Primordial Magnetogenesis from Killing Vector Fields
Abstract
1. Introduction
- Postulate 1:
- Every Killing vector field gives rise to a physical electromagnetic field whose field strength tensor is proportional to the covariant derivative of the Killing vector.
- Postulate 2:
- In a non-vacuum background, every Killing vector field gives rise to a physical electromagnetic current whose density is proportional to the contraction of the Killing vector with the Ricci tensor.
2. Background
2.1. Cosmic Magnetic Field
2.2. Rotation of Observable Matter
3. Killing Electromagnetic Field of Flat FLRW Spacetime
4. Killing Electromagnetic Field of Schwarzschild Spacetime
5. Discussion
5.1. Gauge Invariance
5.2. Plausibility
5.3. Falsifiability
5.4. Maxwell Tensor from Ricci Tensor
5.5. “Charge Without Charge”
5.6. Magnetogenesis from Killing Vectors
6. Future Work
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Killing Vectors and Maxwell’s Equations
1 | The assertion is predicated on the assumption that the flat FLRW spacetime emerged at the big bang. |
2 | |
3 | Also called the critical magnetic field strength in the literature, in SI units. |
4 | |
5 | Also called the comoving observer, a standard observer is actually a family of subobservers—one observer at each triple of comoving spatial coordinates—with the comoving spatial coordinates of each subobserver being independent of the “bookkeeper” coordinate t. |
6 | Strictly speaking, the curl of a 4-dimensional vector field is not a vector, but a bivector. However, both the electric field and , defined in (12), lie in the three-dimensional hypersurface , in the sense that the projection of (resp. ) to coincides with (resp. ). Therefore, with some abuse of notation, the 4-vector will be called a‘curl’, with the understanding that the zeroth component of will be ignored. |
7 | In accordance with the standard terminology, the symbol G has been used to denote both the gravitational constant as well as Gauss, the unit of magnetic field strength. The discerning reader will determine what the symbol stands for from the context. |
8 | Note that and depend on , although the dependence is not explicitly shown. |
9 | The terms of and higher need not be included in this expansion, since they also have the same form as the term and hence can be merged with the term, the effect of which would be to replace the in the term with some function , which can then be redefined as the new small parameter . |
10 | . |
11 | Taking the trace on both sides of (39) and noting that , one concludes that . |
12 | In four-dimensional spacetime, if the Einstein tensor vanishes, then so does the Ricci tensor . |
13 | The energy loss due to radiation from the accelerating electron is W/s and will be ignored. |
14 | For dynamic measurements, such as in LIGO, the strain sensitivity around 100 Hz is less than , which, for an arm length of 4 km, yields a displacement sensitivity of m. |
15 | . |
16 | Rainich conditions on the Ricci tensor are |
17 | Specifically, the Maxwell tensor (electromagnetic field strength tensor) can be written in terms of the Ricci tensor as follows: |
References
