Next Article in Journal
On Restrictions of Current Warp Drive Spacetimes and Immediate Possibilities of Improvement
Previous Article in Journal
A Proposed Test for the Gravitational Tunnel Effect
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Application of the Magnetar Engine to an Intermediate-Luminosity Gamma-Ray Burst Associated with the Supernova GRB 201015A/SN 201015A

1
Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
2
GXU-NAOC Center for Astrophysics and Space Sciences, Nanning 530004, China
*
Authors to whom correspondence should be addressed.
Universe 2025, 11(9), 292; https://doi.org/10.3390/universe11090292
Submission received: 14 July 2025 / Revised: 27 August 2025 / Accepted: 29 August 2025 / Published: 31 August 2025

Abstract

We present optical photometry for the afterglow of GRB 201015A, which can be classified as a medium-luminosity gamma-ray burst ( L γ , iso 2.55 × 10 49 erg s 1 ) and the associated underlying supernova SN 201015A. A millisecond magnetar engine has been widely suggested to exist in gamma-ray burst (GRB) phenomena. In this paper, we study the effects of the magnetar engine on GRB 201015A/SN 201015A by light curve analysis. We use a smooth broken power-law plus magnetar spin-down model to fit the X-ray and optical light curves of GRB 201015A/SN 201015A. The best-fitting results reveal that the magnetar initial spin period and surface magnetic field at the pole are constrained to be P 0 = 16 . 80 0.47 + 0.24 ms and B p = 0 . 80 0.32 + 0.34 × 10 15 G , respectively, and the SN ejected a total mass of M ej = 2 . 55 0.37 + 1.12 M and an ejecta velocity of v ej = 30,000 2500 + 4800 km s 1 , inferring a kinetic energy of E SN , K 1.37 × 10 52 erg . From our analysis, we find that the central engine of GRB 201015A/SN 201015A may well be a magnetar, and the emission from a magnetar central engine can be solely responsible for powering SN 201015A.

1. Introduction

The connection between long-duration gamma-ray bursts (LGRBs) and broad-line Type Ic supernovae (SNe Ic-BL) has been established—the “GRB–SN connection” (e.g., [1,2,3]). However, one of the unresolved mysteries of LGRB phenomena is the nature of their central engines, which could be a stellar-mass black hole (BH; e.g., [4,5,6,7,8]) or a rapidly rotating neutron star with an exceptionally large magnetic field (a magnetar; e.g., [9,10,11,12,13,14,15,16]). Based on the isotropic equivalent luminosity in the gamma-ray band, L γ , iso , some authors have classified GRBs as low-luminosity (LL) GRBs with L γ , iso 48.5 erg s 1 , intermediate-luminosity (IL) GRBs with 10 48.5 erg s 1 L γ , iso 10 49.5 erg s 1 , and high-luminosity (HL) GRBs with L γ , iso 10 49.5 erg s 1 [3,17,18,19]. Some of the nearby GRBs also belong to classes of low/intermediate-luminosity GRBs and ultra-long-duration GRBs, which are outliers that have revealed crucial observational evidence that is used to distinguish potential powering mechanisms from progenitors [20,21].
On 15 October 2020, at 22:50:13 (UTC dates are used herein), the Burst Alert Telescope (BAT; [22]) onboard the Neil Gehrels Swift Observatory (Swift; [23]) triggered an extraordinarily interesting LGRB, GRB 201015A [24]. After they obtained the redshift of GRB 201015A from the 10.4 m Gran Telescopio Canarias telescope (GTC, Canary Island, Spain; [25]), refs. [26,27] encouraged follow-up optical observations to search for the associated supernova. As GRB 201015A optical afterglow observations continued, photometric and spectroscopic evidence for an SN appeared [28,29]. In addition, refs. [30,31] identified this SN as a Type Ic-BL, named SN 201015A.
GRB 201015A has a redshift of z = 0.426 [26,32], a T 90 = 9.78 ± 3.47 s in the [15–350] keV energy range [33], and an isotropic energy of E γ , iso = 1 . 75 0.53 + 0.60 × 10 50 erg [30]. We therefore calculated the isotropic luminosity as L γ , iso = E γ , iso ( 1 + z ) / T 90 2.55 × 10 49 erg s 1 . Therefore, GRB 201015A can be classified as ILGRB. The X-ray light curve of GRB 201015A shows a late flattening from ( 2.61 ± 1.27 ) × 10 4 s to ( 1 . 67 0.65 + 1.14 ) × 10 6 s after the BAT trigger [30]. Since the discovery of the shallow-decay and plateau afterglows and, in particular, afterglow flares, it has been widely suggested that a magnetar should play a crucial role in causing these afterglow features (e.g., [11,13,34,35,36,37]). To discuss the central engine of GRB 201015A/SN 201015A in this work, we therefore analyze the afterglow of GRB 201015A by fitting the X-ray and optical light curve with a smooth broken power-law plus magnetar spin-down model.
This paper is organized as follows: Section 2 presents the observations and data reduction, while Section 3 shows the analysis and results. Our conclusions and implications are presented in Section 4. Throughout this paper, we adopt a concordance cosmology with the parameters H 0 = 69.3 km s 1 Mpc 1 , Ω M = 0.286 , and Ω Λ = 0.714 . The mass and radius of the Sun are denoted by M and R , respectively.

2. Observations and Data Reduction

The Swift X-Ray Telescope (XRT; [38]) began observing the GRB at 23:43:47, 3214 s after the BAT trigger, and the revised source position was RA(J2000) = 23:37:16.46, Dec(J2000) = +53:24:57.7 with an uncertainty of 1.7 arcsec (radius, 90 percent containment) [39,40]. The Ultraviolet and Optical Telescope (UVOT; [41]) began observing at 3217 s [42].
The afterglow of GRB 201015A was observed by many ground-based telescopes. The Las Cumbres Observatory Global Telescope Network (LCOGT; [43]) observed the afterglow of GRB 201015A, R-band and I-band images were obtained with the 1 m Sinistro instrument at the McDonald Observatory, Texas, USA. Photometric time series of GRB 201015A at four epochs about +0.111 ( 5 × 300 s ), +17.360 ( 8 × 300 s ), +19.234 ( 8 × 300 s ), and +20.366 ( 5 × 300 s ) days after the BAT trigger were observed. Data reduction was carried out following standard routines in the IRAF1 software package. In order to increase the signal-to-noise ratio (S/N) of the detections, individual images from each epochs were then stacked by the imcombine code. Aperture photometry was performed with the apphot code of the daophot package. Several nearby stars were chosen from the Pan-STARRS12 catalog for calibration; their magnitudes were transformed into the Landolt [46] magnitudes using the empirical prescription presented in Equation (6) of [47]. The photometry from LCOGT follow-up observations is reported in Table 1. The photometry results were corrected for galactic extinction with E ( B V ) = 0.229 mag [48] for analysis. Additionally, the authors of ref. [49] reported that they derive a change in the local extinction A V local from ∼ 0.8 mag to 0.3 mag in ∼2500 s. Later, ref. [31] reported a GRB host extinction of A R = 0.375 mag ( A V 0.554 mag ), which is consistent with the result of [49]. Therefore, we adopt A R = 0.375 mag to perform GRB host galaxy extinction in this work.
We collected additional photometry data for our analysis from [31,49,50]. XRT data were downloaded from the UK Swift Science Data Center at the University of Leicester [51]3, and we also collected the X-ray data of Chandra observations, unabsorbed 0.3–10 keV fluxes of ( 1.26 ± 0.05 ) × 10 13 erg cm 2 s 1 at 8.4 days and ( 1.10 ± 0.04 ) × 10 13 erg cm 2 s 1 at 13.6 days, from [52]. Figure 1 shows the multiband light curves of the afterglow in both the optical and X-ray bands.

3. Analysis and Results

3.1. Modeling the Afterglow Light Curves

For the afterglow, one component of our model is a smooth broken power-law (BPL) function (e.g., [53,54,55])
F = F 0 t t b α 1 ω + t t b α 2 ω 1 / ω ,
where α 1 and α 2 are the temporal slopes, t b is the break time, and ω measures the sharpness of the break (in this paper, we fix ω = 3 ).
In addition to the BPL function, here we also introduce a few models that are helpful for understanding the physics of the GRB and SN.

3.1.1. Spindown of Magnetar

We assume a magnetar with mass M * , radius R, initial spin period P 0 , surface magnetic field at the pole B p , and misalignment angle between the spin axis and the magnetic dipole axis π / 2 . The maximum energy is the total rotational energy of a millisecond magnetar, which is defined as
E rot = 1 2 I Ω 0 2 2 × 10 52 M 1.4 R 6 2 P 0 , 3 2 erg ,
where I = 0.35 M * R 2 is the moment of inertia, Ω 0 = 2 π / P 0 is the initial angular frequency of the neutron star, and M 1.4 = M * / 1.4 M . Hereafter, the convention Q = 10 x Q x is adopted in cgs units for all other parameters except for mass.
The spindown luminosity of the GRB jet evolving with time can be written as [56]
L ( t ) = L 0 1 + t τ 1 + n 1 n ,
where n is the braking index (in this paper, we fix n = 3 during fitting),
L 0 = 1.0 × 10 49 ( B p , 15 2 P 0 , 3 4 R 6 6 ) erg s 1
is the initial luminosity, and
τ = 2.05 × 10 3 ( I 45 B p , 15 2 P 0 , 3 2 R 6 6 ) s
is the characteristic spindown timescale [13,36,57]. In this paper, we use standard values for a neutron star [58] with mass M * 1.4 M and R 6 1 .
The spindown luminosity generally includes the luminosity of multiband radiation, with
L ν = η ν L ν , iso f b ,
where L ν , iso and η ν are the isotropic luminosity and the radiation efficiencies of the magnetar spindown in the X-ray, g, r, i, and z bands, respectively. The beaming correction factor is f b = 1 cos θ j , where θ j is the opening half-angle of the jet [59].

