Editorial for the Special Issue “New Discoveries in Astronomical Data”
Author Contributions
Funding
Conflicts of Interest
List of Contributions
- Lieu, M. A Comprehensive Guide to Interpretable AI-Powered Discoveries in Astronomy. Universe 2025, 11, 187. https://doi.org/10.3390/universe11060187.
- Li, S.; Yuan, G.; Chen, J.; Tan, C.; Zhou, H. Self-Supervised Learning for Solar Radio Spectrum Classification. Universe 2022, 8, 656. https://doi.org/10.3390/universe8120656.
- Wang, J.; Zhao, Y.; Yang, C.; Shi, Y.; Hao, Y.; Zhang, H.; Sun, J.; Luo, D. The Analysis and Verification of IMT-2000 Base Station Interference Characteristics in the FAST Radio Quiet Zone. Universe 2023, 9, 248. https://doi.org/10.3390/universe9060248.
- Wang, Y.; Zhang, H.; Wang, J.; Huang, S.; Hu, H.; Yang, C. A Software for RFI Analysis of Radio Environment around Radio Telescope. Universe 2023, 9, 277. https://doi.org/10.3390/universe9060277.
- Chen, Y.; Li, G.; Liu, C.; Qiu, B.; Shan, Q.; Li, M. A Meteor Detection Algorithm for GWAC System. Universe 2023, 9, 468. https://doi.org/10.3390/universe9110468.
- Hu, J.-B.; Huang, Y.; Zheng, S.; Chen, Z.-W.; Zeng, X.-Y.; Luo, X.-Y.; Long, C. Molecular-Clump Detection Based on an Improved YOLOv5 Joint Density Peak Clustering. Universe 2023, 9, 480. https://doi.org/10.3390/universe9110480.
- Kumar, N.; Singh, H.P.; Malkov, O.; Joshi, S.; Tan, K.; Prugniel, P.; Bhardwaj, A. Extraction of Physical Parameters of RRab Variables Using Neural Network Based Interpolator. Universe 2025, 11, 207. https://doi.org/10.3390/universe11070207.
- Wu, Q.-M.; Mao, Y.-W.; Lin, L.; Zou, H.; Wang, S.-T. Spectroscopic Observations and Emission-Line Diagnoses for H ii Regions in the Late-Type Spiral Galaxy NGC 2403. Universe 2025, 11, 280. https://doi.org/10.3390/universe11080280.
References
- Khalil, M.; Said, M.; Osman, H.; Ahmed, B.; Ahmed, D.; Younis, N.; Maher, B.; Osama, M.; Ashmawy, M. Big data in astronomy: From evolution to revolution. Int. J. Adv. Astron. 2019, 7, 11. [Google Scholar] [CrossRef]
- Mickaelian, A.M. Big Data in Astronomy: Surveys, Catalogs, Databases and Archives. Commun. BAO 2020, 67, 159. [Google Scholar] [CrossRef]
- Wang, K.; Guo, P.; Yu, F.; Duan, L.; Wang, Y.; Du, H. Computational Intelligence in Astronomy: A Survey. Int. J. Comput. Intell. Syst. 2018, 11, 575. [Google Scholar] [CrossRef]
- Das, S.; Dey, A.; Roy, N. Applications of Artificial Intelligence in Machine Learning: Review and Prospect. Int. J. Comput. Appl. 2015, 115, 9. [Google Scholar] [CrossRef]
- Meher, S.K.; Panda, G. Deep learning in astronomy: A tutorial perspective. Eur. Phys. J. Spec. Top. 2021, 230, 2285. [Google Scholar] [CrossRef]
- Thatikonda, V.K.; Golla, Y.; Mudunuri, H.R. Developments in Artificial Intelligence and Machine Learning: Recent Advances and Future Prospects. ESP Int. J. Adv. Sci. Technol. 2024, 2, 1–5. [Google Scholar]
- Djorgovski, S.G.; Mahabal, A.A.; Graham, M.J.; Polsterer, K.; Krone-Martins, A. Applications of AI in Astronomy. arXiv 2022, arXiv:2212.01493. [Google Scholar] [CrossRef]
- Fluke, C.J.; Jacobs, C. Surveying the reach and maturity of machine learning and artificial intelligence in astronomy. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020, 10, e1349. [Google Scholar] [CrossRef]
- Impey, C. How AI Is Helping Astronomers. EarthSky. Available online: https://earthsky.org/space/artifical-intelligence-ai-is-helping-astronomers-make-new-discoveries/ (accessed on 23 May 2023).
- Pruthi, M.N. Artificial Intelligence in Astronomy. Int. J. Res. Appl. Sci. Eng. Technol. (IJRASET) 2019, 7, 903. [Google Scholar] [CrossRef]
- Huang, K.; Hu, T.; Cai, J.; Pan, X.; Hou, Y.; Xu, L.; Wang, H.; Zhang, Y.; Cui, X. Artificial Intelligence in Astronomical Optical Telescopes: Present Status and Future Perspectives. Universe 2024, 10, 210. [Google Scholar] [CrossRef]
- Smith, M.J.; Geach, J.E. Astronomia ex machina: A history, primer and outlook on neural networks in astronomy. R. Soc. Open Sci. 2023, 10, 221454. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Vaidya, B.; Wadadekar, Y.; Bagla, J.; Chatterjee, P.; Hanasoge, S.; Kumar, P.; Mukherjee, D.; Philip, N.S.; Singh, N. Computational Astrophysics, Data Science & AI/ML in Astronomy: A Perspective from Indian Community. arXiv 2025, arXiv:2501.03876. [Google Scholar] [CrossRef]
- Znamenskiy, V. Artificial Intelligence and Astronomy: Lab Manual for Generative AI-Based Learning Activities. Available online: https://zenodo.org/records/15555802 (accessed on 28 August 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Luo, A.-L. Editorial for the Special Issue “New Discoveries in Astronomical Data”. Universe 2025, 11, 299. https://doi.org/10.3390/universe11090299
Zhang Y, Luo A-L. Editorial for the Special Issue “New Discoveries in Astronomical Data”. Universe. 2025; 11(9):299. https://doi.org/10.3390/universe11090299
Chicago/Turabian StyleZhang, Yanxia, and A-Li Luo. 2025. "Editorial for the Special Issue “New Discoveries in Astronomical Data”" Universe 11, no. 9: 299. https://doi.org/10.3390/universe11090299
APA StyleZhang, Y., & Luo, A.-L. (2025). Editorial for the Special Issue “New Discoveries in Astronomical Data”. Universe, 11(9), 299. https://doi.org/10.3390/universe11090299