- Dolag, K.; Kachelriess, M.; Ostapchenko, S.; Tomàs, R. Lower limit on the strength and filling factor of extragalactic magnetic fields. Astrophys. J. Lett. 2011, 727, L4. [Google Scholar] [CrossRef]
- Kronberg, P.P. Extragalactic magnetic fields. Rep. Prog. Phys. 1994, 57, 325. [Google Scholar] [CrossRef]
- Essey, W.; Ando, S.; Kusenko, A. Determination of intergalactic magnetic fields from gamma ray data. Astropart. Phys. 2011, 35, 135. [Google Scholar] [CrossRef]
- Barrow, J.D.; Ferreira, P.G.; Silk, J. Constraints on a Primordial Magnetic Field. Phys. Rev. Lett. 1997, 78, 3610. [Google Scholar] [CrossRef]
- Grasso, D.; Rubenstein, H.R. Magnetic fields in the early Universe. Phys. Rep. 2001, 348, 163. [Google Scholar] [CrossRef]
- Gamow, G. The role of turbulence in the evolution of the universe. Phys. Rev. 1952, 86, 251. [Google Scholar] [CrossRef]
- Subramanian, K. The origin, evolution and signatures of primordial magnetic fields. Rep. Prog. Phys. 2016, 79, 076901. [Google Scholar] [CrossRef]
- Gamow, G. Rotating universe? Nature 1946, 158, 549. [Google Scholar] [CrossRef]
- Papapetrou, A. Champs gravitationelle stationaires a symetrie axiale. Ann. Inst. H. Poincare 1966, A4, 83. [Google Scholar]
- Wald, R.M. Black hole in a uniform magnetic field. Phys. Rev. D 1974, 10, 1680. [Google Scholar] [CrossRef]
- Ruffini, R.; Moradi, R.; Rueda, J.A.; Becerra, L.; Bianco, C.L.; Cherubini, C.; Filippi, S.; Chen, Y.C.; Karlica, M.; Sahakyan, N.; et al. On the GeV emission of the Type I BdHN GRB 130427A. Astrophys. J. 2019, 886, 82. [Google Scholar] [CrossRef]
- Ernst, F.J.; Wild, W.J. Kerr black holes in a magnetic universe. J. Math. Phys. 1976, 17, 182. [Google Scholar] [CrossRef]
- Maier, R. Particle dynamics on test papapetrou fields of vacuum spacetimes. Phys. Scr. 2024, 99, 035016. [Google Scholar] [CrossRef]
- Stuchlik, Z.; Kolos, M.; Kovar, J.; Slany, P.; Tursunov, A. Influence of cosmic repulsion and magnetic fields on accretion disks rotating around Kerr black holes. Universe 2020, 6, 26. [Google Scholar] [CrossRef]
- Shaymatov, S.; Patil, M.; Ahmedov, B.; Joshi, P.S. Destroying a near-extremal Kerr black hole with a charged particle: Can a test magnetic field serve as a cosmic censor? Phys. Rev. D 2015, 91, 064025. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. Roy. Astron. Soc. 1977, 179, 433. [Google Scholar] [CrossRef]
- Rainich, G.Y. Electricity in curved space-time. Trans. Am. Math. Soc. 1925, 27, 106. [Google Scholar] [CrossRef]
- Misner, C.W.; Wheeler, J.A. Classical physics as geometry. Annals Phys. 1957, 2, 525. [Google Scholar] [CrossRef]
- Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef]
- Vallee, J.P. Detecting the largest magnets: The universe and the clusters of galaxies. Astrophys. J. 1990, 360, 1. [Google Scholar] [CrossRef]
- Neronov, A.; Semikoz, D.; Kalashev, O. Limit on the intergalactic magnetic field from the ultrahigh-energy cosmic ray hotspot in the Perseus-Pisces region. Phys. Rev. D 2023, 108, 103008. [Google Scholar] [CrossRef]
- Neronov, A.; Vovk, I. Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science 2010, 328, 73. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R.D.; Bloom, E.D.; et al. The search for spatial extension in high-latitude sources detected by the Fermi large area telescope. Astrophys. J. Supp. Ser. 2018, 237, 32. [Google Scholar] [CrossRef]