3.1.2. Magnetar-Powered Supernovae

For SNe, the basic form of the magnetar engine model has been described numerous times in the literature (e.g., [60,61,62,63,64,65]). The spindown power of a magnetar by magnetic dipole radiation can be written as
P mag ( t ) = L 0 1 ( 1 + t / τ ) 2 .
The output luminosity can therefore be written as [66]
L SN ( t ) = e ( t / t diff ) 2 0 t 2 P mag ( t ) t t diff e ( t / t diff ) 2 ( 1 e A t 2 ) d t t diff ,
where
t diff = 2 κ M ej β c v ej 1 / 2
is the diffusion time,
A = 3 κ γ M ej 4 π v ej 2
is the leakage parameter [64], and the parameter β has a typical value of 13.8 [66]. Here, M ej , v ej , κ , κ γ , and c are, respectively, the ejecta mass, the expansion velocity of the ejecta, Thomson electron scattering opacity, effective gamma-ray opacity, and the speed of light in a vacuum. We assume the velocity at the photosphere v phot v ej . For a uniform density profile, the kinetic energy is given by E SN , K = ( 3 / 10 ) M ej v phot 2 .
We assume that the spectral energy distribution (SED) of our SN is a blackbody. The flux at frequency ν can be written as
f ν = 2 π h ν 3 c 2 1 e h ν / k T 1 erg s 1 cm 2 Hz 1 ,
where h is Planck’s constant, k is Boltzmann’s constant, and T is the temperature in Kelvins.
We assume that the photospheric radius expands at a constant velocity, v phot . The temperature and radius are therefore given by [65]
T phot ( t ) = L SN ( t ) 4 π σ v phot 2 t 2 1 4 , L SN ( t ) 4 π σ v phot 2 t 2 1 4 > T f T f , L SN ( t ) 4 π σ v phot 2 t 2 1 4 T f ,
R phot ( t ) = v phot t , L SN ( t ) 4 π σ v phot 2 t 2 1 4 > T f L SN ( t ) 4 π σ T f 4 1 2 , L SN ( t ) 4 π σ v phot 2 t 2 1 4 T f ,
where σ is the Stefan–Boltzmann constant and T f is the final plateau temperature, a free parameter that allows us to extend our fits to later times.

3.2. Light-Curve Fitting and Results

In order to detect temporal features of the afterglow light curve, we used 24 parameters to fit multiband light curves. For our analysis, we do not consider the contribution of supernova emission to the X-ray band. We adopt the opening half-angle θ j = 0 . 30 0.12 + 0.08 rad [31]. We adopt a fiducial value of the optical opacity ( κ = 0.07 cm 2 g 1 ) (e.g., [67]). The best-fitting parameters are presented in Table 2, and the results are shown in Figure 1. One can see from the Figure 1 that α 1 = 1.20 , α 2 = 1.30 and t b = 300.00 s can be constrained by the early data of the g, r, and i bands.
Becuase the data are not corrected for the host galaxy emission and the influence of the host galaxy could not be ignored later in time, we also consider the contribution of the host galaxy in our analysis. We use r = 24.5 mag as the contribution for the underlying host galaxy’s light in our analysis, which approximately corresponds to the r band and is measured by [31].
For our best-fitting results, the host galaxy level is roughly constrained to be 26.00, 23.20, and 22.80 mag in the g, i, and z filters, respectively. These have not been corrected for extinction in the Milky Way Galaxy. However, in our analysis, we performed a galactic correction with E ( B V ) = 0.229 mag [48].
The observed X-ray plateau luminosity is L X = η X L EM by introducing an efficiency η X , where η X could be defined as [68]
η X 0.3 keV 10 keV L ν d ν L EM ,
where L EM is the magnetic dipole torque luminosity. Therefor, one can also define
η ν L ν d ν L EM
for other bands. However, the radiation efficiency is quite uncertain, and the bulk saturation Lorentz factor Γ sat < 100 is even smaller, so the X-ray radiation efficiency is possibly closer to 0.1 [68]. The authors of ref. [69] took η X = 0.3 , 0.1 , 0.01 for their analysis. Ref. [70] suggested that the efficiency of the conversion of rotational energy from the magnetar into the observed plateau luminosity is ≤ 20 % . We therefore consider our result of η X = 8 . 00 0.76 + 1.12 % to be reasonably consistent with theirs. We note that η g , η r , η i , and η z are all very small, especially η r . According to Equation (15), it can be known that this might be because all these bands are narrow bands. In addition, η z > η i > η r might be caused by reddening (high-energy photons are absorbed and transform into lower-energy photons).
The most important physical parameters that we wish to constrain are P 0 = 16 . 80 0.47 + 0.24 ms and B p = 0 . 80 0.32 + 0.34 × 10 15 G of the magnetar. We therefore calculated τ 10.20 days and L 0 8.03 × 10 43 erg s 1 . Table 3 compares our results with other GRB-SNe that fitted with a magnetar. We note that GRB 111209A/SN 2011kl, GRB 161219B/SN 2016jca, and GRB 201015A/SN 201015A have large τ values. This might be the reason why their peak brightness (see Table 4) is higher. The luminosity of a magnetar-powered SN is directly related to how long the central engine is active, where central engines with longer durations give rise to brighter SNe [71].
Figure 2 shows log τ as a function of log L for magnetars in our sample (Table 3), which includes both optical and X-ray. We use log L = a + b log τ to fit all the data [70,119], where a is a normalization constant and b is the slope. The best-fitting results are a = 51 . 12 1.28 + 1.37 and b = 1 . 15 0.29 0.27 . Our results are consistent with the intrinsic slope 1 . 07 0.14 + 0.09 [119]. Ref. [120] proposed that a higher plateau luminosity is associated with a shorter spin-down timescale. In such cases, the collapse time might be closer to the spin-down timescale, meaning that most of the energy is released before the magnetar collapses into a black hole. On the other hand, a lower plateau luminosity corresponds to a longer spin-down timescale, where the collapse time could be much shorter than the spin-down timescale, allowing only a fraction of the total energy to be released before the collapse.
We further constrained the total SN ejecta, the ejecta velocity, and the total SN kinetic energy to be M ej = 2 . 55 0.37 + 1.12 M , v ej = 30,000 2500 + 4800 km s 1 , E SN , K 1.37 × 10 52 erg . Our results are consistent with the average value inferred by [3] ( M ej = 5.90 ± 3.80 M , v ej = 20,200 ± 8500 km s 1 , E SN , K = 2.52 ± 1.79 × 10 52 erg ). We estimate the SN bolometric magnitude M bol , AB 19.96 mag at SN peak time t peak 9.63 days . Our results are consistent with the results of t max = 8.54 ± 1.48 days and M V = 19 . 49 0.47 + 0.85 mag reported by [31]. Table 4 shows the parameters of SNe associated with GRBs, where one can see that the t peak value of SN 201015A is the smallest in our sample.
The energy partition of GRB/SN events can be denoted as an efficiency of η = E GRB / ( E GRB + E SN , K ) (e.g., [73,114]). Ref. [31] reported an isotropic kinetic energy of E k , iso = 2 . 0 1.35 + 3.8 × 10 53 erg , and the SN kinetic energy is given by E SN , K = ( 3 / 10 ) M ej v ej 2 1.37 × 10 52 erg . Using this approach, we calculated η 0.39 for GRB 201015A. However, ref. [73] suggested that η is typically less than 0.3, and the center value of η is 0.1 . Figure 3 shows the distribution of η for the GRB-SN events. We note that GRB 201015A/SN 201015A is another event with a high η value, following GRB 111209A/SN 2011kl ( η = ( 75.87 ± 16.6 ) % ).

