Disruption of Planetary System Architectures by Stellar Flybys
Abstract
1. Introduction
2. Methods
2.1. Planetary System Models
- 72 simulations of NMS;
- 72 simulations of compact NMS, where we scaled down the semi-major axes of all planets by a factor of 5;
- 72 simulations of ultra-compact NMS with semi-major axes scaled down by a factor of 20, while the masses of planets were scaled down by a factor of 5.
2.2. Initial Conditions
3. Results
3.1. System Stability
3.2. Orbit Swap
4. Discussion
4.1. Planetary Systems Survivability
4.2. Implications for the History of the Solar System
4.3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CE | Close Encounter |
NMS | Nesvorný–Morbidelli System |
References
- Laskar, J. Large-scale chaos in the solar system. Astron. Astrophys. 1994, 287, L9–L12. [Google Scholar]
- Kaib, N.A.; Raymond, S.N. The Influence of Passing Field Stars on the Solar System’s Dynamical Future. arXiv 2025, arXiv:2505.04737. [Google Scholar] [CrossRef]
- Rasio, F.A.; Ford, E.B. Dynamical Instabilities and the Formation of Extrasolar Planetary Systems. Science 1996, 274, 954–956. [Google Scholar] [CrossRef] [PubMed]
- Weidenschilling, S.; Marzari, F. Gravitational scattering as a possible origin for giant planets at small stellar distances. Nature 1996, 384, 619–621. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, G.; Adams, F.C. The Modification of Planetary Orbits in Dense Open Clusters. ApJ 1998, 508, L171–L174. [Google Scholar] [CrossRef]
- Davies, M.B.; Adams, F.C.; Armitage, P.; Chambers, J.; Ford, E.; Morbidelli, A.; Raymond, S.N.; Veras, D. The Long-Term Dynamical Evolution of Planetary Systems. In Proceedings of the Protostars and Planets VI, Heidelberg, Germany, 15–20 July 2013; Beuther, H., Klessen, R.S., Dullemond, C.P., Henning, T., Eds.; University of Arizona Press: Tucson, AZ, USA, 2014; pp. 787–808. [Google Scholar] [CrossRef]
- Limbach, M.A.; Turner, E.L. Exoplanet orbital eccentricity: Multiplicity relation and the Solar System. Proc. Natl. Acad. Sci. USA 2015, 112, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Laskar, J.; Petit, A.C. AMD-stability and the classification of planetary systems. Astron. Astrophys. 2017, 605, A72. [Google Scholar] [CrossRef]
- Zinzi, A.; Turrini, D. Anti-correlation between multiplicity and orbital properties in exoplanetary systems as a possible record of their dynamical histories. Astron. Astrophys. 2017, 605, L4. [Google Scholar] [CrossRef]
- Turrini, D.; Zinzi, A.; Belinchon, J.A. Normalized angular momentum deficit: A tool for comparing the violence of the dynamical histories of planetary systems. Astron. Astrophys. 2020, 636, A53. [Google Scholar] [CrossRef]
- Gajdoš, P.; Vaňko, M. Chaos in multiplanetary extrasolar systems. Mon. Not. R. Astron. Soc. 2022, 518, 2068–2075. [Google Scholar] [CrossRef]
- Nesvorný, D.; Morbidelli, A. Statistical study of the early solar system’s instability with four, five, and six giant planets. Astron. J. 2012, 144, 117. [Google Scholar] [CrossRef]
- Ribeiro, R.d.S.; Morbidelli, A.; Raymond, S.N.; Izidoro, A.; Gomes, R.; Vieira Neto, E. Dynamical evidence for an early giant planet instability. Icarus 2020, 339, 113605. [Google Scholar] [CrossRef]
- Liu, B.; Raymond, S.N.; Jacobson, S.A. Early Solar System instability triggered by dispersal of the gaseous disk. Nature 2022, 604, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Malmberg, D.; Davies, M.B.; Heggie, D.C. The effects of fly-bys on planetary systems. Mon. Not. R. Astron. Soc. 2011, 411, 859–877. [Google Scholar] [CrossRef]