- Tavecchio, F.; Ghisellini, G.; Foschini, L.; Bonnoli, G.; Ghirlanda, G.; Coppi, P. The intergalactic magnetic field constrained by Fermi/Large Area Telescope observations of the TeV blazar 1ES0229+200. Mon. Not. Roy. Astron. Soc. 2010, 406, L70. [Google Scholar] [CrossRef]
- Dermer, C.D.; Cavadini, M.; Razzaque, S.; Finke, J.D.; Chiang, J.; Lott, B. Time delay of cascade radiation for TeV blazars and the measurement of the intergalactic magnetic field. Astrophys. J. Lett. 2011, 733, L21. [Google Scholar] [CrossRef]
- Thorne, K.S. Primordial element formation, primordial magnetic fields, and the isotropy of the universe. Astrophys. J. 1967, 148, 51. [Google Scholar] [CrossRef]
- Harrison, E.R. Generation of magnetic fields in the radiation era. Mon. Not. Roy. Astron. Soc. 1970, 147, 279. [Google Scholar] [CrossRef]
- Rebhan, A. Large-scale rotational perturbations of a Friedmann universe with collisionless matter and primordial magnetic fields. Astrophys. J. 1992, 392, 385. [Google Scholar] [CrossRef]
- Matarrese, S.; Mollerach, S.; Notari, A.; Riotto, A. Large-scale magnetic fields from density perturbations. Phys. Rev. D 2005, 71, 043502. [Google Scholar] [CrossRef]
- Gopal, R.; Sethi, S. Generation of magnetic field in the pre-recombination era. Mon. Not. Roy. Astron. Soc. 2005, 363, 521. [Google Scholar] [CrossRef]
- Takahashi, K.; Ichiki, K.; Ohno, H.; Hanayama, H. Magnetic field generation from cosmological perturbations. Phys. Rev. Lett. 2005, 95, 121301. [Google Scholar] [CrossRef] [PubMed]
- Ichiki, K.; Takahashi, K.; Ohno, H.; Hanayama, H.; Sugiyama, N. Cosmological magnetic field: A fossil of density perturbations in the early universe. Science 2006, 311, 827. [Google Scholar] [CrossRef]
- Siegel, E.R.; Fry, J.N. Cosmological structure formation creates large-scale magnetic fields. Astrophys. J. 2006, 651, 627. [Google Scholar] [CrossRef]
- Vilenkin, A.; Leahy, D.E. Parity nonconservation and the origin of cosmic magnetic fields. Astrophys. J. 1982, 254, 77. [Google Scholar] [CrossRef]
- Brizard, A.J.; Murayama, H.; Wurtele, J.S. Magnetic field generation from self-consistent collective neutrino-plasma interactions. Phys. Rev. E 2000, 61, 4410. [Google Scholar] [CrossRef]
- Turner, M.S.; Widrow, L.M. Inflation-produced, large-scale magnetic fields. Phys. Rev. D 1988, 37, 2743. [Google Scholar] [CrossRef]
- Ratra, B. Cosmological “seed” magnetic field from inflation. Astrophys. J. Lett. 1992, 391, L1. [Google Scholar] [CrossRef]
- Dolgov, A.D. Breaking of conformal invariance and electromagnetic field generation in the Universe. Phys. Rev. D 1993, 48, 2499. [Google Scholar] [CrossRef]
- Martin, J.; Yokoyama, J. Generation of large scale magnetic fields in single-field inflation. J. Cosm. Astropart. Phys. 2008, 1, 025. [Google Scholar] [CrossRef]
- Fujita, T.; Mukohyama, S. Universal upper limit on inflation energy scale from cosmic magnetic field. J. Cosm. Astropart. Phys 2012, 10, 034. [Google Scholar] [CrossRef]
- Kanno, S.; Soda, J.; Watanabe, M.A. Cosmological magnetic fields from inflation and backreaction. J. Cosm. Astropart. Phys. 2009, 12, 009. [Google Scholar] [CrossRef]