4. Conclusions and Discussion

We have presented optical observations of the medium-luminosity gamma-ray burst, GRB 201015A. We used a smooth broken power-law plus magnetar model to fit the X-ray and optical light curves. For our best fitting, the magnetar initial spin period and surface magnetic field at the pole are constrained to be P 0 = 16 . 80 0.47 + 0.24 ms and B p = 0 . 80 0.32 + 0.34 × 10 15 G , respectively. The best-fitting results reveal that the SN ejected a total mass of M ej = 2 . 55 0.37 + 1.12 M , an ejecta velocity of v ej = 30,000 2500 + 4800 km s 1 , and a total kinetic energy of E SN , K 1.37 × 10 52 erg . We estimate the energy partition to be η 0.39 .
Furthermore, previous works have also analyzed the light curves. Ref. [30] discussed that the shallow decay phase of the X-ray light curve can be explained by the process of continuous energy injection from a central engine (e.g., a magnetar), even though it is difficult to explain the origin of this central engine activity. After comparing to the known light curves of GRB–SN cases (GRB 980425/SN 1998bw, GRB 060218A/SN 2006aj, GRB 130702A/SN 2013dx, GRB 161219B/SN 2016jca, and GRB 171205A/SN 2017iuk), ref. [31] suggested that the light curves of the SN 2016jca and the SN 2006aj cases have the most similarity with the light curve of the SN 201015A case. GRB 161219B is an ILGRB, and SN 2016jca is likely powered in part, or perhaps exclusively, by radioactive 56Ni decay [19]; but one possibility is that a magnetar plays an important role in the kinetic energy of a supernova and has a mass of 56Ni [109].
Ref. [121] suggested that GRB 060218/ SN 2006aj was produced by the core collapse of a star with an initial mass of ∼ 20 M , in which case a neutron star, rather than a black hole, is formed. In addition, Zhang et al. [122] discussed the effects of a magnetar engine on GRB 060218/SN 2006aj, demonstrating that the primary SN emission is also partially powered by energy injection from the magnetar.
Therefore, we think that the central engine of GRB 201015A/SN 201015A may be a magnetar. In addition, we found that the emission from a magnetar central engine can be solely responsible for powering SN 201015A, which is similarly seen in SN 2011kl [71].
For SN 2011kl, ref. [123] reported that M U = 20.39 ± 0.06 mag, M B = 19.65 ± 0.07 mag, M V = 19.80 ± 0.10 mag, and M R C = 20.23 ± 0.09 mag. Moreover, ref. [95] reported that t peak 14 days and a bolometric magnitude M bol 20 mag.
We estimate the absolute AB mag of the SN peak to be M g 19.26 mag, M r 19.70 mag, M i 19.86 mag, and M z 19.92 mag for SN 201015A. We note that their peak brightness is similar.
We found that SN 201015A and SN2011kl have some similar features: Their peak brightness is similar. They have an odd η (particularly large, see Figure 3) value compared to other events, and they can be completely powered by magnetars. We think that SN 201015A and SN 2011kl may have a similar explosion mechanism.
With future missions such as SVOM and the Einstein Probe searching lower energy gamma rays and X-rays, we will find more bursts like GRB 201015A, which will help us establish a larger dataset for studying the explosion mechanism and the energy source of GRB–SN events.

Author Contributions

X.L. and D.K. came up with initial idea and completed the first version of the manuscript. All authors discussed how to improve the manuscript, and everyone expressed their suggestions and comments. All authors have read and agreed to the published version of the manuscript.

Funding

This work is supported by the National Natural Science Foundation of China (grant Nos. 12494573, 12373042, U1938201 and 12133003) and the Bagui Scholars Programme (X.W.).

Data Availability Statement

The original contributions presented in this study are included in the article material. Further inquiries can be directed to the corresponding authors.

Acknowledgments

We would like to thank the UK Swift Science Data Center at the University of Leicester, where we obtained XRT data. We would like to thank Hou-Jun Lü (GXU) for providing the plotted data of η , which was used by us to reproduce Figure 3.

Conflicts of Interest

The authors declare no conflicts of interest.

Notes

1
IRAF (Image Reduction and Analysis Facility; [44,45]), an environment for image reduction and analysis, was developed and maintained by the National Optical Astronomy Observatory (NOAO, Tucson, AZ, USA) operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation of the USA.
2
http://archive.stsci.edu/panstarrs/search.php (accessed on 27 August 2025).
3
https://www.swift.ac.uk/xrt_curves/01000452/ (accessed on 27 August 2025).

