Application of the Magnetar Engine to an Intermediate-Luminosity Gamma-Ray Burst Associated with the Supernova GRB 201015A/SN 201015A
Abstract
1. Introduction
2. Observations and Data Reduction
3. Analysis and Results
3.1. Modeling the Afterglow Light Curves
3.1.1. Spindown of Magnetar
3.1.2. Magnetar-Powered Supernovae
3.2. Light-Curve Fitting and Results
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | IRAF (Image Reduction and Analysis Facility; [44,45]), an environment for image reduction and analysis, was developed and maintained by the National Optical Astronomy Observatory (NOAO, Tucson, AZ, USA) operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation of the USA. |
2 | http://archive.stsci.edu/panstarrs/search.php (accessed on 27 August 2025). |
3 | https://www.swift.ac.uk/xrt_curves/01000452/ (accessed on 27 August 2025). |
References
- Woosley, S.E.; Bloom, J.S. The Supernova Gamma-Ray Burst Connection. Annu. Rev. Astron. Astrophys. 2006, 44, 507–556. [Google Scholar] [CrossRef]
- Hjorth, J.; Bloom, J.S. The Gamma-Ray Burst—Supernova Connection. In Chapter 9 in “Gamma-Ray Bursts”; Cambridge University Press: Cambridge, UK, 2012; pp. 169–190. [Google Scholar]
- Cano, Z.; Wang, S.Q.; Dai, Z.G.; Wu, X.F. The Observer’s Guide to the Gamma-Ray Burst Supernova Connection. Adv. Astron. 2017, 2017, 8929054. [Google Scholar] [CrossRef]
- Woosley, S.E. Gamma-Ray Bursts from Stellar Mass Accretion Disks around Black Holes. Astrophys. J. 1993, 405, 273. [Google Scholar] [CrossRef]
- Popham, R.; Woosley, S.E.; Fryer, C. Hyperaccreting Black Holes and Gamma-Ray Bursts. Astrophys. J. 1999, 518, 356–374. [Google Scholar] [CrossRef]
- MacFadyen, A.I.; Woosley, S.E. Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae”. Astrophys. J. 1999, 524, 262–289. [Google Scholar] [CrossRef]
- Narayan, R.; Piran, T.; Kumar, P. Accretion Models of Gamma-Ray Bursts. Astrophys. J. 2001, 557, 949–957. [Google Scholar] [CrossRef]
- Lei, W.H.; Zhang, B.; Liang, E.W. Hyperaccreting Black Hole as Gamma-Ray Burst Central Engine. I. Baryon Loading in Gamma-Ray Burst Jets. Astrophys. J. 2013, 765, 125. [Google Scholar] [CrossRef]
- Usov, V.V. Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts. Nature 1992, 357, 472–474. [Google Scholar] [CrossRef]
- Thompson, C. A model of gamma-ray bursts. Mon. Not. R. Astron. Soc. 1994, 270, 480–498. [Google Scholar] [CrossRef]
- Dai, Z.G.; Lu, T. Gamma-ray burst afterglows and evolution of postburst fireballs with energy injection from strongly magnetic millisecond pulsars. Astron. Astrophys. 1998, 333, L87–L90. [Google Scholar]
- Wheeler, J.C.; Yi, I.; Höflich, P.; Wang, L. Asymmetric Supernovae, Pulsars, Magnetars, and Gamma-Ray Bursts. Astrophys. J. 2000, 537, 810–823. [Google Scholar] [CrossRef]
- Zhang, B.; Mészáros, P. Gamma-Ray Burst Afterglow with Continuous Energy Injection: Signature of a Highly Magnetized Millisecond Pulsar. Astrophys. J. Lett. 2001, 552, L35–L38. [Google Scholar] [CrossRef]
- Bucciantini, N.; Quataert, E.; Arons, J.; Metzger, B.D.; Thompson, T.A. Magnetar-driven bubbles and the origin of collimated outflows in gamma-ray bursts. Mon. Not. R. Astron. Soc. 2007, 380, 1541–1553. [Google Scholar] [CrossRef]
- Metzger, B.D.; Quataert, E.; Thompson, T.A. Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. Mon. Not. R. Astron. Soc. 2008, 385, 1455–1460. [Google Scholar] [CrossRef]
- Metzger, B.D.; Giannios, D.; Thompson, T.A.; Bucciantini, N.; Quataert, E. The protomagnetar model for gamma-ray bursts. Mon. Not. R. Astron. Soc. 2011, 413, 2031–2056. [Google Scholar] [CrossRef]
- Bromberg, O.; Nakar, E.; Piran, T. Are Low-luminosity Gamma-Ray Bursts Generated by Relativistic Jets? Astrophys. J. Lett. 2011, 739, L55. [Google Scholar] [CrossRef]
- Hjorth, J. The supernova-gamma-ray burst-jet connection. Philos. Trans. R. Soc. Lond. Ser. A 2013, 371, 20120275. [Google Scholar] [CrossRef]
- Cano, Z.; Izzo, L.; de Ugarte Postigo, A.; Thöne, C.C.; Krühler, T.; Heintz, K.E.; Malesani, D.; Geier, S.; Fuentes, C.; Chen, T.W.; et al. GRB 161219B/SN 2016jca: A low-redshift gamma-ray burst supernova powered by radioactive heating. Astron. Astrophys. 2017, 605, A107. [Google Scholar] [CrossRef]