- Demozzi, V.; Mukhanov, V.; Rubinstein, H. Magnetic fields from inflation? J. Cosm. Astropart. Phys. 2009, 08, 025. [Google Scholar] [CrossRef]
- Dolgov, A.; Silk, J. Electric charge asymmetry of the universe and magnetic field generation. Phys. Rev. D 1993, 47, 3144. [Google Scholar] [CrossRef]
- Lemoine, D.; Lemoine, M. Primordial magnetic fields in string cosmology. Phys. Rev. D 1995, 52, 1955. [Google Scholar] [CrossRef]
- Bassett, B.A.; Pollifrone, G.; Tsujikawa, S.; Viniegra, F. Preheating-cosmic magnetic dynamo? Phys. Rev. D 2001, 63, 103515. [Google Scholar] [CrossRef]
- Bamba, K.; Sasaki, M. Large-scale magnetic fields in the inflationary universe. J. Cosm. Astropart. Phys. 2007, 02, 030. [Google Scholar] [CrossRef]
- Gasperini, M.; Giovannini, M.; Veneziano, G. Primordial magnetic fields from string cosmology. Phys. Rev. Lett. 1995, 75, 3796. [Google Scholar] [CrossRef]
- Tasinato, G. A scenario for inflationary magnetogenesis without strong coupling problem. J. Cosm. Astropart. Phys. 2015, 3, 040. [Google Scholar] [CrossRef]
- Ferreira, R.J.Z.; Jain, R.K.; Sloth, M.S. Inflationary magnetogenesis without the strong coupling problem. J. Cosm. Astropart. Phys. 2013, 10, 04. [Google Scholar] [CrossRef]
- Campanelli, L. Lorentz-violating inflationary magnetogenesis. Eur. Phys. J. C 2015, 75, 278. [Google Scholar] [CrossRef]
- Atmjeet, K.; Seshadri, T.R.; Subramanian, K. Helical cosmological magnetic fields from extra-dimensions. Phys. Rev. D 2015, 91, 103006. [Google Scholar] [CrossRef]
- Campanelli, L. Origin of Cosmic Magnetic Fields. Phys. Rev. Lett. 2013, 111, 061301. [Google Scholar] [CrossRef] [PubMed]
- Durrer, R.; Marozzi, G.; Rinaldi, M. Comment on “Origin of Cosmic Magnetic Fields”. Phys. Rev. Lett. 2013, 111, 22901. [Google Scholar] [CrossRef] [PubMed]
- Campanelli, L. Campanelli Replies:. Phys. Rev. Lett. 2013, 111, 22902. [Google Scholar] [CrossRef]
- Durrer, R.; Hollenstein, L.; Jain, R.K. Can slow roll inflation induce relevant helical magnetic fields? J. Cosm. Astropart. Phys. 2011, 3, 037. [Google Scholar] [CrossRef]
- Brandenburg, A.; Enqvist, K.; Olesen, P. Large-scale magnetic fields from hydromagnetic turbulence in the very early universe. Phys. Rev. D 1996, 54, 1291. [Google Scholar] [CrossRef]
- Jain, R.K.; Durrer, R.; Hollenstein, L. Generation of helical magnetic fields from inflation. J. Phys. Conf. Ser. 2014, 484, 012062. [Google Scholar] [CrossRef]
- Durrer, R.; Neronov, A. Cosmological magnetic fields: Their generation, evolution and observation. Astron. Astrophys. Rev. 2013, 21, 62. [Google Scholar] [CrossRef]
- Baym, G.; Bödeker, D.; McLerran, L. Magnetic fields produced by phase transition bubbles in the electroweak phase transition. Phys. Rev. D 1996, 53, 662. [Google Scholar] [CrossRef]
- Brandenburg, A.; Subramanian, K. Astrophysical magnetic fields and nonlinear dynamo theory. Phys. Rep. 2005, 417, 1. [Google Scholar] [CrossRef]
- Vachaspati, T. Magnetic fields from cosmological phase transitions. Phys. Lett. B 1991, 265, 258. [Google Scholar] [CrossRef]
- Davidson, S. Ingredients and equations for making a magnetic field in the early universe. Phys. Lett. B 1996, 380, 253. [Google Scholar] [CrossRef]