References

  1. Woosley, S.E.; Bloom, J.S. The Supernova Gamma-Ray Burst Connection. Annu. Rev. Astron. Astrophys. 2006, 44, 507–556. [Google Scholar] [CrossRef]
  2. Hjorth, J.; Bloom, J.S. The Gamma-Ray Burst—Supernova Connection. In Chapter 9 in “Gamma-Ray Bursts”; Cambridge University Press: Cambridge, UK, 2012; pp. 169–190. [Google Scholar]
  3. Cano, Z.; Wang, S.Q.; Dai, Z.G.; Wu, X.F. The Observer’s Guide to the Gamma-Ray Burst Supernova Connection. Adv. Astron. 2017, 2017, 8929054. [Google Scholar] [CrossRef]
  4. Woosley, S.E. Gamma-Ray Bursts from Stellar Mass Accretion Disks around Black Holes. Astrophys. J. 1993, 405, 273. [Google Scholar] [CrossRef]
  5. Popham, R.; Woosley, S.E.; Fryer, C. Hyperaccreting Black Holes and Gamma-Ray Bursts. Astrophys. J. 1999, 518, 356–374. [Google Scholar] [CrossRef]
  6. MacFadyen, A.I.; Woosley, S.E. Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae”. Astrophys. J. 1999, 524, 262–289. [Google Scholar] [CrossRef]
  7. Narayan, R.; Piran, T.; Kumar, P. Accretion Models of Gamma-Ray Bursts. Astrophys. J. 2001, 557, 949–957. [Google Scholar] [CrossRef]
  8. Lei, W.H.; Zhang, B.; Liang, E.W. Hyperaccreting Black Hole as Gamma-Ray Burst Central Engine. I. Baryon Loading in Gamma-Ray Burst Jets. Astrophys. J. 2013, 765, 125. [Google Scholar] [CrossRef]
  9. Usov, V.V. Millisecond pulsars with extremely strong magnetic fields as a cosmological source of γ-ray bursts. Nature 1992, 357, 472–474. [Google Scholar] [CrossRef]
  10. Thompson, C. A model of gamma-ray bursts. Mon. Not. R. Astron. Soc. 1994, 270, 480–498. [Google Scholar] [CrossRef]
  11. Dai, Z.G.; Lu, T. Gamma-ray burst afterglows and evolution of postburst fireballs with energy injection from strongly magnetic millisecond pulsars. Astron. Astrophys. 1998, 333, L87–L90. [Google Scholar]
  12. Wheeler, J.C.; Yi, I.; Höflich, P.; Wang, L. Asymmetric Supernovae, Pulsars, Magnetars, and Gamma-Ray Bursts. Astrophys. J. 2000, 537, 810–823. [Google Scholar] [CrossRef]
  13. Zhang, B.; Mészáros, P. Gamma-Ray Burst Afterglow with Continuous Energy Injection: Signature of a Highly Magnetized Millisecond Pulsar. Astrophys. J. Lett. 2001, 552, L35–L38. [Google Scholar] [CrossRef]
  14. Bucciantini, N.; Quataert, E.; Arons, J.; Metzger, B.D.; Thompson, T.A. Magnetar-driven bubbles and the origin of collimated outflows in gamma-ray bursts. Mon. Not. R. Astron. Soc. 2007, 380, 1541–1553. [Google Scholar] [CrossRef]
  15. Metzger, B.D.; Quataert, E.; Thompson, T.A. Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. Mon. Not. R. Astron. Soc. 2008, 385, 1455–1460. [Google Scholar] [CrossRef]
  16. Metzger, B.D.; Giannios, D.; Thompson, T.A.; Bucciantini, N.; Quataert, E. The protomagnetar model for gamma-ray bursts. Mon. Not. R. Astron. Soc. 2011, 413, 2031–2056. [Google Scholar] [CrossRef]
  17. Bromberg, O.; Nakar, E.; Piran, T. Are Low-luminosity Gamma-Ray Bursts Generated by Relativistic Jets? Astrophys. J. Lett. 2011, 739, L55. [Google Scholar] [CrossRef]
  18. Hjorth, J. The supernova-gamma-ray burst-jet connection. Philos. Trans. R. Soc. Lond. Ser. A 2013, 371, 20120275. [Google Scholar] [CrossRef]
  19. Cano, Z.; Izzo, L.; de Ugarte Postigo, A.; Thöne, C.C.; Krühler, T.; Heintz, K.E.; Malesani, D.; Geier, S.; Fuentes, C.; Chen, T.W.; et al. GRB 161219B/SN 2016jca: A low-redshift gamma-ray burst supernova powered by radioactive heating. Astron. Astrophys. 2017, 605, A107. [Google Scholar] [CrossRef]
  20. Georgy, C.; Meynet, G.; Walder, R.; Folini, D.; Maeder, A. The different progenitors of type Ib, Ic SNe, and of GRB. Astron. Astrophys. 2009, 502, 611–622. [Google Scholar] [CrossRef]
  21. Dessart, L.; Hillier, D.J.; Yoon, S.C.; Waldman, R.; Livne, E. Radiative-transfer models for explosions from rotating and non-rotating single WC stars. Implications for SN 1998bw and LGRB/SNe. Astron. Astrophys. 2017, 603, A51. [Google Scholar] [CrossRef]
  22. Barthelmy, S.D.; Barbier, L.M.; Cummings, J.R.; Fenimore, E.E.; Gehrels, N.; Hullinger, D.; Krimm, H.A.; Markwardt, C.B.; Palmer, D.M.; Parsons, A.; et al. The Burst Alert Telescope (BAT) on the SWIFT Midex Mission. Space Sci. Rev. 2005, 120, 143–164. [Google Scholar] [CrossRef]
  23. Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K.O.; Nousek, J.A.; Wells, A.A.; White, N.E.; Barthelmy, S.D.; Burrows, D.N.; Cominsky, L.R.; et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 2004, 611, 1005–1020. [Google Scholar] [CrossRef]
  24. D’Elia, V.; Ambrosi, E.; Barthelmy, S.D.; D’Ai, A.; Gropp, J.D.; Klingler, N.J.; Lien, A.Y.; Palmer, D.M.; Sbarufatti, B.; Siegel, M.H.; et al. GRB 201015A: Swift detection of a burst. GRB Coord. Netw. 2020, 28632, 1. [Google Scholar]
  25. Rodríguez-Espinosa, J.M.; Alvarez Martin, P. Gran Telescopio Canarias: A 10 m telescope for the ORM. In Optical Telescopes of Today and Tomorrow; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; Ardeberg, A.L., Ed.; SPIE: Bellingham, WA, USA, 1997; Volume 2871, pp. 69–73. [Google Scholar] [CrossRef]
  26. de Ugarte Postigo, A.; Kann, D.A.; Blazek, M.; Agui Fernandez, J.F.; Thoene, C.; Gomez Velarde, G. GRB 201015A: Redshift from GTC/OSIRIS. GRB Coord. Netw. 2020, 28649, 1. [Google Scholar]
  27. Minaev, P.; Pozanenko, A. GRB 201015A: Classification as long GRB. GRB Coord. Netw. 2020, 28668, 1. [Google Scholar]
  28. Pozanenko, A.; Belkin, S.; Volnova, A.; Moskvitin, A.; Burhonov, O.; Kim, V.; Krugov, M.; Rumyantsev, V.; Klunko, E.; Inasaridze, R.Y.; et al. GRB 201015A: Optical observations and supernova identification. GRB Coord. Netw. 2020, 29033, 1. [Google Scholar]
  29. Rossi, A.; Benetti, S.; Palazzi, E.; D’Avanzo, P.; D’Elia, V.; De Pasquale, M.; CIBO Collaboration. GRB 201015A: Evidence of supernova in LBT spectra. GRB Coord. Netw. 2021, 29306, 1. [Google Scholar]
  30. Patel, M.; Gompertz, B.P.; O’Brien, P.T.; Lamb, G.P.; Starling, R.L.C.; Evans, P.A.; Amati, L.; Levan, A.J.; Nicholl, M.; Ackley, K.; et al. GRB 201015A and the nature of low-luminosity soft gamma-ray bursts. Mon. Not. R. Astron. Soc. 2023, 523, 4923–4937. [Google Scholar] [CrossRef]
  31. Belkin, S.; Pozanenko, A.S.; Minaev, P.Y.; Pankov, N.S.; Volnova, A.A.; Rossi, A.; Stratta, G.; Benetti, S.; Palazzi, E.; Moskvitin, A.S.; et al. GRB 201015A: From seconds to months of optical monitoring and supernova discovery. Mon. Not. R. Astron. Soc. 2024, 527, 11507–11520. [Google Scholar] [CrossRef]
  32. Izzo, L.; Malesani, D.B.; Zhu, Z.P.; Xu, D.; de Ugarte Postigo, A.; Pursimo, T. GRB 201015A: Redshift confirmation. GRB Coord. Netw. 2020, 28661, 1. [Google Scholar]
  33. Markwardt, C.B.; Barthelmy, S.D.; Cummings, J.R.; D’Elia, V.; Krimm, H.A.; Laha, S.; Lien, A.Y.; Palmer, D.M.; Sakamoto, T.; Stamatikos, M.; et al. GRB 201015A: Swift-BAT refined analysis (a soft short pulse with a tail emission). GRB Coord. Netw. 2020, 28658, 1. [Google Scholar]
  34. Dai, Z.G.; Lu, T. Gamma-ray burst afterglows: Effects of radiative corrections and non-uniformity of the surrounding medium. Mon. Not. R. Astron. Soc. 1998, 298, 87–92. [Google Scholar] [CrossRef]
  35. Metzger, B.D.; Thompson, T.A.; Quataert, E. Proto-Neutron Star Winds with Magnetic Fields and Rotation. Astrophys. J. 2007, 659, 561–579. [Google Scholar] [CrossRef]
  36. Lü, H.J.; Zhang, B. A Test of the Millisecond Magnetar Central Engine Model of Gamma-Ray Bursts with Swift Data. Astrophys. J. 2014, 785, 74. [Google Scholar] [CrossRef]
  37. Stratta, G.; Dainotti, M.G.; Dall’Osso, S.; Hernandez, X.; De Cesare, G. On the Magnetar Origin of the GRBs Presenting X-Ray Afterglow Plateaus. Astrophys. J. 2018, 869, 155. [Google Scholar] [CrossRef]