- Georgy, C.; Meynet, G.; Walder, R.; Folini, D.; Maeder, A. The different progenitors of type Ib, Ic SNe, and of GRB. Astron. Astrophys. 2009, 502, 611–622. [Google Scholar] [CrossRef]
- Dessart, L.; Hillier, D.J.; Yoon, S.C.; Waldman, R.; Livne, E. Radiative-transfer models for explosions from rotating and non-rotating single WC stars. Implications for SN 1998bw and LGRB/SNe. Astron. Astrophys. 2017, 603, A51. [Google Scholar] [CrossRef]
- Barthelmy, S.D.; Barbier, L.M.; Cummings, J.R.; Fenimore, E.E.; Gehrels, N.; Hullinger, D.; Krimm, H.A.; Markwardt, C.B.; Palmer, D.M.; Parsons, A.; et al. The Burst Alert Telescope (BAT) on the SWIFT Midex Mission. Space Sci. Rev. 2005, 120, 143–164. [Google Scholar] [CrossRef]
- Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K.O.; Nousek, J.A.; Wells, A.A.; White, N.E.; Barthelmy, S.D.; Burrows, D.N.; Cominsky, L.R.; et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 2004, 611, 1005–1020. [Google Scholar] [CrossRef]
- D’Elia, V.; Ambrosi, E.; Barthelmy, S.D.; D’Ai, A.; Gropp, J.D.; Klingler, N.J.; Lien, A.Y.; Palmer, D.M.; Sbarufatti, B.; Siegel, M.H.; et al. GRB 201015A: Swift detection of a burst. GRB Coord. Netw. 2020, 28632, 1. [Google Scholar]
- Rodríguez-Espinosa, J.M.; Alvarez Martin, P. Gran Telescopio Canarias: A 10 m telescope for the ORM. In Optical Telescopes of Today and Tomorrow; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Ardeberg, A.L., Ed.; SPIE: Bellingham, WA, USA, 1997; Volume 2871, pp. 69–73. [Google Scholar] [CrossRef]
- de Ugarte Postigo, A.; Kann, D.A.; Blazek, M.; Agui Fernandez, J.F.; Thoene, C.; Gomez Velarde, G. GRB 201015A: Redshift from GTC/OSIRIS. GRB Coord. Netw. 2020, 28649, 1. [Google Scholar]
- Minaev, P.; Pozanenko, A. GRB 201015A: Classification as long GRB. GRB Coord. Netw. 2020, 28668, 1. [Google Scholar]
- Pozanenko, A.; Belkin, S.; Volnova, A.; Moskvitin, A.; Burhonov, O.; Kim, V.; Krugov, M.; Rumyantsev, V.; Klunko, E.; Inasaridze, R.Y.; et al. GRB 201015A: Optical observations and supernova identification. GRB Coord. Netw. 2020, 29033, 1. [Google Scholar]
- Rossi, A.; Benetti, S.; Palazzi, E.; D’Avanzo, P.; D’Elia, V.; De Pasquale, M.; CIBO Collaboration. GRB 201015A: Evidence of supernova in LBT spectra. GRB Coord. Netw. 2021, 29306, 1. [Google Scholar]
- Patel, M.; Gompertz, B.P.; O’Brien, P.T.; Lamb, G.P.; Starling, R.L.C.; Evans, P.A.; Amati, L.; Levan, A.J.; Nicholl, M.; Ackley, K.; et al. GRB 201015A and the nature of low-luminosity soft gamma-ray bursts. Mon. Not. R. Astron. Soc. 2023, 523, 4923–4937. [Google Scholar] [CrossRef]
- Belkin, S.; Pozanenko, A.S.; Minaev, P.Y.; Pankov, N.S.; Volnova, A.A.; Rossi, A.; Stratta, G.; Benetti, S.; Palazzi, E.; Moskvitin, A.S.; et al. GRB 201015A: From seconds to months of optical monitoring and supernova discovery. Mon. Not. R. Astron. Soc. 2024, 527, 11507–11520. [Google Scholar] [CrossRef]
- Izzo, L.; Malesani, D.B.; Zhu, Z.P.; Xu, D.; de Ugarte Postigo, A.; Pursimo, T. GRB 201015A: Redshift confirmation. GRB Coord. Netw. 2020, 28661, 1. [Google Scholar]
- Markwardt, C.B.; Barthelmy, S.D.; Cummings, J.R.; D’Elia, V.; Krimm, H.A.; Laha, S.; Lien, A.Y.; Palmer, D.M.; Sakamoto, T.; Stamatikos, M.; et al. GRB 201015A: Swift-BAT refined analysis (a soft short pulse with a tail emission). GRB Coord. Netw. 2020, 28658, 1. [Google Scholar]
- Dai, Z.G.; Lu, T. Gamma-ray burst afterglows: Effects of radiative corrections and non-uniformity of the surrounding medium. Mon. Not. R. Astron. Soc. 1998, 298, 87–92. [Google Scholar] [CrossRef]
- Metzger, B.D.; Thompson, T.A.; Quataert, E. Proto-Neutron Star Winds with Magnetic Fields and Rotation. Astrophys. J. 2007, 659, 561–579. [Google Scholar] [CrossRef]
- Lü, H.J.; Zhang, B. A Test of the Millisecond Magnetar Central Engine Model of Gamma-Ray Bursts with Swift Data. Astrophys. J. 2014, 785, 74. [Google Scholar] [CrossRef]
- Stratta, G.; Dainotti, M.G.; Dall’Osso, S.; Hernandez, X.; De Cesare, G. On the Magnetar Origin of the GRBs Presenting X-Ray Afterglow Plateaus. Astrophys. J. 2018, 869, 155. [Google Scholar] [CrossRef]