- Grasso, D.; Riotto, A. On the nature of the magnetic fields generated during the electroweak phase transition. Phys. Lett. B 1998, 418, 258. [Google Scholar] [CrossRef]
- Diaz-Gil, A.; Garcia-Bellido, J.; Garcia-Perez, M.; Gonzalez-Arroyo, A. Magnetic field production during preheating at the electroweak scale. Phys. Rev. Lett. 2008, 100, 241301. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Gil, A.; Garcia-Bellido, J.; Garcia-Perez, M.; Gonzalez-Arroyo, A. Primordial magnetic fields from preheating at the electroweak scale. J. High Energy Phys. 2008, 07, 043. [Google Scholar] [CrossRef]
- Copi, C.J.; Ferrer, F.; Vachaspati, T.; Achucarro, A. Helical magnetic fields from sphaleron decay and baryogenesis. Phys. Rev. Lett. 2008, 101, 171302. [Google Scholar] [CrossRef]
- Stevens, T.; Johnson, M.B. Magnetic seed field generation from electroweak bubble collisions with bubble walls of finite thickness. Phys. Rev. D 2009, 80, 083011. [Google Scholar] [CrossRef]
- Stevens, T.; Johnson, M.B.; Kisslinger, L.S.; Henley, E.M. Non-Abelian Higgs model of magnetic field generation during a cosmological first-order electroweak phase transition. Phys. Rev. D 2012, 85, 063003. [Google Scholar] [CrossRef]
- Vachaspati, T. Estimate of the primordial magnetic field helicity. Phys. Rev. Lett. 2001, 87, 251302. [Google Scholar] [CrossRef]
- Quashnock, J.M.; Loeb, A.; Spergel, D.N. Magnetic field generation during the cosmological QCD phase transition. Astrophys. J. Lett. 1989, 344, L49. [Google Scholar] [CrossRef]
- Cheng, B.; Olinto, A.V. Primordial magnetic fields generated in the quark-hadron transition. Phys. Rev. D 1994, 50, 2421. [Google Scholar] [CrossRef] [PubMed]
- Boyarsky, A.; Ruchayskiy, O.; Shaposhnikov, M. Long-range magnetic fields in the ground state of the Standard Model plasma. Phys. Rev. Lett. 2012, 109, 111602. [Google Scholar] [CrossRef] [PubMed]
- Boyarsky, A.; Frohlich, J.; Ruchayskiy, O. Self-consistent evolution of magnetic fields and chiral asymmetry in the early universe. Phys. Rev. Lett. 2012, 108, 031301. [Google Scholar] [CrossRef]
- Joyce, M.; Shaposhnikov, M. Primordial magnetic fields, right electrons, and the abelian anomaly. Phys. Rev. Lett. 1997, 79, 1193. [Google Scholar] [CrossRef]
- Field, G.B.; Carroll, S.M. Cosmological magnetic fields from primordial helicity. Phys. Rev. D 2000, 62, 103008. [Google Scholar] [CrossRef]
- Semikoz, V.B.; Sokoloff, D. Magnetic helicity and cosmological magnetic field. Astron. Astrophys. 2005, 433, L53. [Google Scholar] [CrossRef]
- Semikoz, V.B.; Sokoloff, D.D.; Valle, J.W.F. Lepton asymmetries and primordial hypermagnetic helicity evolution. J. Cosm. Astropart. Phys. 2012, 6, 08. [Google Scholar] [CrossRef]
- Rees, M.J. The origin and cosmogonic implications of seed magnetic fields. Quar. J. Roy. Astron. Soc. 1987, 28, 197. [Google Scholar]
- Daly, R.A.; Loeb, A. A possible origin of galactic magnetic fields. Astrophys. J. 1990, 364, 451. [Google Scholar] [CrossRef]
- Ensslin, T.A.; Biermann, P.L.; Kronberg, P.P.; Wu, X.-P. Cosmic-ray protons and magnetic fields in clusters of galaxies and their cosmological consequences. Astrophys. J. 1997, 477, 560. [Google Scholar] [CrossRef]