  38. Burrows, D.N.; Hill, J.E.; Nousek, J.A.; Kennea, J.A.; Wells, A.; Osborne, J.P.; Abbey, A.F.; Beardmore, A.; Mukerjee, K.; Short, A.D.T.; et al. The Swift X-Ray Telescope. Space Sci. Rev. 2005, 120, 165–195. [Google Scholar] [CrossRef]
  39. Kennea, J.A.; Tagliaferri, G.; Campana, S.; Evans, P.A.; Osborne, J.P.; Burrows, D.N.; Swift-XRT Team. GRB 201015A: Swift-XRT observations. GRB Coord. Netw. 2020, 28635, 1. [Google Scholar]
  40. Evans, P.A.; Goad, M.R.; Osborne, J.P.; Beardmore, A.P.; Swift-XRT Team. GRB 201015A: Enhanced Swift-XRT position. GRB Coord. Netw. 2020, 28647, 1. [Google Scholar]
  41. Roming, P.W.A.; Kennedy, T.E.; Mason, K.O.; Nousek, J.A.; Ahr, L.; Bingham, R.E.; Broos, P.S.; Carter, M.J.; Hancock, B.K.; Huckle, H.E.; et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 2005, 120, 95–142. [Google Scholar] [CrossRef]
  42. Marshall, F.E.; D’Elia, V.; Swift/UVOT Team. GRB 201015A: Swift/UVOT Detection. GRB Coord. Netw. 2020, 28662, 1. [Google Scholar]
  43. Brown, T.M.; Baliber, N.; Bianco, F.B.; Bowman, M.; Burleson, B.; Conway, P.; Crellin, M.; Depagne, É.; De Vera, J.; Dilday, B.; et al. Las Cumbres Observatory Global Telescope Network. Publ. Astron. Soc. Pac. 2013, 125, 1031. [Google Scholar] [CrossRef]
  44. Tody, D. The IRAF Data Reduction and Analysis System. In Proceedings of the Instrumentation in Astronomy VI, Tucson, AZ, USA, 4–8 March 1986; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Crawford, D.L., Ed.; 1986; Volume 627, p. 733. [Google Scholar] [CrossRef]
  45. Tody, D. IRAF in the Nineties. In Astronomical Data Analysis Software and Systems II; Astronomical Society of the Pacific Conference Series; Hanisch, R.J., Brissenden, R.J.V., Barnes, J., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 1993; Volume 52, p. 173. [Google Scholar]
  46. Landolt, A.U. UBVRI Photometric Standard Stars in the Magnitude Range 11.5 < V < 16.0 Around the Celestial Equator. Astron. J. 1992, 104, 340. [Google Scholar] [CrossRef]
  47. Tonry, J.L.; Stubbs, C.W.; Lykke, K.R.; Doherty, P.; Shivvers, I.S.; Burgett, W.S.; Chambers, K.C.; Hodapp, K.W.; Kaiser, N.; Kudritzki, R.P.; et al. The Pan-STARRS1 Photometric System. Astrophys. J. 2012, 750, 99. [Google Scholar] [CrossRef]
  48. Schlafly, E.F.; Finkbeiner, D.P. Measuring Reddening with Sloan Digital Sky Survey Stellar Spectra and Recalibrating SFD. Astrophys. J. 2011, 737, 103. [Google Scholar] [CrossRef]
  49. Komesh, T.; Grossan, B.; Maksut, Z.; Abdikamalov, E.; Krugov, M.; Smoot, G.F. Evolution of the afterglow optical spectral shape of GRB 201015A in the first hour: Evidence for dust destruction. Mon. Not. R. Astron. Soc. 2023, 520, 6104–6110. [Google Scholar] [CrossRef]
  50. Ror, A.K.; Gupta, R.; Jelínek, M.; Bhushan Pandey, S.; Castro-Tirado, A.J.; Hu, Y.D.; Maleňáková, A.; Štrobl, J.; Thöne, C.C.; Hudec, R.; et al. Prompt Emission and Early Optical Afterglow of Very-high-energy Detected GRB 201015A and GRB 201216C: Onset of the External Forward Shock. Astrophys. J. 2023, 942, 34. [Google Scholar] [CrossRef]
  51. Evans, P.A.; Beardmore, A.P.; Page, K.L.; Osborne, J.P.; O’Brien, P.T.; Willingale, R.; Starling, R.L.C.; Burrows, D.N.; Godet, O.; Vetere, L.; et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 2009, 397, 1177–1201. [Google Scholar] [CrossRef]
  52. Giarratana, S.; Rhodes, L.; Marcote, B.; Fender, R.; Ghirlanda, G.; Giroletti, M.; Nava, L.; Paredes, J.M.; Ravasio, M.E.; Ribó, M.; et al. VLBI observations of GRB 201015A, a relatively faint GRB with a hint of very high-energy gamma-ray emission. Astron. Astrophys. 2022, 664, A36. [Google Scholar] [CrossRef]
  53. Liang, E.W.; Zhang, B.B.; Zhang, B. A Comprehensive Analysis of Swift XRT Data. II. Diverse Physical Origins of the Shallow Decay Segment. Astrophys. J. 2007, 670, 565–583. [Google Scholar] [CrossRef]
  54. Li, L.; Liang, E.W.; Tang, Q.W.; Chen, J.M.; Xi, S.Q.; Lü, H.J.; Gao, H.; Zhang, B.; Zhang, J.; Yi, S.X.; et al. A Comprehensive Study of Gamma-Ray Burst Optical Emission. I. Flares and Early Shallow-decay Component. Astrophys. J. 2012, 758, 27. [Google Scholar] [CrossRef]
  55. Wang, X.G.; Zhang, B.; Liang, E.W.; Gao, H.; Li, L.; Deng, C.M.; Qin, S.M.; Tang, Q.W.; Kann, D.A.; Ryde, F.; et al. How Bad or Good Are the External Forward Shock Afterglow Models of Gamma-Ray Bursts? Astrophys. J. Suppl. Ser. 2015, 219, 9. [Google Scholar] [CrossRef]
  56. Lasky, P.D.; Leris, C.; Rowlinson, A.; Glampedakis, K. The Braking Index of Millisecond Magnetars. Astrophys. J. Lett. 2017, 843, L1. [Google Scholar] [CrossRef]
  57. Lyons, N.; O’Brien, P.T.; Zhang, B.; Willingale, R.; Troja, E.; Starling, R.L.C. Can X-ray emission powered by a spinning-down magnetar explain some gamma-ray burst light-curve features? Mon. Not. R. Astron. Soc. 2010, 402, 705–712. [Google Scholar] [CrossRef]
  58. Stairs, I.H. Pulsars in Binary Systems: Probing Binary Stellar Evolution and General Relativity. Science 2004, 304, 547–552. [Google Scholar] [CrossRef] [PubMed]
  59. Frail, D.A.; Kulkarni, S.R.; Sari, R.; Djorgovski, S.G.; Bloom, J.S.; Galama, T.J.; Reichart, D.E.; Berger, E.; Harrison, F.A.; Price, P.A.; et al. Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir. Astrophys. J. Lett. 2001, 562, L55–L58. [Google Scholar] [CrossRef]
  60. Ostriker, J.P.; Gunn, J.E. Do Pulsars Make Supernovae? Astrophys. J. Lett. 1971, 164, L95. [Google Scholar] [CrossRef]
  61. Kasen, D.; Bildsten, L. Supernova Light Curves Powered by Young Magnetars. Astrophys. J. 2010, 717, 245–249. [Google Scholar] [CrossRef]
  62. Chatzopoulos, E.; Wheeler, J.C.; Vinko, J. Generalized Semi-analytical Models of Supernova Light Curves. Astrophys. J. 2012, 746, 121. [Google Scholar] [CrossRef]
  63. Inserra, C.; Smartt, S.J.; Jerkstrand, A.; Valenti, S.; Fraser, M.; Wright, D.; Smith, K.; Chen, T.W.; Kotak, R.; Pastorello, A.; et al. Super-luminous Type Ic Supernovae: Catching a Magnetar by the Tail. Astrophys. J. 2013, 770, 128. [Google Scholar] [CrossRef]
  64. Wang, S.Q.; Wang, L.J.; Dai, Z.G.; Wu, X.F. Superluminous Supernovae Powered by Magnetars: Late-time Light Curves and Hard Emission Leakage. Astrophys. J. 2015, 799, 107. [Google Scholar] [CrossRef]
  65. Nicholl, M.; Guillochon, J.; Berger, E. The Magnetar Model for Type I Superluminous Supernovae. I. Bayesian Analysis of the Full Multicolor Light-curve Sample with MOSFiT. Astrophys. J. 2017, 850, 55. [Google Scholar] [CrossRef]
  66. Arnett, W.D. Type I supernovae. I—Analytic solutions for the early part of the light curve. Astrophys. J. 1982, 253, 785–797. [Google Scholar] [CrossRef]
  67. Taddia, F.; Sollerman, J.; Leloudas, G.; Stritzinger, M.D.; Valenti, S.; Galbany, L.; Kessler, R.; Schneider, D.P.; Wheeler, J.C. Early-time light curves of Type Ib/c supernovae from the SDSS-II Supernova Survey. Astron. Astrophys. 2015, 574, A60. [Google Scholar] [CrossRef]
  68. Xiao, D.; Dai, Z.G. Determining the Efficiency of Converting Magnetar Spindown Energy into Gamma-Ray Burst X-Ray Afterglow Emission and Its Possible Implications. Astrophys. J. 2019, 878, 62. [Google Scholar] [CrossRef]
  69. Zou, L.; Liang, E.W.; Zhong, S.Q.; Yang, X.; Zheng, T.C.; Cheng, J.G.; Deng, C.M.; Lü, H.J.; Wang, S.Q. Comparison of the characteristics of magnetars born in death of massive stars and merger of compact objects with swift gamma-ray burst data. Mon. Not. R. Astron. Soc. 2021, 508, 2505–2514. [Google Scholar] [CrossRef]