- Burrows, D.N.; Hill, J.E.; Nousek, J.A.; Kennea, J.A.; Wells, A.; Osborne, J.P.; Abbey, A.F.; Beardmore, A.; Mukerjee, K.; Short, A.D.T.; et al. The Swift X-Ray Telescope. Space Sci. Rev. 2005, 120, 165–195. [Google Scholar] [CrossRef]
- Kennea, J.A.; Tagliaferri, G.; Campana, S.; Evans, P.A.; Osborne, J.P.; Burrows, D.N.; Swift-XRT Team. GRB 201015A: Swift-XRT observations. GRB Coord. Netw. 2020, 28635, 1. [Google Scholar]
- Evans, P.A.; Goad, M.R.; Osborne, J.P.; Beardmore, A.P.; Swift-XRT Team. GRB 201015A: Enhanced Swift-XRT position. GRB Coord. Netw. 2020, 28647, 1. [Google Scholar]
- Roming, P.W.A.; Kennedy, T.E.; Mason, K.O.; Nousek, J.A.; Ahr, L.; Bingham, R.E.; Broos, P.S.; Carter, M.J.; Hancock, B.K.; Huckle, H.E.; et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 2005, 120, 95–142. [Google Scholar] [CrossRef]
- Marshall, F.E.; D’Elia, V.; Swift/UVOT Team. GRB 201015A: Swift/UVOT Detection. GRB Coord. Netw. 2020, 28662, 1. [Google Scholar]
- Brown, T.M.; Baliber, N.; Bianco, F.B.; Bowman, M.; Burleson, B.; Conway, P.; Crellin, M.; Depagne, É.; De Vera, J.; Dilday, B.; et al. Las Cumbres Observatory Global Telescope Network. Publ. Astron. Soc. Pac. 2013, 125, 1031. [Google Scholar] [CrossRef]
- Tody, D. The IRAF Data Reduction and Analysis System. In Proceedings of the Instrumentation in Astronomy VI, Tucson, AZ, USA, 4–8 March 1986; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Crawford, D.L., Ed.; 1986; Volume 627, p. 733. [Google Scholar] [CrossRef]
- Tody, D. IRAF in the Nineties. In Astronomical Data Analysis Software and Systems II; Astronomical Society of the Pacific Conference Series; Hanisch, R.J., Brissenden, R.J.V., Barnes, J., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 1993; Volume 52, p. 173. [Google Scholar]
- Landolt, A.U. UBVRI Photometric Standard Stars in the Magnitude Range 11.5 < V < 16.0 Around the Celestial Equator. Astron. J. 1992, 104, 340. [Google Scholar] [CrossRef]
- Tonry, J.L.; Stubbs, C.W.; Lykke, K.R.; Doherty, P.; Shivvers, I.S.; Burgett, W.S.; Chambers, K.C.; Hodapp, K.W.; Kaiser, N.; Kudritzki, R.P.; et al. The Pan-STARRS1 Photometric System. Astrophys. J. 2012, 750, 99. [Google Scholar] [CrossRef]
- Schlafly, E.F.; Finkbeiner, D.P. Measuring Reddening with Sloan Digital Sky Survey Stellar Spectra and Recalibrating SFD. Astrophys. J. 2011, 737, 103. [Google Scholar] [CrossRef]
- Komesh, T.; Grossan, B.; Maksut, Z.; Abdikamalov, E.; Krugov, M.; Smoot, G.F. Evolution of the afterglow optical spectral shape of GRB 201015A in the first hour: Evidence for dust destruction. Mon. Not. R. Astron. Soc. 2023, 520, 6104–6110. [Google Scholar] [CrossRef]
- Ror, A.K.; Gupta, R.; Jelínek, M.; Bhushan Pandey, S.; Castro-Tirado, A.J.; Hu, Y.D.; Maleňáková, A.; Štrobl, J.; Thöne, C.C.; Hudec, R.; et al. Prompt Emission and Early Optical Afterglow of Very-high-energy Detected GRB 201015A and GRB 201216C: Onset of the External Forward Shock. Astrophys. J. 2023, 942, 34. [Google Scholar] [CrossRef]
- Evans, P.A.; Beardmore, A.P.; Page, K.L.; Osborne, J.P.; O’Brien, P.T.; Willingale, R.; Starling, R.L.C.; Burrows, D.N.; Godet, O.; Vetere, L.; et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 2009, 397, 1177–1201. [Google Scholar] [CrossRef]
- Giarratana, S.; Rhodes, L.; Marcote, B.; Fender, R.; Ghirlanda, G.; Giroletti, M.; Nava, L.; Paredes, J.M.; Ravasio, M.E.; Ribó, M.; et al. VLBI observations of GRB 201015A, a relatively faint GRB with a hint of very high-energy gamma-ray emission. Astron. Astrophys. 2022, 664, A36. [Google Scholar] [CrossRef]
- Liang, E.W.; Zhang, B.B.; Zhang, B. A Comprehensive Analysis of Swift XRT Data. II. Diverse Physical Origins of the Shallow Decay Segment. Astrophys. J. 2007, 670, 565–583. [Google Scholar] [CrossRef]
- Li, L.; Liang, E.W.; Tang, Q.W.; Chen, J.M.; Xi, S.Q.; Lü, H.J.; Gao, H.; Zhang, B.; Zhang, J.; Yi, S.X.; et al. A Comprehensive Study of Gamma-Ray Burst Optical Emission. I. Flares and Early Shallow-decay Component. Astrophys. J. 2012, 758, 27. [Google Scholar] [CrossRef]
- Wang, X.G.; Zhang, B.; Liang, E.W.; Gao, H.; Li, L.; Deng, C.M.; Qin, S.M.; Tang, Q.W.; Kann, D.A.; Ryde, F.; et al. How Bad or Good Are the External Forward Shock Afterglow Models of Gamma-Ray Bursts? Astrophys. J. Suppl. Ser. 2015, 219, 9. [Google Scholar] [CrossRef]