- Furlanetto, S.R.; Loeb, A. Intergalactic magnetic fields from quasar outflows. Astrophys. J. 2001, 556, 619. [Google Scholar] [CrossRef]
- Kandus, A.; Kunze, K.E.; Tsagas, C.G. Primordial magnetogenesis. Phys. Rep. 2011, 505, 1. [Google Scholar] [CrossRef]
- Vachaspati, T. Progress on cosmological magnetic fields. Rep. Prog. Phys. 2021, 84, 074901. [Google Scholar] [CrossRef] [PubMed]
- Widrow, L.M. Origin of galactic and extragalactic magnetic fields. Rev. Mod. Phys. 2002, 74, 775. [Google Scholar] [CrossRef]
- Vallee, J.P. Cosmic magnetic fields - as observed in the universe, in galactic dynamos, and in the Milky Way. New Astron. Rev. 2004, 48, 763. [Google Scholar] [CrossRef]
- Gödel, K. An example of a new type of cosmological solutions of einstein’s field equations of gravitation. Rev. Mod. Phys. 1949, 21, 447. [Google Scholar] [CrossRef]
- Gödel, K. Lecture on rotating universes. In Kurt Gödel Collected Works; Feferman, S., Dawson, J.W., Jr., Goldfarb, W., Parsons, C., Solovay, R.M., Eds.; Oxford University Press: Oxford, UK, 1995; Volume III, p. 269. [Google Scholar]
- Li, L. Effect of the global rotation of the universe on the formation of galaxies. Gen. Rel. Grav. 1998, 30, 497. [Google Scholar] [CrossRef]
- Brosche, P. Uber das masse-drehimpuls-diagramm von spiralnebeln und anderen objekten. Z. Astrophys. 1963, 57, 143. [Google Scholar]
- Ozernoy, L.M. The correlation “angular momentum - mass” for spiral galaxies. Sov. Astron. Tsirk. 1967, 407, 1. [Google Scholar]
- Burbridge, E.M.; Burbridge, G.R. The masses of galaxies. In Galaxies and the Universe; Sandage, A., Sandage, M., Kristian, J., Eds.; University of Chicago Press: Chicago, IL, USA, 1975; p. 81. [Google Scholar]
- Trimble, V. New and old ideas on the universal J(M) relationship. In New Ideas in Astronomy; Bertola, F., Sulentic, J.W., Madore, B.E., Eds.; Cambridge University Press: Cambridge, UK, 1988; p. 239. [Google Scholar]
- Hawking, S.W. On the rotation of the universe. Mon. Not. Roy. Astron. Soc. 1969, 142, 129. [Google Scholar] [CrossRef]
- Collins, C.B.; Hawking, S.W. The rotation and distortion of the universe. Mon. Not. Roy. Astron. Soc. 1973, 162, 307. [Google Scholar] [CrossRef]
- Ellis, G.F.R. Republication of: Relativistic cosmology. Gen. Rel. Grav. 2009, 41, 581. [Google Scholar] [CrossRef]
- Barrow, J.D.; Juszkiewicz, R.; Sonoda, D.H. Universal rotation - How large can it be? Mon. Not. Roy. Astron. Soc. 1985, 213, 917. [Google Scholar] [CrossRef]
- Jaffe, T.R.; Banday, A.J.; Eriksen, H.K.; Gorski, K.M.; Hansen, F.K. Evidence of vorticity and shear at large angular scales in the WMAP data: A violation of cosmological isotropy? Astrophys. J. 2005, 629, L1. [Google Scholar] [CrossRef]
- Jaffe, T.R.; Banday, A.J.; Eriksen, H.K.; Gorski, K.M.; Hansen, F.K. Fast and efficient template fitting of deterministic anisotropic cosmological models applied to WMAP data. Astrophys. J. 2006, 643, 616. [Google Scholar] [CrossRef]
- Ellis, G.F.R. The Bianchi models: Then and now. Gen. Rel. Grav. 2006, 38, 1003. [Google Scholar] [CrossRef]
- Su, S.C.; Chu, M.C. Is the universe rotating? Astrophys. J. 2009, 703, 354. [Google Scholar] [CrossRef]
