfe, A.M. Perturbations of a Cosmological Model and Angular Variations of the Microwave Background. Astrophys. J. 1967, 147, 73. [Google Scholar] [CrossRef]
- Melia, F. Angular Correlation of the CMB in the Rh=ct. Universe 2012, 561, A80. [Google Scholar]
- Panda, S.; Aluri, P.K.; Samal, P.K.; Rath, P.K. Parity in Planck full-mission CMB temperature maps. Astropart. Phys. 2021, 125, 102493. [Google Scholar] [CrossRef]
- Melia, F.; López-Corredoira, M. Evidence of a truncated spectrum in the angular correlation function of the cosmic microwave background. Astron. Astrophys. 2018, 610, A87. [Google Scholar] [CrossRef]
- Hogan, C.; Meyer, S.S. Angular correlations of causally-coherent primordial quantum perturbations. Class. Quant. Grav. 2022, 39, 055004. [Google Scholar] [CrossRef]
- Melia, F.; Ma, Q.; Wei, J.J.; Yu, B. Hint of a truncated primordial spectrum from the CMB large-scale anomalies. Astron. Astrophys. 2021, 655, A70. [Google Scholar] [CrossRef]
- Sanchis-Lozano, M.A.; Melia, F.; Lopez-Corredoira, M.; Sanchis-Gual, N. Missing large-angle correlations versus odd-parity dominance in the cosmic microwave background. Astron. Astrophys. 2022, 10, 142–149. [Google Scholar]
- Liu, J.; Melia, F. Viability of slow-roll inflation in light of the non-zero kmin measured in the cosmic microwave background power spectrum. Proc. R. Soc. Lond. A 2020, 476, 20200364. [Google Scholar]
- Copi, C.J.; Huterer, D.; Schwarz, D.J.; Starkman, G.D. Large angle anomalies in the CMB. Adv. Astron. 2010, 2010, 847541. [Google Scholar] [CrossRef]
- Zhao, W.; Santos, L. Preferred axis in cosmology. Universe 2015, 3, 9. [Google Scholar]
- Creswell, J.; Naselsky, P. Asymmetry of the CMB map: Local and global anomalies. J. Cosmol. Astropart. Phys. 2021, 2021, 103. [Google Scholar] [CrossRef]
- Mukhanov, V.F. Physical Foundations of Cosmology; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Aluri, P.K.; Jain, P. Parity asymmetry in the CMBR temperature power spectrum. Mon. Not. R. Astron. Soc. 2012, 419, 3378. [Google Scholar] [CrossRef]
- Csaki, C. TASI lectures on extra dimensions and branes. arXiv 2004, arXiv:hep-ph/0404096. [Google Scholar] [CrossRef]
- von Gersdorff, G.; Pilo, L.; Quiros, M.; Riotto, A.; Sanz, V. Fermions and supersymmetry breaking in the interval. Phys. Lett. B 2004, 598, 106–112. [Google Scholar] [CrossRef]
- Hebecker, A.; March-Russell, J. The structure of GUT breaking by orbifolding. Nucl. Phys. B 2002, 625, 128–150. [Google Scholar] [CrossRef]
- Randall, L.; Sundrum, R. A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 1999, 83, 3370–3373. [Google Scholar] [CrossRef]
- Randall, L.; Sundrum, R. An Alternative to compactification. Phys. Rev. Lett. 1999, 83, 4690–4693. [Google Scholar] [CrossRef]
- Maldacena, J.M. The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 1998, 2, 231–252. [Google Scholar] [CrossRef]
- Hirn, J.; Sanz, V. Interpolating between low and high energy QCD via a 5-D Yang-Mills model. J. High Energy Phys. 2005, 12, 030. [Google Scholar] [CrossRef]
- Donini, A.; Enguita-Vileta, V.; Esser, F.; Sanz, V. Generalising Holographic Superconductors. Adv. High Energy Phys. 2022, 2022, 1785050. [Google Scholar] [CrossRef]
- Hirn, J.; Sanz, V. A Negative S parameter from holographic technicolor. Phys. Rev. Lett. 2006, 97, 121803. [Google Scholar] [CrossRef] [PubMed]
- Hirn, J.; Sanz, V. The Fifth dimension as an analogue computer for strong interactions at the LHC. J. High Energy Phys. 2007, 3, 100. [Google Scholar] [CrossRef]
- Hirn, J.; Sanz, V. (Not) Summing over Kaluza-Kleins. Phys. Rev. D 2007, 76, 044022. [Google Scholar] [CrossRef]
- McDonald, K.L. Little Randall-Sundrum model and a multiply warped spacetime. Phys. Rev. D 2008, 77, 124046. [Google Scholar] [CrossRef]
- Medina, A.D.; Ponton, E. Warped Universal Extra Dimensions. J. High Energy Phys. 2011, 6, 009. [Google Scholar] [CrossRef]
- Fok, R.; Guimaraes, C.; Lewis, R.; Sanz, V. It is a Graviton! or maybe not. J. High Energy Phys. 2012, 12, 062. [Google Scholar] [CrossRef]
- Dillon, B.M.; Sanz, V. Kaluza-Klein gravitons at LHC2. Phys. Rev. D 2017, 96, 035008. [Google Scholar] [CrossRef]
- Lewis, A.; Challinor, A.; Lasenby, A. Efficient Computation of Cosmic Microwave Background Anisotropies inClosed Friedmann-Robertson-Walker Models. Astrophys. J. 2000, 538, 473. [Google Scholar] [CrossRef]
- Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. Astrophys. J. Suppl. Ser. 2003, 148, 175. [Google Scholar] [CrossRef]
- Lue, A.; Wang, L.M.; Kamionkowski, M. Cosmological signature of new parity violating interactions. Phys. Rev. Lett. 1999, 83, 1506–1509. [Google Scholar] [CrossRef]
- Feng, B.; Li, H.; Li, M.; Zhang, X. Gravitational leptogenesis and its signatures in CMB. Phys. Lett. B 2005, 620, 27–32. [Google Scholar] [CrossRef]
- Liu, G.C.; Lee, S.; Ng, K.W. Effect on cosmic microwave background polarization of coupling of quintessence to pseudoscalar formed from the electromagnetic field and its dual. Phys. Rev. Lett. 2006, 97, 161303. [Google Scholar] [CrossRef]
- Saito, S.; Ichiki, K.; Taruya, A. Probing polarization states of primordial gravitational waves with CMB anisotropies. J. Cosmol. Astropart. Phys. 2007, 9, 002. [Google Scholar] [CrossRef]
- Contaldi, C.R.; Magueijo, J.; Smolin, L. Anomalous CMB polarization and gravitational chirality. Phys. Rev. Lett. 2008, 101, 141101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchis-Lozano, M.-A. Probing the Topology of the Early Universe Using CMB Temperature and Polarization Anisotropies. Universe 2025, 11, 306. https://doi.org/10.3390/universe11090306
Sanchis-Lozano M-A. Probing the Topology of the Early Universe Using CMB Temperature and Polarization Anisotropies. Universe. 2025; 11(9):306. https://doi.org/10.3390/universe11090306
Chicago/Turabian StyleSanchis-Lozano, Miguel-Angel. 2025. "Probing the Topology of the Early Universe Using CMB Temperature and Polarization Anisotropies" Universe 11, no. 9: 306. https://doi.org/10.3390/universe11090306
APA StyleSanchis-Lozano, M.-A. (2025). Probing the Topology of the Early Universe Using CMB Temperature and Polarization Anisotropies. Universe, 11(9), 306. https://doi.org/10.3390/universe11090306