- Lasky, P.D.; Leris, C.; Rowlinson, A.; Glampedakis, K. The Braking Index of Millisecond Magnetars. Astrophys. J. Lett. 2017, 843, L1. [Google Scholar] [CrossRef]
- Lyons, N.; O’Brien, P.T.; Zhang, B.; Willingale, R.; Troja, E.; Starling, R.L.C. Can X-ray emission powered by a spinning-down magnetar explain some gamma-ray burst light-curve features? Mon. Not. R. Astron. Soc. 2010, 402, 705–712. [Google Scholar] [CrossRef]
- Stairs, I.H. Pulsars in Binary Systems: Probing Binary Stellar Evolution and General Relativity. Science 2004, 304, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Frail, D.A.; Kulkarni, S.R.; Sari, R.; Djorgovski, S.G.; Bloom, J.S.; Galama, T.J.; Reichart, D.E.; Berger, E.; Harrison, F.A.; Price, P.A.; et al. Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir. Astrophys. J. Lett. 2001, 562, L55–L58. [Google Scholar] [CrossRef]
- Ostriker, J.P.; Gunn, J.E. Do Pulsars Make Supernovae? Astrophys. J. Lett. 1971, 164, L95. [Google Scholar] [CrossRef]
- Kasen, D.; Bildsten, L. Supernova Light Curves Powered by Young Magnetars. Astrophys. J. 2010, 717, 245–249. [Google Scholar] [CrossRef]
- Chatzopoulos, E.; Wheeler, J.C.; Vinko, J. Generalized Semi-analytical Models of Supernova Light Curves. Astrophys. J. 2012, 746, 121. [Google Scholar] [CrossRef]
- Inserra, C.; Smartt, S.J.; Jerkstrand, A.; Valenti, S.; Fraser, M.; Wright, D.; Smith, K.; Chen, T.W.; Kotak, R.; Pastorello, A.; et al. Super-luminous Type Ic Supernovae: Catching a Magnetar by the Tail. Astrophys. J. 2013, 770, 128. [Google Scholar] [CrossRef]
- Wang, S.Q.; Wang, L.J.; Dai, Z.G.; Wu, X.F. Superluminous Supernovae Powered by Magnetars: Late-time Light Curves and Hard Emission Leakage. Astrophys. J. 2015, 799, 107. [Google Scholar] [CrossRef]
- Nicholl, M.; Guillochon, J.; Berger, E. The Magnetar Model for Type I Superluminous Supernovae. I. Bayesian Analysis of the Full Multicolor Light-curve Sample with MOSFiT. Astrophys. J. 2017, 850, 55. [Google Scholar] [CrossRef]
- Arnett, W.D. Type I supernovae. I—Analytic solutions for the early part of the light curve. Astrophys. J. 1982, 253, 785–797. [Google Scholar] [CrossRef]
- Taddia, F.; Sollerman, J.; Leloudas, G.; Stritzinger, M.D.; Valenti, S.; Galbany, L.; Kessler, R.; Schneider, D.P.; Wheeler, J.C. Early-time light curves of Type Ib/c supernovae from the SDSS-II Supernova Survey. Astron. Astrophys. 2015, 574, A60. [Google Scholar] [CrossRef]
- Xiao, D.; Dai, Z.G. Determining the Efficiency of Converting Magnetar Spindown Energy into Gamma-Ray Burst X-Ray Afterglow Emission and Its Possible Implications. Astrophys. J. 2019, 878, 62. [Google Scholar] [CrossRef]
- Zou, L.; Liang, E.W.; Zhong, S.Q.; Yang, X.; Zheng, T.C.; Cheng, J.G.; Deng, C.M.; Lü, H.J.; Wang, S.Q. Comparison of the characteristics of magnetars born in death of massive stars and merger of compact objects with swift gamma-ray burst data. Mon. Not. R. Astron. Soc. 2021, 508, 2505–2514. [Google Scholar] [CrossRef]
- Rowlinson, A.; Gompertz, B.P.; Dainotti, M.; O’Brien, P.T.; Wijers, R.A.M.J.; van der Horst, A.J. Constraining properties of GRB magnetar central engines using the observed plateau luminosity and duration correlation. Mon. Not. R. Astron. Soc. 2014, 443, 1779–1787. [Google Scholar] [CrossRef]
- Cano, Z.; Johansson Andreas, K.G.; Maeda, K. A self-consistent analytical magnetar model: The luminosity of γ-ray burst supernovae is powered by radioactivity. Mon. Not. R. Astron. Soc. 2016, 457, 2761–2772. [Google Scholar] [CrossRef]
- Fraija, N.; Veres, P.; Beniamini, P.; Galvan-Gamez, A.; Metzger, B.D.; Barniol Duran, R.; Becerra, R.L. On the Origin of the Multi-GeV Photons from the Closest Burst with Intermediate Luminosity: GRB 190829A. Astrophys. J. 2021, 918, 12. [Google Scholar] [CrossRef]
- Lü, H.J.; Lan, L.; Zhang, B.; Liang, E.W.; Kann, D.A.; Du, S.S.; Shen, J. Gamma-Ray Burst/Supernova Associations: Energy Partition and the Case of a Magnetar Central Engine. Astrophys. J. 2018, 862, 130. [Google Scholar] [CrossRef]
- Weiler, K.W.; Panagia, N.; Montes, M.J. SN 1998bw/GRB 980425 and Radio Supernovae. Astrophys. J. 2001, 562, 670–678. [Google Scholar] [CrossRef]