- Saadeh, D.; Feeney, S.M.; Pontzen, A.; Peiris, H.V.; McEwen, J.D. How Isotropic is the Universe? Phys. Rev. Lett. 2016, 117, 131302. [Google Scholar] [CrossRef]
- Parnovsky, S.L.; Karachentsev, I.D.; Karachentseva, V.E. Global anisotropy in galaxy orientations. Mon. Not. Roy. Astron. Soc. 1994, 268, 665. [Google Scholar] [CrossRef]
- Flin, P. Global or local anisotropy in galaxy orientation? Comments Astrophys. 1995, 18, 81. [Google Scholar]
- Godlowski, W.; Panko, E.; Flin, P. The environmental effects in the origin of angular momenta of galaxies. Acta Phys. Pol. B 2011, 42, 2313. [Google Scholar] [CrossRef]
- Hoyle, F. The origin of the rotations of the galaxies. In Problems of Cosmical Aerodynamics; Burgers, J.M., van de Hulst, H.C., Eds.; Central Air Documents Office: Dayton, OH, USA, 1951; p. 195. [Google Scholar]
- Peebles, P.J.E. Origin of the angular momentum of galaxies. Astrophys. J. 1969, 155, 393. [Google Scholar] [CrossRef]
- Von Weizsacker, C.F. The evolution of galaxies and stars. Astrophys. J. 1951, 114, 165. [Google Scholar] [CrossRef]
- Chernin, A.D. Turbulence in an isotropic universe. JETP Lett. 1970, 11, 210. [Google Scholar]
- Doroshkevich, A.G. Development of rotation in galaxies in the nonlinear theory of gravitational instability. Astronom. Zh. 1972, 49, 1221. [Google Scholar]
- Tsagas, C. Electromagnetic fields in curved spacetimes. Class. Quant. Grav. 2005, 22, 393. [Google Scholar] [CrossRef]
- Barrow, J.D.B.; Maartens, R.; Tsagas, C. Cosmology with inhomogeneous magnetic fields. Phys. Rep. 2007, 449, 131. [Google Scholar] [CrossRef]
- Pomakov, V.P.; O’Sullivan, S.P.; Brüggen, M.; Vazza, F.; Carretti, E.; Heald, G.H.; Horellou, C.; Shimwell, T.; Shulevski, A.; Vernstrom, T. The redshift evolution of extragalactic magnetic fields. Mon. Not. Roy. Astron. Soc. 2022, 515, 256. [Google Scholar] [CrossRef]
- Subramanian, K. Magnetic fields in the early Universe. Astron. Nachr. 2010, 331, 110. [Google Scholar] [CrossRef]
- Camarena, D.; Marra, V. Local determination of the Hubble constant and the deceleration parameter. Phys. Rev. Res. 2020, 2, 013028. [Google Scholar] [CrossRef]
- Penrose, R. “Golden Oldie”: Gravitational collapse: The role of general relativity. Gen. Rel. Grav. 2002, 34, 1141. [Google Scholar] [CrossRef]
- Martynov, D.V.; Hall, E.D.; Abbott, B.P.; Abbott, R.; Abbott, T.D.; Adams, C.; Adhikari, R.X.; Anderson, R.A.; Anderson, S.B.; Arai, K.; et al. Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy. Phys. Rev. D 2016, 93, 112004. [Google Scholar] [CrossRef]
- Lattimer, J.M. Introduction to neutron stars. AIP Conf. Proc. 2015, 1645, 61. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prabhu, N. Primordial Magnetogenesis from Killing Vector Fields. Universe 2025, 11, 205. https://doi.org/10.3390/universe11070205
Prabhu N. Primordial Magnetogenesis from Killing Vector Fields. Universe. 2025; 11(7):205. https://doi.org/10.3390/universe11070205
Chicago/Turabian StylePrabhu, Nagabhushana. 2025. "Primordial Magnetogenesis from Killing Vector Fields" Universe 11, no. 7: 205. https://doi.org/10.3390/universe11070205
APA StylePrabhu, N. (2025). Primordial Magnetogenesis from Killing Vector Fields. Universe, 11(7), 205. https://doi.org/10.3390/universe11070205