- van Elteren, A.; Portegies Zwart, S.; Pelupessy, I.; Cai, M.X.; McMillan, S.L.W. Survivability of planetary systems in young and dense star clusters. Astron. Astrophys. 2019, 624, A120. [Google Scholar] [CrossRef]
- Lada, C.J.; Lada, E.A. Embedded Clusters in Molecular Clouds. Annu. Rev. Astron. Astrophys. 2003, 41, 57–115. [Google Scholar] [CrossRef]
- Kruijssen, J.M.D. On the fraction of star formation occurring in bound stellar clusters. Mon. Not. R. Astron. Soc. 2012, 426, 3008–3040. [Google Scholar] [CrossRef]
- Gieles, M.; Portegies Zwart, S.F. The distinction between star clusters and associations. Mon. Not. R. Astron. Soc. Lett. 2011, 410, L6–L7. [Google Scholar] [CrossRef]
- Rickman, H.; Wajer, P.; Przyłuski, R.; Wiśniowski, T.; Nesvorný, D.; Morbidelli, A. Breakdown of planetary systems in embedded clusters. Mon. Not. R. Astron. Soc. 2023, 520, 637–648. [Google Scholar] [CrossRef]
- Malmberg, D.; Davies, M.B.; Chambers, J.E.; De Angeli, F.; Church, R.P.; Mackey, D.; Wilkinson, M.I. Is our Sun a Singleton? In Proceedings of the Dynamical Evolution of Dense Stellar Systems, Capri, Italy, 5–9 September 2007; Vesperini, E., Giersz, M., Sills, A., Eds.; 2008; Volume 246, IAU Symposium. pp. 273–274. [Google Scholar] [CrossRef]
- Malhotra, R. The origin of Pluto’s peculiar orbit. Nature 1993, 365, 819–821. [Google Scholar] [CrossRef]
- Wajer, P.; Rickman, H.; Kowalski, B.; Wiśniowski, T. Oort Cloud and sednoid formation in an embedded cluster, I: Populations and size distributions. Icarus 2024, 415, 116065. [Google Scholar] [CrossRef]
- Küpper, A.H.W.; Maschberger, T.; Kroupa, P.; Baumgardt, H. Mass segregation and fractal substructure in young massive clusters – I. The McLuster code and method calibration. Mon. Not. R. Astron. Soc. 2011, 417, 2300–2317. [Google Scholar] [CrossRef]
- Wang, L.; Spurzem, R.; Aarseth, S.; Nitadori, K.; Berczik, P.; Kouwenhoven, M.B.N.; Naab, T. nbody6++gpu: Ready for the gravitational million-body problem. Mon. Not. R. Astron. Soc. 2015, 450, 4070–4080. [Google Scholar] [CrossRef]
- Everhart, E. An efficient integrator that uses Gauss-Radau spacings. In Proceedings of the IAU Colloq. 83: Dynamics of Comets: Their Origin and Evolution, Rome, Italy, 11–15 June 1984; Carusi, A., Valsecchi, G.B., Eds.; Astrophysics and Space Science Library: Strasbourg, France, 1985; Volume 115, p. 185. [Google Scholar] [CrossRef]
- Rein, H.; Spiegel, D.S. ias15: A fast, adaptive, high-order integrator for gravitational dynamics, accurate to machine precision over a billion orbits. Mon. Not. R. Astron. Soc. 2014, 446, 1424–1437. [Google Scholar] [CrossRef]
- Rein, H.; Liu, S.F. REBOUND: An open-source multi-purpose N-body code for collisional dynamics. Astron. Astrophys. 2012, 537, A128. [Google Scholar] [CrossRef]
- Lopez, E.D.; Fortney, J.J. Understanding the Mass-Radius Relation for Sub-neptunes: Radius as a Proxy for Composition. Astrophys. J. 2014, 792, 1. [Google Scholar] [CrossRef]
- Rein, H.; Hernandez, D.M.; Tamayo, D.; Brown, G.; Eckels, E.; Holmes, E.; Lau, M.; Leblanc, R.; Silburt, A. Hybrid symplectic integrators for planetary dynamics. Mon. Not. R. Astron. Soc. 2019, 485, 5490–5497. [Google Scholar] [CrossRef]
- Wisdom, J.; Holman, M. Symplectic maps for the N-body problem. Astron. J. 1991, 102, 1528–1538. [Google Scholar] [CrossRef]
- Chambers, J.E. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 1999, 304, 793–799. [Google Scholar] [CrossRef]