- Della Valle, M.; Malesani, D.; Benetti, S.; Testa, V.; Hamuy, M.; Antonelli, L.A.; Chincarini, G.; Cocozza, G.; Covino, S.; D’Avanzo, P.; et al. Evidence for supernova signatures in the spectrum of the late-time bump of the optical afterglow of GRB 021211. Astron. Astrophys. 2003, 406, L33–L37. [Google Scholar] [CrossRef]
- Tsvetkova, A.; Frederiks, D.; Golenetskii, S.; Lysenko, A.; Oleynik, P.; Pal’shin, V.; Svinkin, D.; Ulanov, M.; Cline, T.; Hurley, K.; et al. The Konus-Wind Catalog of Gamma-Ray Bursts with Known Redshifts. I. Bursts Detected in the Triggered Mode. Astrophys. J. 2017, 850, 161. [Google Scholar] [CrossRef]
- Deng, J.; Tominaga, N.; Mazzali, P.A.; Maeda, K.; Nomoto, K. On the Light Curve and Spectrum of SN 2003dh Separated from the Optical Afterglow of GRB 030329. Astrophys. J. 2005, 624, 898–905. [Google Scholar] [CrossRef]
- Mazzali, P.A.; Deng, J.; Tominaga, N.; Maeda, K.; Nomoto, K.; Matheson, T.; Kawabata, K.S.; Stanek, K.Z.; Garnavich, P.M. The Type Ic Hypernova SN 2003dh/GRB 030329. Astrophys. J. Lett. 2003, 599, L95–L98. [Google Scholar] [CrossRef]
- Mazzali, P.A.; Deng, J.; Pian, E.; Malesani, D.; Tominaga, N.; Maeda, K.; Nomoto, K.; Chincarini, G.; Covino, S.; Valle, M.D.; et al. Models for the Type Ic Hypernova SN 2003lw associated with GRB 031203. Astrophys. J. 2006, 645, 1323–1330. [Google Scholar] [CrossRef]
- Della Valle, M.; Malesani, D.; Bloom, J.S.; Benetti, S.; Chincarini, G.; D’Avanzo, P.; Foley, R.J.; Covino, S.; Melandri, A.; Piranomonte, S.; et al. Hypernova Signatures in the Late Rebrightening of GRB 050525A. Astrophys. J. Lett. 2006, 642, L103–L106. [Google Scholar] [CrossRef]
- Kovacevic, M.; Izzo, L.; Wang, Y.; Muccino, M.; Della Valle, M.; Amati, L.; Barbarino, C.; Enderli, M.; Pisani, G.B.; Li, L. A search for Fermi bursts associated with supernovae and their frequency of occurrence. Astron. Astrophys. 2014, 569, A108. [Google Scholar] [CrossRef]
- Campana, S.; Mangano, V.; Blustin, A.J.; Brown, P.; Burrows, D.N.; Chincarini, G.; Cummings, J.R.; Cusumano, G.; Valle, M.D.; Malesani, D.; et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 2006, 442, 1008–1010. [Google Scholar] [CrossRef]
- Mirabal, N.; Halpern, J.P.; An, D.; Thorstensen, J.R.; Terndrup, D.M. GRB 060218/SN 2006aj: A Gamma-Ray Burst and Prompt Supernova at z = 0.0335. Astrophys. J. Lett. 2006, 643, L99–L102. [Google Scholar] [CrossRef]
- Li, L.-X. Shock breakout in Type Ibc supernovae and application to GRB 060218/SN 2006aj. Mon. Not. R. Astron. Soc. 2007, 375, 240–256. [Google Scholar] [CrossRef]
- Xu, D.; Zou, Y.C.; Fan, Y.Z. Mildly relativistic X-ray transient 080109 and SN 2008D: Towards a continuum from energetic GRB/XRF to ordinary Ibc SN. In Proceedings of the 37th COSPAR Scientific Assembly, Montreal, QC, Canada, 13–20 July 2008; Volume 37, p. 3512. [Google Scholar] [CrossRef]
- Mazzali, P.A.; Valenti, S.; Della Valle, M.; Chincarini, G.; Sauer, D.N.; Benetti, S.; Pian, E.; Piran, T.; D’Elia, V.; Elias-Rosa, N.; et al. The Metamorphosis of Supernova SN 2008D/XRF 080109: A Link Between Supernovae and GRBs/Hypernovae. Science 2008, 321, 1185. [Google Scholar] [CrossRef]
- Li, L.-X. The X-ray transient 080109 in NGC 2770: An X-ray flash associated with a normal core-collapse supernova. Mon. Not. R. Astron. Soc. 2008, 388, 603–610. [Google Scholar] [CrossRef]
- Soderberg, A.M.; Berger, E.; Page, K.L.; Schady, P.; Parrent, J.; Pooley, D.; Wang, X.Y.; Ofek, E.O.; Cucchiara, A.; Rau, A.; et al. An extremely luminous X-ray outburst at the birth of a supernova. Nature 2008, 453, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.-P.; Covino, S.; Valle, M.D.; Ferrero, P.; Fugazza, D.; Malesani, D.; Melandri, A.; Pian, E.; Salvaterra, R.; Bersier, D. GRB 081007 and GRB 090424: The Surrounding Medium, Outflows, and Supernovae. Astrophys. J. 2013, 774, 114. [Google Scholar] [CrossRef]
- Olivares E., F.; Greiner, J.; Schady, P.; Klose, S.; Krühler, T.; Rau, A.; Savaglio, S.; Kann, D.A.; Pignata, G.; Elliott, J.; et al. Multiwavelength analysis of three supernovae associated with gamma-ray bursts observed by GROND. Astron. Astrophys. 2015, 577, A44. [Google Scholar] [CrossRef]
- Berger, E.; Chornock, R.; Holmes, T.R.; Foley, R.J.; Cucchiara, A.; Wolf, C.; Podsiadlowski, P.; Fox, D.B.; Roth, K.C. The Spectroscopic Classification and Explosion Properties of SN 2009nz Associated with GRB 091127 at z = 0.490. Astrophys. J. 2011, 743, 204. [Google Scholar] [CrossRef]
- Cobb, B.E.; Bloom, J.S.; Perley, D.A.; Morgan, A.N.; Cenko, S.B.; Filippenko, A.V. Discovery of SN 2009nz Associated with GRB 091127. Astrophys. J. Lett. 2010, 718, L150–L155. [Google Scholar] [CrossRef]
- Bufano, F.; Pian, E.; Sollerman, J.; Benetti, S.; Pignata, G.; Valenti, S.; Covino, S.; D’Avanzo, P.; Malesani, D.; Cappellaro, E.; et al. The Highly Energetic Expansion of SN 2010bh Associated with GRB 100316D. Astrophys. J. 2012, 753, 67. [Google Scholar] [CrossRef]
- Sparre, M.; Sollerman, J.; Fynbo, J.P.U.; Malesani, D.; Goldoni, P.; Postigo, A.d.; Covino, S.; D’Elia, V.; Flores, H.; Hammer, F.; et al. Spectroscopic Evidence for SN 2010ma Associated with GRB 101219B. Astrophys. J. Lett. 2011, 735, L24. [Google Scholar] [CrossRef]
- Greiner, J.; Mazzali, P.A.; Kann, D.A.; Krühler, T.; Pian, E.; Prentice, S.; Olivares E., F.; Rossi, A.; Klose, S.; Taubenberger, S.; et al. A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst. Nature 2015, 523, 189–192. [Google Scholar] [CrossRef]
- Kann, D.A.; Schady, P.; Olivares, E.F.; Klose, S.; Rossi, A.; Perley, D.A.; Zhang, B.; Krühler, T.; Greiner, J.; Guelbenzu, A.N.; et al. The optical/NIR afterglow of GRB 111209A: Complex yet not unprecedented. Astron. Astrophys. 2018, 617, A122. [Google Scholar] [CrossRef]
- Zhang, B.-B.; Fan, Y.-Z.; Shen, R.-F.; Xu, D.; Zhang, F.-W.; Wei, D.-M.; Burrows, D.N.; Zhang, B.; Gehrels, N. GRB 120422A: A Low-luminosity Gamma-Ray Burst Driven by a Central Engine. Astrophys. J. 2012, 756, 190. [Google Scholar] [CrossRef]
- Melandri, A.; Pian, E.; Ferrero, P.; D’Elia, V.; Walker, E.S.; Ghirlanda, G.; Covino, S.; Amati, L.; D’avanzo, P.; Mazzali, P.A.; et al. The optical SN 2012bz associated with the long GRB 120422A. Astron. Astrophys. 2012, 547, A82. [Google Scholar] [CrossRef]
- Schulze, S.; Malesani, D.; Cucchiara, A.; Tanvir, N.R.; Krühler, T.; de Ugarte Postigo, A.; Leloudas, G.; Lyman, J.; Bersier, D.; Wiersema, K.; et al. GRB 120422A/SN 2012bz: Bridging the gap between low- and high-luminosity gamma-ray bursts. Astron. Astrophys. 2014, 566, A102. [Google Scholar] [CrossRef]
- Cano, Z.; de Ugarte Postigo, A.; Pozanenko, A.; Butler, N.; Thöne, C.C.; Guidorzi, C.; Krühler, T.; Gorosabel, J.; Jakobsson, P.; Leloudas, G.; et al. A trio of gamma-ray burst supernovae: GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu. Astron. Astrophys. 2014, 568, A19. [Google Scholar] [CrossRef]
- Xu, D.; de Ugarte Postigo, A.; Leloudas, G.; Krühler, T.; Cano, Z.; Hjorth, J.; Malesani, D.; Fynbo, J.P.U.; Thöne, C.C.; Sánchez-Ramírez, R.; et al. Discovery of the Broad-lined Type Ic SN 2013cq Associated with the Very Energetic GRB 130427A. Astrophys. J. 2013, 776, 98. [Google Scholar] [CrossRef]
- Vestr, W.T.; Wren, J.A.; Panaitescu, A.; Wozniak, P.R.; Davis, H.; Palmer, D.M.; Vianello, G.; Omodei, N.; Xiong, S.; Briggs, M.S.; et al. The Bright Optical Flash and Afterglow from the Gamma-Ray Burst GRB 130427A. Science 2014, 343, 38–41. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; et al. Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A. Science 2014, 343, 42–47. [Google Scholar] [CrossRef]
- Melandri, A.; Pian, E.; D’Elia, V.; D’avanzo, P.; Della Valle, M.; Mazzali, P.A.; Tagliaferri, G.; Cano, Z.; Levan, A.J.; MΔoller, P.; et al. Diversity of gamma-ray burst energetics vs. supernova homogeneity: SN 2013cq associated with GRB 130427A. Astron. Astrophys. 2014, 567, A29. [Google Scholar] [CrossRef]
- D’Elia, V.; Pian, E.; Melandri, A.; D’Avanzo, P.; Della Valle, M.; Mazzali, P.A.; Piranomonte, S.; Tagliaferri, G.; Antonelli, L.A.; Bufano, F.I.; et al. SN 2013dx associated with GRB 130702A: A detailed photometric and spectroscopic monitoring and a study of the environment. Astron. Astrophys. 2015, 577, A116. [Google Scholar] [CrossRef]
- Toy, V.L.; Cenko, S.B.; Silverman, J.M.; Butler, N.R.; Cucchiara, A.; Watson, A.M.; Bersier, D.; Perley, D.A.; Margutti, R.; Bellm, E.; et al. Optical and Near-infrared Observations of SN 2013dx Associated with GRB 130702A. Astrophys. J. 2016, 818, 79. [Google Scholar] [CrossRef]