  70. Rowlinson, A.; Gompertz, B.P.; Dainotti, M.; O’Brien, P.T.; Wijers, R.A.M.J.; van der Horst, A.J. Constraining properties of GRB magnetar central engines using the observed plateau luminosity and duration correlation. Mon. Not. R. Astron. Soc. 2014, 443, 1779–1787. [Google Scholar] [CrossRef]
  71. Cano, Z.; Johansson Andreas, K.G.; Maeda, K. A self-consistent analytical magnetar model: The luminosity of γ-ray burst supernovae is powered by radioactivity. Mon. Not. R. Astron. Soc. 2016, 457, 2761–2772. [Google Scholar] [CrossRef]
  72. Fraija, N.; Veres, P.; Beniamini, P.; Galvan-Gamez, A.; Metzger, B.D.; Barniol Duran, R.; Becerra, R.L. On the Origin of the Multi-GeV Photons from the Closest Burst with Intermediate Luminosity: GRB 190829A. Astrophys. J. 2021, 918, 12. [Google Scholar] [CrossRef]
  73. Lü, H.J.; Lan, L.; Zhang, B.; Liang, E.W.; Kann, D.A.; Du, S.S.; Shen, J. Gamma-Ray Burst/Supernova Associations: Energy Partition and the Case of a Magnetar Central Engine. Astrophys. J. 2018, 862, 130. [Google Scholar] [CrossRef]
  74. Weiler, K.W.; Panagia, N.; Montes, M.J. SN 1998bw/GRB 980425 and Radio Supernovae. Astrophys. J. 2001, 562, 670–678. [Google Scholar] [CrossRef]
  75. Della Valle, M.; Malesani, D.; Benetti, S.; Testa, V.; Hamuy, M.; Antonelli, L.A.; Chincarini, G.; Cocozza, G.; Covino, S.; D’Avanzo, P.; et al. Evidence for supernova signatures in the spectrum of the late-time bump of the optical afterglow of GRB 021211. Astron. Astrophys. 2003, 406, L33–L37. [Google Scholar] [CrossRef]
  76. Tsvetkova, A.; Frederiks, D.; Golenetskii, S.; Lysenko, A.; Oleynik, P.; Pal’shin, V.; Svinkin, D.; Ulanov, M.; Cline, T.; Hurley, K.; et al. The Konus-Wind Catalog of Gamma-Ray Bursts with Known Redshifts. I. Bursts Detected in the Triggered Mode. Astrophys. J. 2017, 850, 161. [Google Scholar] [CrossRef]
  77. Deng, J.; Tominaga, N.; Mazzali, P.A.; Maeda, K.; Nomoto, K. On the Light Curve and Spectrum of SN 2003dh Separated from the Optical Afterglow of GRB 030329. Astrophys. J. 2005, 624, 898–905. [Google Scholar] [CrossRef]
  78. Mazzali, P.A.; Deng, J.; Tominaga, N.; Maeda, K.; Nomoto, K.; Matheson, T.; Kawabata, K.S.; Stanek, K.Z.; Garnavich, P.M. The Type Ic Hypernova SN 2003dh/GRB 030329. Astrophys. J. Lett. 2003, 599, L95–L98. [Google Scholar] [CrossRef]
  79. Mazzali, P.A.; Deng, J.; Pian, E.; Malesani, D.; Tominaga, N.; Maeda, K.; Nomoto, K.; Chincarini, G.; Covino, S.; Valle, M.D.; et al. Models for the Type Ic Hypernova SN 2003lw associated with GRB 031203. Astrophys. J. 2006, 645, 1323–1330. [Google Scholar] [CrossRef]
  80. Della Valle, M.; Malesani, D.; Bloom, J.S.; Benetti, S.; Chincarini, G.; D’Avanzo, P.; Foley, R.J.; Covino, S.; Melandri, A.; Piranomonte, S.; et al. Hypernova Signatures in the Late Rebrightening of GRB 050525A. Astrophys. J. Lett. 2006, 642, L103–L106. [Google Scholar] [CrossRef]
  81. Kovacevic, M.; Izzo, L.; Wang, Y.; Muccino, M.; Della Valle, M.; Amati, L.; Barbarino, C.; Enderli, M.; Pisani, G.B.; Li, L. A search for Fermi bursts associated with supernovae and their frequency of occurrence. Astron. Astrophys. 2014, 569, A108. [Google Scholar] [CrossRef]
  82. Campana, S.; Mangano, V.; Blustin, A.J.; Brown, P.; Burrows, D.N.; Chincarini, G.; Cummings, J.R.; Cusumano, G.; Valle, M.D.; Malesani, D.; et al. The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature 2006, 442, 1008–1010. [Google Scholar] [CrossRef]
  83. Mirabal, N.; Halpern, J.P.; An, D.; Thorstensen, J.R.; Terndrup, D.M. GRB 060218/SN 2006aj: A Gamma-Ray Burst and Prompt Supernova at z = 0.0335. Astrophys. J. Lett. 2006, 643, L99–L102. [Google Scholar] [CrossRef]
  84. Li, L.-X. Shock breakout in Type Ibc supernovae and application to GRB 060218/SN 2006aj. Mon. Not. R. Astron. Soc. 2007, 375, 240–256. [Google Scholar] [CrossRef]
  85. Xu, D.; Zou, Y.C.; Fan, Y.Z. Mildly relativistic X-ray transient 080109 and SN 2008D: Towards a continuum from energetic GRB/XRF to ordinary Ibc SN. In Proceedings of the 37th COSPAR Scientific Assembly, Montreal, QC, Canada, 13–20 July 2008; Volume 37, p. 3512. [Google Scholar] [CrossRef]
  86. Mazzali, P.A.; Valenti, S.; Della Valle, M.; Chincarini, G.; Sauer, D.N.; Benetti, S.; Pian, E.; Piran, T.; D’Elia, V.; Elias-Rosa, N.; et al. The Metamorphosis of Supernova SN 2008D/XRF 080109: A Link Between Supernovae and GRBs/Hypernovae. Science 2008, 321, 1185. [Google Scholar] [CrossRef]
  87. Li, L.-X. The X-ray transient 080109 in NGC 2770: An X-ray flash associated with a normal core-collapse supernova. Mon. Not. R. Astron. Soc. 2008, 388, 603–610. [Google Scholar] [CrossRef]
  88. Soderberg, A.M.; Berger, E.; Page, K.L.; Schady, P.; Parrent, J.; Pooley, D.; Wang, X.Y.; Ofek, E.O.; Cucchiara, A.; Rau, A.; et al. An extremely luminous X-ray outburst at the birth of a supernova. Nature 2008, 453, 469–474. [Google Scholar] [CrossRef] [PubMed]
  89. Jin, Z.-P.; Covino, S.; Valle, M.D.; Ferrero, P.; Fugazza, D.; Malesani, D.; Melandri, A.; Pian, E.; Salvaterra, R.; Bersier, D. GRB 081007 and GRB 090424: The Surrounding Medium, Outflows, and Supernovae. Astrophys. J. 2013, 774, 114. [Google Scholar] [CrossRef]
  90. Olivares E., F.; Greiner, J.; Schady, P.; Klose, S.; Krühler, T.; Rau, A.; Savaglio, S.; Kann, D.A.; Pignata, G.; Elliott, J.; et al. Multiwavelength analysis of three supernovae associated with gamma-ray bursts observed by GROND. Astron. Astrophys. 2015, 577, A44. [Google Scholar] [CrossRef]
  91. Berger, E.; Chornock, R.; Holmes, T.R.; Foley, R.J.; Cucchiara, A.; Wolf, C.; Podsiadlowski, P.; Fox, D.B.; Roth, K.C. The Spectroscopic Classification and Explosion Properties of SN 2009nz Associated with GRB 091127 at z = 0.490. Astrophys. J. 2011, 743, 204. [Google Scholar] [CrossRef]
  92. Cobb, B.E.; Bloom, J.S.; Perley, D.A.; Morgan, A.N.; Cenko, S.B.; Filippenko, A.V. Discovery of SN 2009nz Associated with GRB 091127. Astrophys. J. Lett. 2010, 718, L150–L155. [Google Scholar] [CrossRef]
  93. Bufano, F.; Pian, E.; Sollerman, J.; Benetti, S.; Pignata, G.; Valenti, S.; Covino, S.; D’Avanzo, P.; Malesani, D.; Cappellaro, E.; et al. The Highly Energetic Expansion of SN 2010bh Associated with GRB 100316D. Astrophys. J. 2012, 753, 67. [Google Scholar] [CrossRef]
  94. Sparre, M.; Sollerman, J.; Fynbo, J.P.U.; Malesani, D.; Goldoni, P.; Postigo, A.d.; Covino, S.; D’Elia, V.; Flores, H.; Hammer, F.; et al. Spectroscopic Evidence for SN 2010ma Associated with GRB 101219B. Astrophys. J. Lett. 2011, 735, L24. [Google Scholar] [CrossRef]
  95. Greiner, J.; Mazzali, P.A.; Kann, D.A.; Krühler, T.; Pian, E.; Prentice, S.; Olivares E., F.; Rossi, A.; Klose, S.; Taubenberger, S.; et al. A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst. Nature 2015, 523, 189–192. [Google Scholar] [CrossRef]
  96. Kann, D.A.; Schady, P.; Olivares, E.F.; Klose, S.; Rossi, A.; Perley, D.A.; Zhang, B.; Krühler, T.; Greiner, J.; Guelbenzu, A.N.; et al. The optical/NIR afterglow of GRB 111209A: Complex yet not unprecedented. Astron. Astrophys. 2018, 617, A122. [Google Scholar] [CrossRef]
  97. Zhang, B.-B.; Fan, Y.-Z.; Shen, R.-F.; Xu, D.; Zhang, F.-W.; Wei, D.-M.; Burrows, D.N.; Zhang, B.; Gehrels, N. GRB 120422A: A Low-luminosity Gamma-Ray Burst Driven by a Central Engine. Astrophys. J. 2012, 756, 190. [Google Scholar] [CrossRef]
  98. Melandri, A.; Pian, E.; Ferrero, P.; D’Elia, V.; Walker, E.S.; Ghirlanda, G.; Covino, S.; Amati, L.; D’avanzo, P.; Mazzali, P.A.; et al. The optical SN 2012bz associated with the long GRB 120422A. Astron. Astrophys. 2012, 547, A82. [Google Scholar] [CrossRef]