- Tsiganis, K.; Gomes, R.; Morbidelli, A.; Levison, H.F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 2005, 435, 459–461. [Google Scholar] [CrossRef] [PubMed]
- Nesvorný, D. Dynamical Evolution of the Early Solar System. Annu. Rev. Astron. Astrophys. 2018, 56, 137–174. [Google Scholar] [CrossRef]
- Turrini, D.; Codella, C.; Danielski, C.; Fedele, D.; Fonte, S.; Garufi, A.; Guarcello, M.G.; Helled, R.; Ikoma, M.; Kama, M.; et al. Exploring the link between star and planet formation with Ariel. Exp. Astron. 2022, 53, 225–278. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R.; Levison, H.; Tsiganis, K.; Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 2005, 435, 466–469. [Google Scholar] [CrossRef] [PubMed]
- Morbidelli, A.; Nesvorny, D.; Laurenz, V.; Marchi, S.; Rubie, D.; Elkins-Tanton, L.; Wieczorek, M.; Jacobson, S. The timeline of the lunar bombardment: Revisited. Icarus 2018, 305, 262–276. [Google Scholar] [CrossRef]
- Chevance, M.; Kruijssen, J.M.D.; Longmore, S.N. COOL Research DAO Whitepaper—Towards community-owned astrophysics for everyone. arXiv 2025, arXiv:2501.13160. [Google Scholar] [CrossRef]
Cluster ID | Number of Stars | Star Formation Efficiency | Plummer Radius (pc) | Gas Expulsion Delay Time (Myr) | Virial Ratio (Target) | Binary Fraction | Mass Segregation Strength |
---|---|---|---|---|---|---|---|
A | 1000 | 0.33 | 1.17 | 0.077 | 0.15 | 0.3 | 0.5 |
B | 1000 | 0.33 | 1.17 | 0.153 | 0.15 | 0.3 | 0.5 |
C | 1000 | 0.33 | 0.585 | 0.077 | 0.15 | 0.3 | 0.5 |
D | 1000 | 0.33 | 0.585 | 0.153 | 0.15 | 0.3 | 0.5 |
Planet | R (AU) | M (MJup) | a (AU) | e | i (rad) |
---|---|---|---|---|---|
Jupiter | 0.0004778945 | 1 | 5.71 | 0.00339 | 0.00022 |
Saturn | 0.0004028667 | 0.3 | 7.78 | 0.01148 | 0.00108 |
Planet 5 | 0.0001708514 | 0.045 | 10.51 | 0.00365 | 0.00158 |
Uranus | 0.0001708514 | 0.045 | 17.62 | 0.00221 | 0.00057 |
Neptune | 0.0001655371 | 0.053 | 23.34 | 0.00182 | 0.00117 |
Scenario | Mass (MSun) | Velocity () | Minimum Distance (kAU) |
---|---|---|---|
1 | 4.78108 | 5.13783 | 0.44019 |
2 | 4.36384 | 3.27297 | 0.86324 |
3 | 69.34648 | 5.93211 | 3.80489 |
4 | 1.46280 | 1.72329 | 0.15411 |
5 | 81.17792 | 6.98893 | 3.38940 |
6 | 83.12851 | 8.29860 | 2.47829 |
7 | 36.75026 | 14.19263 | 0.32920 |
8 | 74.89336 | 12.76435 | 0.89937 |
9 | 82.54217 | 9.46876 | 3.61890 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Przyłuski, R.; Rickman, H.; Wajer, P.; Wiśniowski, T.; Turrini, D.; Polychroni, D.; Danielski, C.; Kruijssen, J.M.D.; Longmore, S.; Chevance, M. Disruption of Planetary System Architectures by Stellar Flybys. Universe 2025, 11, 240. https://doi.org/10.3390/universe11080240
Przyłuski R, Rickman H, Wajer P, Wiśniowski T, Turrini D, Polychroni D, Danielski C, Kruijssen JMD, Longmore S, Chevance M. Disruption of Planetary System Architectures by Stellar Flybys. Universe. 2025; 11(8):240. https://doi.org/10.3390/universe11080240
Chicago/Turabian StylePrzyłuski, Robert, Hans Rickman, Paweł Wajer, Tomasz Wiśniowski, Diego Turrini, Danae Polychroni, Camilla Danielski, J. M. Diederik Kruijssen, Steven Longmore, and Mélanie Chevance. 2025. "Disruption of Planetary System Architectures by Stellar Flybys" Universe 11, no. 8: 240. https://doi.org/10.3390/universe11080240
APA StylePrzyłuski, R., Rickman, H., Wajer, P., Wiśniowski, T., Turrini, D., Polychroni, D., Danielski, C., Kruijssen, J. M. D., Longmore, S., & Chevance, M. (2025). Disruption of Planetary System Architectures by Stellar Flybys. Universe, 11(8), 240. https://doi.org/10.3390/universe11080240