- Volnova, A.A.; Pruzhinskaya, M.V.; Pozanenko, A.S.; Blinnikov, S.I.; Minaev, P.Y.; Burkhonov, O.A.; Chernenko, A.M.; Ehgamberdiev, S.A.; Inasaridze, R.; Jelinek, M.; et al. Multicolour modelling of SN 2013dx associated with GRB 130702A. Mon. Not. R. Astron. Soc. 2017, 467, 3500–3512. [Google Scholar] [CrossRef]
- Cano, Z.; de Ugarte Postigo, A.; Perley, D.; Krühler, T.; Margutti, R.; Friis, M.; Malesani, D.; Jakobsson, P.; Fynbo, J.P.; Gorosabel, J.; et al. GRB 140606B/iPTF14bfu: Detection of shock-breakout emission from a cosmological γ-ray burst? Mon. Not. R. Astron. Soc. 2015, 452, 1535–1552. [Google Scholar] [CrossRef]
- Ashall, C.; Mazzali, P.A.; Pian, E.; Woosley, S.E.; Palazzi, E.; Prentice, S.J.; Kobayashi, S.; Holmbo, S.; Levan, A.; Perley, D.; et al. GRB 161219B/SN 2016jca: A powerful stellar collapse. Mon. Not. R. Astron. Soc. 2019, 487, 5824–5839. [Google Scholar] [CrossRef]
- Izzo, L.; de Ugarte Postigo, A.; Maeda, K.; Thöne, C.C.; Kann, D.A.; Della Valle, M.; Sagués Carracedo, A.; Michałowski, M.J.; Schady, P.; Schmidl, S.; et al. Signatures of a jet cocoon in early spectra of a supernova associated with a γ-ray burst. Nature 2019, 565, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Rueda, J.A.; Ruffini, R.; Becerra, L.; Bianco, C.; Li, L.; Karlica, M. Two Predictions of Supernova: GRB 130427A/SN 2013cq and GRB 180728A/SN 2018fip. Astrophys. J. 2019, 874, 39. [Google Scholar] [CrossRef]
- Rueda, J.A.; Ruffini, R.; Karlica, M.; Moradi, R.; Wang, Y. Magnetic Fields and Afterglows of BdHNe: Inferences from GRB 130427A, GRB 160509A, GRB 160625B, GRB 180728A, and GRB 190114C. Astrophys. J. 2020, 893, 148. [Google Scholar] [CrossRef]
- Hu, Y.D.; Castro-Tirado, A.J.; Kumar, A.; Gupta, R.; Valeev, A.F.; Pandey, S.B.; Kann, D.A.; Castellón, A.; Agudo, I.; Aryan, A.; et al. 10.4 m GTC observations of the nearby VHE-detected GRB 190829A/SN 2019oyw. Astron. Astrophys. 2021, 646, A50. [Google Scholar] [CrossRef]
- Kong, D.F.; Wang, X.G.; Zheng, W.; Lü, H.J.; Xin, L.P.; Lin, D.B.; Cao, J.X.; Lu, M.X.; Ren, B.; Vidal, E.P.; et al. GRB 221009A/SN 2022xiw: A Supernova Obscured by a Gamma-Ray Burst Afterglow? Astrophys. J. 2024, 971, 56. [Google Scholar] [CrossRef]
- Fulton, M.D.; Smartt, S.J.; Rhodes, L.; Huber, M.E.; Villar, V.A.; Moore, T.; Srivastav, S.; Schultz, A.S.B.; Chambers, K.C.; Izzo, L.; et al. The Optical Light Curve of GRB 221009A: The Afterglow and the Emerging Supernova. Astrophys. J. Lett. 2023, 946, L22. [Google Scholar] [CrossRef]
- Srinivasaragavan, G.P.; O’Connor, B.; Cenko, S.B.; Dittmann, A.J.; Yang, S.; Sollerman, J.; Anupama, G.C.; Barway, S.; Bhalerao, V.; Kumar, H.; et al. A Sensitive Search for Supernova Emission Associated with the Extremely Energetic and Nearby GRB 221009A. Astrophys. J. Lett. 2023, 949, L39. [Google Scholar] [CrossRef]
- Roman Aguilar, L.M.; Saez, M.M.; Ertini, K.; Bersten, M.C. A magnetar powers the luminous supernova 2023pel, which is associated with a long gamma-ray burst. Astron. Astrophys. 2025, 698, A78. [Google Scholar] [CrossRef]
- Hussenot-Desenonges, T.; Wouters, T.; Guessoum, N.; Abdi, I.; Abulwfa, A.; Adami, C.; Agüí Fernández, J.F.; Ahumada, T.; Aivazyan, V.; Akl, D.; et al. Multiband analyses of the bright GRB 230812B and the associated SN2023pel. Mon. Not. R. Astron. Soc. 2024, 530, 1–19. [Google Scholar] [CrossRef]
- Dainotti, M.G.; Petrosian, V.; Singal, J.; Ostrowski, M. Determination of the Intrinsic Luminosity Time Correlation in the X-Ray Afterglows of Gamma-Ray Bursts. Astrophys. J. 2013, 774, 157. [Google Scholar] [CrossRef]
- Lü, H.-J.; Zhang, B.; Lei, W.-H.; Li, Y.; Lasky, P.D. The Millisecond Magnetar Central Engine in Short GRBs. Astrophys. J. 2015, 805, 89. [Google Scholar] [CrossRef]
- Mazzali, P.A.; Deng, J.; Nomoto, K.; Sauer, D.N.; Pian, E.; Tominaga, N.; Tanaka, M.; Maeda, K.; Filippenko, A.V. A neutron-star-driven X-ray flash associated with supernova SN 2006aj. Nature 2006, 442, 1018–1020. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Yu, Y.W.; Liu, L.D. The Effects of a Magnetar Engine on the Gamma-Ray Burst-associated Supernovae: Application to Double-peaked SN 2006aj. Astrophys. J. 2022, 936, 54. [Google Scholar] [CrossRef]
- Kann, D.A.; Schady, P.; Olivares E., F.; Klose, S.; Rossi, A.; Perley, D.A.; Krühler, T.; Greiner, J.; Nicuesa Guelbenzu, A.; Elliott, J.; et al. Highly luminous supernovae associated with gamma-ray bursts. I. GRB 111209A/SN 2011kl in the context of stripped-envelope and superluminous supernovae. Astron. Astrophys. 2019, 624, A143. [Google Scholar] [CrossRef]
(s) b | (Days) b | Mag (Vega) c | Filter | Telescope | |
---|---|---|---|---|---|
9607.12 | 0.111 | 22.03 | 0.28 | R | LCOGT |
1,499,929.58 | 17.360 | >20.93 | – | R | LCOGT |
1,661,795.90 | 19.234 | 22.12 | 0.09 | I | LCOGT |
1,759,613.62 | 20.366 | 23.04 | 0.15 | I | LCOGT |
Parameter | Unit | Best Fit |
---|---|---|
log | (fit) | |
log | (fit) | |
log | (fit) | |
log | (fit) | |
log | (fit) | |
(fit) | ||
1.30 (fit) | ||
s | 300.00 (fit) | |
rad | 0.30 (fit) | |
ms | ||
0.07 (fit) | ||
log | ||
a | mag | 26.00 (fit) |
a | mag | 23.20 (fit) |
a | mag | 22.80 (fit) |
GRB/SN | (ms) | (Days) | References | |||
---|---|---|---|---|---|---|
050525A/2005nc | Optical | 10.5 | 18.0 | (1) | ||
050525A/2005nc | X-ray | 14.5 | 8.6 | (1) | ||
091127/2009nz | Optical | 5.4 | 15.2 | (1) | ||
091127/2009nz | X-ray | 1.1 | 2.9 | (1) | ||
111209A/2011kl | Optical | 1.1 | 13.0 | (1) | ||
111209A/2011kl | X-ray | 1.3 | 11.5 | (1) | ||
130831A/2013fu | Optical | 12.9 | 21.3 | ≈ | ≈ | (1) |
130831A/2013fu | X-ray | 7.3 | 9.2 | (1) | ||
161219B/2016jca | r-band | ≈ | (2) | |||
161219B/2016jca | X-ray | ≈ | (2) | |||
190829A/2019oyw | X-ray | ≈ | (3) | |||
201015A/201015A | X-ray/Optical | ∼ | ∼ | This work |
GRB/SN (Name) | 1 (Day) | 1 (Mag) | () | (erg) | References | |
---|---|---|---|---|---|---|
980425/1998bw | ∼17 | 18,000 | (1)–(6) | |||
011121/2001ke | – | (1), (6), (7) | ||||
021211/2002lt | ∼14 | – | (1), (6), (8) | |||
030329/2003dh | 20,000 | (1), (2), (6), (9), (10) | ||||
031203/2003lw | 18,000 | (1), (2), (6), (11) | ||||
050525A/2005nc | ∼12 | – | (1), (6), (12), (13) | |||
060218/2006aj | 20,000 | (1), (2), (6), (14)–(16) | ||||
080109/2008d | – | (1), (6), (17)–(20) | ||||
081007/2008hw | 12,600 | (1), (6), (21), (22) | ||||
091127/2009nz | 17,000 | (1), (6), (22)–(24) | ||||
100316D/2010bh | 35,000 | (1), (2), (6), (25) | ||||
101219B/2010ma | – | (1), (6), (22), (26) | ||||
111209A/2011kl | 21,000 | (1), (6), (27)–(28) | ||||
120422A/2012bz | 20,500 | (1), (6), (29)–(31) | ||||
130215A/2013ez | – | – | 6,000 | (1),(6),(32) | ||
130427A/2013cq | ∼ | 35,000 | (1), (6), (33)–(36) | |||
130702A/2013dx | 21,300 | (1), (6), (37)–(39) | ||||
130831A/2013fu | – | (1), (6), (32) | ||||
140606B/iPTF14bfu | 19,800 | (1), (6), (40) | ||||
161219B/2016jca | – | (1), (6), (41), (42) | ||||
171205A/2017iuk | ∼11 | 22,000 | (43) | |||
180728A/2018fip | – | – | – | ∼30,000 | (44), (45) | |
190829A/2019oyw | (46) | |||||
201015A/201015A | ∼ | ∼ | This work | |||
221009A/2022xiw | 3.70 | 32,600 | (47)–(49) | |||
230812B/2023pel | – | 3.4 | – | 17,000 | (50), (51) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Kong, D.; Chen, L.; Wang, X.; Liang, E. Application of the Magnetar Engine to an Intermediate-Luminosity Gamma-Ray Burst Associated with the Supernova GRB 201015A/SN 201015A. Universe 2025, 11, 292. https://doi.org/10.3390/universe11090292
Li X, Kong D, Chen L, Wang X, Liang E. Application of the Magnetar Engine to an Intermediate-Luminosity Gamma-Ray Burst Associated with the Supernova GRB 201015A/SN 201015A. Universe. 2025; 11(9):292. https://doi.org/10.3390/universe11090292
Chicago/Turabian StyleLi, Xingling, Defeng Kong, Liangjun Chen, Xianggao Wang, and Enwei Liang. 2025. "Application of the Magnetar Engine to an Intermediate-Luminosity Gamma-Ray Burst Associated with the Supernova GRB 201015A/SN 201015A" Universe 11, no. 9: 292. https://doi.org/10.3390/universe11090292
APA StyleLi, X., Kong, D., Chen, L., Wang, X., & Liang, E. (2025). Application of the Magnetar Engine to an Intermediate-Luminosity Gamma-Ray Burst Associated with the Supernova GRB 201015A/SN 201015A. Universe, 11(9), 292. https://doi.org/10.3390/universe11090292