  99. Schulze, S.; Malesani, D.; Cucchiara, A.; Tanvir, N.R.; Krühler, T.; de Ugarte Postigo, A.; Leloudas, G.; Lyman, J.; Bersier, D.; Wiersema, K.; et al. GRB 120422A/SN 2012bz: Bridging the gap between low- and high-luminosity gamma-ray bursts. Astron. Astrophys. 2014, 566, A102. [Google Scholar] [CrossRef]
  100. Cano, Z.; de Ugarte Postigo, A.; Pozanenko, A.; Butler, N.; Thöne, C.C.; Guidorzi, C.; Krühler, T.; Gorosabel, J.; Jakobsson, P.; Leloudas, G.; et al. A trio of gamma-ray burst supernovae: GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu. Astron. Astrophys. 2014, 568, A19. [Google Scholar] [CrossRef]
  101. Xu, D.; de Ugarte Postigo, A.; Leloudas, G.; Krühler, T.; Cano, Z.; Hjorth, J.; Malesani, D.; Fynbo, J.P.U.; Thöne, C.C.; Sánchez-Ramírez, R.; et al. Discovery of the Broad-lined Type Ic SN 2013cq Associated with the Very Energetic GRB 130427A. Astrophys. J. 2013, 776, 98. [Google Scholar] [CrossRef]
  102. Vestr, W.T.; Wren, J.A.; Panaitescu, A.; Wozniak, P.R.; Davis, H.; Palmer, D.M.; Vianello, G.; Omodei, N.; Xiong, S.; Briggs, M.S.; et al. The Bright Optical Flash and Afterglow from the Gamma-Ray Burst GRB 130427A. Science 2014, 343, 38–41. [Google Scholar] [CrossRef]
  103. Ackermann, M.; Ajello, M.; Asano, K.; Atwood, W.B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; et al. Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A. Science 2014, 343, 42–47. [Google Scholar] [CrossRef]
  104. Melandri, A.; Pian, E.; D’Elia, V.; D’avanzo, P.; Della Valle, M.; Mazzali, P.A.; Tagliaferri, G.; Cano, Z.; Levan, A.J.; MΔoller, P.; et al. Diversity of gamma-ray burst energetics vs. supernova homogeneity: SN 2013cq associated with GRB 130427A. Astron. Astrophys. 2014, 567, A29. [Google Scholar] [CrossRef]
  105. D’Elia, V.; Pian, E.; Melandri, A.; D’Avanzo, P.; Della Valle, M.; Mazzali, P.A.; Piranomonte, S.; Tagliaferri, G.; Antonelli, L.A.; Bufano, F.I.; et al. SN 2013dx associated with GRB 130702A: A detailed photometric and spectroscopic monitoring and a study of the environment. Astron. Astrophys. 2015, 577, A116. [Google Scholar] [CrossRef]
  106. Toy, V.L.; Cenko, S.B.; Silverman, J.M.; Butler, N.R.; Cucchiara, A.; Watson, A.M.; Bersier, D.; Perley, D.A.; Margutti, R.; Bellm, E.; et al. Optical and Near-infrared Observations of SN 2013dx Associated with GRB 130702A. Astrophys. J. 2016, 818, 79. [Google Scholar] [CrossRef]
  107. Volnova, A.A.; Pruzhinskaya, M.V.; Pozanenko, A.S.; Blinnikov, S.I.; Minaev, P.Y.; Burkhonov, O.A.; Chernenko, A.M.; Ehgamberdiev, S.A.; Inasaridze, R.; Jelinek, M.; et al. Multicolour modelling of SN 2013dx associated with GRB 130702A. Mon. Not. R. Astron. Soc. 2017, 467, 3500–3512. [Google Scholar] [CrossRef]
  108. Cano, Z.; de Ugarte Postigo, A.; Perley, D.; Krühler, T.; Margutti, R.; Friis, M.; Malesani, D.; Jakobsson, P.; Fynbo, J.P.; Gorosabel, J.; et al. GRB 140606B/iPTF14bfu: Detection of shock-breakout emission from a cosmological γ-ray burst? Mon. Not. R. Astron. Soc. 2015, 452, 1535–1552. [Google Scholar] [CrossRef]
  109. Ashall, C.; Mazzali, P.A.; Pian, E.; Woosley, S.E.; Palazzi, E.; Prentice, S.J.; Kobayashi, S.; Holmbo, S.; Levan, A.; Perley, D.; et al. GRB 161219B/SN 2016jca: A powerful stellar collapse. Mon. Not. R. Astron. Soc. 2019, 487, 5824–5839. [Google Scholar] [CrossRef]
  110. Izzo, L.; de Ugarte Postigo, A.; Maeda, K.; Thöne, C.C.; Kann, D.A.; Della Valle, M.; Sagués Carracedo, A.; Michałowski, M.J.; Schady, P.; Schmidl, S.; et al. Signatures of a jet cocoon in early spectra of a supernova associated with a γ-ray burst. Nature 2019, 565, 324–327. [Google Scholar] [CrossRef] [PubMed]
  111. Wang, Y.; Rueda, J.A.; Ruffini, R.; Becerra, L.; Bianco, C.; Li, L.; Karlica, M. Two Predictions of Supernova: GRB 130427A/SN 2013cq and GRB 180728A/SN 2018fip. Astrophys. J. 2019, 874, 39. [Google Scholar] [CrossRef]
  112. Rueda, J.A.; Ruffini, R.; Karlica, M.; Moradi, R.; Wang, Y. Magnetic Fields and Afterglows of BdHNe: Inferences from GRB 130427A, GRB 160509A, GRB 160625B, GRB 180728A, and GRB 190114C. Astrophys. J. 2020, 893, 148. [Google Scholar] [CrossRef]
  113. Hu, Y.D.; Castro-Tirado, A.J.; Kumar, A.; Gupta, R.; Valeev, A.F.; Pandey, S.B.; Kann, D.A.; Castellón, A.; Agudo, I.; Aryan, A.; et al. 10.4 m GTC observations of the nearby VHE-detected GRB 190829A/SN 2019oyw. Astron. Astrophys. 2021, 646, A50. [Google Scholar] [CrossRef]
  114. Kong, D.F.; Wang, X.G.; Zheng, W.; Lü, H.J.; Xin, L.P.; Lin, D.B.; Cao, J.X.; Lu, M.X.; Ren, B.; Vidal, E.P.; et al. GRB 221009A/SN 2022xiw: A Supernova Obscured by a Gamma-Ray Burst Afterglow? Astrophys. J. 2024, 971, 56. [Google Scholar] [CrossRef]
  115. Fulton, M.D.; Smartt, S.J.; Rhodes, L.; Huber, M.E.; Villar, V.A.; Moore, T.; Srivastav, S.; Schultz, A.S.B.; Chambers, K.C.; Izzo, L.; et al. The Optical Light Curve of GRB 221009A: The Afterglow and the Emerging Supernova. Astrophys. J. Lett. 2023, 946, L22. [Google Scholar] [CrossRef]
  116. Srinivasaragavan, G.P.; O’Connor, B.; Cenko, S.B.; Dittmann, A.J.; Yang, S.; Sollerman, J.; Anupama, G.C.; Barway, S.; Bhalerao, V.; Kumar, H.; et al. A Sensitive Search for Supernova Emission Associated with the Extremely Energetic and Nearby GRB 221009A. Astrophys. J. Lett. 2023, 949, L39. [Google Scholar] [CrossRef]
  117. Roman Aguilar, L.M.; Saez, M.M.; Ertini, K.; Bersten, M.C. A magnetar powers the luminous supernova 2023pel, which is associated with a long gamma-ray burst. Astron. Astrophys. 2025, 698, A78. [Google Scholar] [CrossRef]
  118. Hussenot-Desenonges, T.; Wouters, T.; Guessoum, N.; Abdi, I.; Abulwfa, A.; Adami, C.; Agüí Fernández, J.F.; Ahumada, T.; Aivazyan, V.; Akl, D.; et al. Multiband analyses of the bright GRB 230812B and the associated SN2023pel. Mon. Not. R. Astron. Soc. 2024, 530, 1–19. [Google Scholar] [CrossRef]
  119. Dainotti, M.G.; Petrosian, V.; Singal, J.; Ostrowski, M. Determination of the Intrinsic Luminosity Time Correlation in the X-Ray Afterglows of Gamma-Ray Bursts. Astrophys. J. 2013, 774, 157. [Google Scholar] [CrossRef]
  120. Lü, H.-J.; Zhang, B.; Lei, W.-H.; Li, Y.; Lasky, P.D. The Millisecond Magnetar Central Engine in Short GRBs. Astrophys. J. 2015, 805, 89. [Google Scholar] [CrossRef]
  121. Mazzali, P.A.; Deng, J.; Nomoto, K.; Sauer, D.N.; Pian, E.; Tominaga, N.; Tanaka, M.; Maeda, K.; Filippenko, A.V. A neutron-star-driven X-ray flash associated with supernova SN 2006aj. Nature 2006, 442, 1018–1020. [Google Scholar] [CrossRef]
  122. Zhang, Z.D.; Yu, Y.W.; Liu, L.D. The Effects of a Magnetar Engine on the Gamma-Ray Burst-associated Supernovae: Application to Double-peaked SN 2006aj. Astrophys. J. 2022, 936, 54. [Google Scholar] [CrossRef]
  123. Kann, D.A.; Schady, P.; Olivares E., F.; Klose, S.; Rossi, A.; Perley, D.A.; Krühler, T.; Greiner, J.; Nicuesa Guelbenzu, A.; Elliott, J.; et al. Highly luminous supernovae associated with gamma-ray bursts. I. GRB 111209A/SN 2011kl in the context of stripped-envelope and superluminous supernovae. Astron. Astrophys. 2019, 624, A143. [Google Scholar] [CrossRef]
Figure 1. Multiband light curve fitting result (solid lines) of GRB 201015A/SN 201015A, where the upper limits are represented with inverted triangles. The dash dotted, dashed, and dotted lines show the BPL, the magnetar spindown, and the supernova components, respectively. Additionally, thin horizontal dashed lines represent the contribution of the host galaxy.
Figure 1. Multiband light curve fitting result (solid lines) of GRB 201015A/SN 201015A, where the upper limits are represented with inverted triangles. The dash dotted, dashed, and dotted lines show the BPL, the magnetar spindown, and the supernova components, respectively. Additionally, thin horizontal dashed lines represent the contribution of the host galaxy.
Universe 11 00292 g001
Figure 2. The characteristic spin-down timescale ( log τ ) as a function of plateau luminosity ( log L ). A green solid line is drawn for the best fit.
Figure 2. The characteristic spin-down timescale ( log τ ) as a function of plateau luminosity ( log L ). A green solid line is drawn for the best fit.
Universe 11 00292 g002
Figure 3. Distribution of η for GRB-SN events, based on data from [73], where η = 0.11 for GRB 221009A [114].
Figure 3. Distribution of η for GRB-SN events, based on data from [73], where η = 0.11 for GRB 221009A [114].
Universe 11 00292 g003
Table 1. Photometry of GRB 201015A a.
Table 1. Photometry of GRB 201015A a.
t mid (s) b t mid (Days) b Mag (Vega) c 1 σ FilterTelescope
9607.120.11122.030.28RLCOGT
1,499,929.5817.360>20.93RLCOGT
1,661,795.9019.23422.120.09ILCOGT
1,759,613.6220.36623.040.15ILCOGT
a includes contributions from the GRB afterglow, host galaxy, and associated SN 201015A; b  t mid is the midpoint of each observation after the BAT trigger; c: The data have not been corrected for extinction in the Milky Way Galaxy or the GRB host galaxy.
Table 2. Model parameters.
Table 2. Model parameters.
ParameterUnitBest Fit
log  F 0 , X erg cm 2 s 1 10.00 (fit)
log  F 0 , g erg cm 2 s 1 10.70 (fit)
log  F 0 , r erg cm 2 s 1 10.75 (fit)
log  F 0 , i erg cm 2 s 1 10.90 (fit)
log  F 0 , z erg cm 2 s 1 10.30 (fit)
α 1 1.20 (fit)
α 2 1.30 (fit)
t b s300.00 (fit)
θ j rad0.30 (fit)
B p 10 15 G 0 . 80 0.32 + 0.34
P 0 ms 16 . 80 0.47 + 0.24
κ cm 2 g 1 0.07 (fit)
log  κ γ cm 2 g 1 1 . 80 0.16 + 0.59
M ej M 2 . 55 0.37 + 1.12
v ej 10 9 cm s 1 3 . 00 0.25 + 0.48
T f 10 3 K 4 . 00 0.32 + 0.54
η X × 10 2 8 . 00 0.76 + 1.12
η g × 10 2 0 . 80 0.46 + 0.47
η r × 10 2 0 . 15 0.13 + 0.04
η i × 10 2 1 . 00 0.37 + 0.39
η z × 10 2 1 . 80 0.59 + 0.44
m g  amag26.00 (fit)
m i  amag23.20 (fit)
m z  amag22.80 (fit)
a  m g , m i , and m z are the magnitudes of the host galaxy in the g, i, and z filters, respectively. They are not corrected for Milky Way Galaxy extinction.
Table 3. Parameters of GRB-SNe Fitted with a magnetar.
Table 3. Parameters of GRB-SNe Fitted with a magnetar.
GRB/SN B ( 10 15 G ) P (ms) L 0 ( erg s 1 ) τ (Days) References
050525A/2005ncOptical10.518.0 ( 1.05 ± 0.05 ) × 10 46 0.14 ± 0.01 (1)
050525A/2005ncX-ray14.58.6 ( 3.85 ± 0.18 ) × 10 47 0.02 ± 0.00 (1)
091127/2009nzOptical5.415.2 ( 5.31 ± 0.02 ) × 10 45 0.38 ± 0.00 (1)
091127/2009nzX-ray1.12.9 ( 1.72 ± 0.12 ) × 10 47 0.33 ± 0.02 (1)
111209A/2011klOptical1.113.0 ( 4.34 ± 0.48 ) × 10 44 6.51 ± 0.67 (1)
111209A/2011klX-ray1.311.5 ( 7.44 ± 1.02 ) × 10 44 4.82 ± 0.60 (1)
130831A/2013fuOptical12.921.3 8.1 × 10 45 0.13 (1)
130831A/2013fuX-ray7.39.2 ( 7.62 ± 0.55 ) × 10 46 0.07 ± 0.00 (1)
161219B/2016jcar-band 2.4 ± 0.3 35.2 ± 3.0 ( 3.73 ± 0.26 ) × 10 43 10.25 (2)
161219B/2016jcaX-ray 1.0 ± 0.1 8.1 ± 0.3 ( 2.25 ± 0.08 ) × 10 45 3.22 (2)
190829A/2019oywX-ray 60 ± 3 1.1 ± 0.1 2.93 × 10 47 0.01 (3)
201015A/201015AX-ray/Optical 0 . 80 0.32 + 0.34 16 . 80 0.47 + 0.24 8.03 × 10 43 10.20 This work
References. (1) [71], (2) [19], and (3) [72].
Table 4. Parameters of SNe Associated with GRBs.
Table 4. Parameters of SNe Associated with GRBs.
GRB/SN
(Name)
t peak 1
(Day)
M peak 1
(Mag)
M ej
( M )
E SN , K
(erg)
v ph
km s 1
References
980425/1998bw∼17 18.86 ± 0.2 6.8 ± 0.57 ( 1.3 ± 0.1 ) × 10 52 18,000(1)–(6)
011121/2001ke 13 ± 1 18.55 ± 0.55 4.44 ± 0.82 ( 1.77 ± 0.88 ) × 10 52 (1), (6), (7)
021211/2002lt∼14 18.8 ± 0.4 7.16 ± 5.99 ( 2.85 ± 1.3 ) × 10 52 (1), (6), (8)
030329/2003dh 11.5 ± 1.5 18.79 ± 0.23 5.06 ± 1.65 ( 1.21 ± 0.39 ) × 10 52 20,000(1), (2), (6), (9), (10)
031203/2003lw 21.5 ± 3.5 18.92 ± 0.2 8.22 ± 0.76 ( 1.59 ± 0.15 ) × 10 52 18,000(1), (2), (6), (11)
050525A/2005nc∼12 18.8 ± 0.6 4.75 ± 1.08 ( 1.89 ± 0.75 ) × 10 52 (1), (6), (12), (13)
060218/2006aj 10 ± 0.5 18.16 ± 0.1 2.58 ± 0.55 ( 6.1 ± 0.14 ) × 10 51 20,000(1), (2), (6), (14)–(16)
080109/2008d 19 ± 0.8 16.9 ± 0.2 5.3 ± 1 ( 6 ± 3 ) × 10 51 (1), (6), (17)–(20)
081007/2008hw 12 ± 3 18.5 ± 0.5 2.3 ± 1 ( 9 ± 5 ) × 10 51 12,600(1), (6), (21), (22)
091127/2009nz 15 ± 2 18.65 ± 0.2 4.69 ± 0.13 ( 8.1 ± 0.2 ) × 10 51 17,000(1), (6), (22)–(24)
100316D/2010bh 8.48 ± 1.06 18.45 ± 0.18 2.47 ± 0.23 ( 9.2 ± 0.8 ) × 10 51 35,000(1), (2), (6), (25)
101219B/2010ma 10 ± 2 18.5 ± 0.25 1.3 ± 0.4 ( 1 ± 0.6 ) × 10 52 (1), (6), (22), (26)
111209A/2011kl 14 ± 0.5 19.8 ± 0.1 3 ± 1 ( 5.5 ± 3.5 ) × 10 51 21,000(1), (6), (27)–(28)
120422A/2012bz 16.69 ± 1.28 18.56 ± 0.15 6.1 ± 0.49 ( 1.53 ± 0.13 ) × 10 52 20,500(1), (6), (29)–(31)
130215A/2013ez 6.41 ± 0.34 18.85 ± 0.15 6,000(1),(6),(32)
130427A/2013cq 15.2 18.91 ± 0.2 6.27 ± 0.69 ( 6.39 ± 0.7 ) × 10 52 35,000(1), (6), (33)–(36)
130702A/2013dx 17.2 ± 0.34 18.4 ± 0.4 3 ± 0.1 ( 8.2 ± 0.4 ) × 10 51 21,300(1), (6), (37)–(39)
130831A/2013fu 18.53 ± 0.07 18.89 ± 0.05 6.71 ± 0.2 1 . 87 0.62 + 0.9 × 10 52 (1), (6), (32)
140606B/iPTF14bfu 16.32 ± 1.63 19.61 ± 0.27 5 ± 2 2 ± 1 × 10 52 19,800(1), (6), (40)
161219B/2016jca 10.7 ± 0.3 19.04 ± 0.05 5.8 ± 0.3 ( 5.1 ± 0.8 ) × 10 52 (1), (6), (41), (42)
171205A/2017iuk∼11 18.4 ± 0.1 4.9 ± 0.9 ( 2.4 ± 0.9 ) × 10 52 22,000(43)
180728A/2018fip 14.7 ± 2.9 ∼30,000(44), (45)
190829A/2019oyw 19.19 ± 0.25 19.04 ± 0.1 5.67 ± 0.72 ( 13.55 ± 5.08 ) × 10 51 20 , 000 ± 2500 (46)
201015A/201015A 9.63 19.96 2 . 55 0.37 + 1.12 1.37 × 10 52 30 , 000 2500 + 4800 This work
221009A/2022xiw 11.06 19.21 3.70 2.35 × 10 52 32,600(47)–(49)
230812B/2023pel 11.6 3.417,000(50), (51)
1 The peak time and peak magnitute in the SN light curve. References. (1) [73], (2) [2], (3) [74], (4) [7], (5) [75], (6) [3], (7) [76], (8) [75], (9) [77], (10) [78], (11) [79], (12) [80], (13) [81], (14) [82], (15) [83], (16) [84], (17) [85], (18) [86], (19) [87], (20) [88], (21) [89], (22) [90], (23) [91], (24) [92], (25) [93], (26) [94], (27) [95], (28) [96], (29) [97], (30) [98], (31) [99], (32) [100], (33) [101], (34) [102], (35) [103], (36) [104], (37) [105], (38) [106], (39) [107], (40) [108], (41) [109], (42) [19], (43) [110], (44) [111], (45) [112], (46) [113], (47) [114], (48) [115], (49) [116], (50) [117], (51) [118].
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, X.; Kong, D.; Chen, L.; Wang, X.; Liang, E. Application of the Magnetar Engine to an Intermediate-Luminosity Gamma-Ray Burst Associated with the Supernova GRB 201015A/SN 201015A. Universe 2025, 11, 292. https://doi.org/10.3390/universe11090292

AMA Style

Li X, Kong D, Chen L, Wang X, Liang E. Application of the Magnetar Engine to an Intermediate-Luminosity Gamma-Ray Burst Associated with the Supernova GRB 201015A/SN 201015A. Universe. 2025; 11(9):292. https://doi.org/10.3390/universe11090292

Chicago/Turabian Style

Li, Xingling, Defeng Kong, Liangjun Chen, Xianggao Wang, and Enwei Liang. 2025. "Application of the Magnetar Engine to an Intermediate-Luminosity Gamma-Ray Burst Associated with the Supernova GRB 201015A/SN 201015A" Universe 11, no. 9: 292. https://doi.org/10.3390/universe11090292

APA Style

Li, X., Kong, D., Chen, L., Wang, X., & Liang, E. (2025). Application of the Magnetar Engine to an Intermediate-Luminosity Gamma-Ray Burst Associated with the Supernova GRB 201015A/SN 201015A. Universe, 11(9), 292. https://doi.org/10.3390/universe11090292

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop