Gravitational Redshift as a Measure of Rapid Mass Increase
Abstract
1. Introduction
1.1. Historical Review
1.2. Establishing a Frame Invariant Mass for a Rotating System
1.3. Applying Einstein’s Rotating Clock Frames to Two Test Masses
2. GPDM in the Schwarzschild Metric
2.1. The Classical Approximation
2.2. Linking Key Variables in the Schwarzschild Metric to GPDM
3. Applications
3.1. First-Order Effect on Neutron Star Sizes
3.2. A Terrestrial Application
3.3. Implications for Gravitational Lensing
4. Recent James Webb Findings and Correlations with the Presented Theory
4.1. Unexpected Massive Galaxies
4.2. High Redshift Discoveries Suggests Early Galaxy Formation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Einstein’s conceptual approach is explained in a letter to Gustav Mie in 1917, Einstein Archive, reel 17-221 and in the biography by Pais [3]. |
2 | Note that the weak equivalence principle refers to the equality between inertial and gravitational mass, which has been verified with a very high precision of [10]. |
3 | We expect a full GR analysis, which includes second-order effects to provide a greater degree of bending. |
References
- Costantin, L.; Pérez-González, P.G.; Guo, Y.; Buttitta, C.; Jogee, S.; Bagley, M.B.; Barro, G.; Kartaltepe, J.S.; Koekemoer, A.M.; Cabello, C.; et al. A Milky Way-like barred spiral galaxy at a redshift of 3. Nature 2023, 623, 499–501. [Google Scholar] [CrossRef] [PubMed]
- Einstein, A. The general theory of relativity. In The Meaning of Relativity; Springer: Berlin/Heidelberg, Germany, 1922; pp. 54–75. [Google Scholar]
- Pais, A. Subtle is the Lord: The Science and the Life of Albert Einstein; Oxford University Press: New York, NY, USA, 1982. [Google Scholar]
- Taylor, E.F.; Wheeler, J.A. Spacetime Physics; Macmillan: New York, NY, USA, 1992. [Google Scholar]
- Einstein, A. Gibt es eine Gravitationswirkung, die der electrodynamischen Inductionswirkung analog ist? (Is there a gravitational effect which is analogous to electrodynamic induction?). Vierteljahrsschr. Gerichtl. Med. Offentliches Sanit. 1912, 44, 37–40. [Google Scholar]
- Einstein, A. The Special and General Theory; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie [AdP 49, 769 (1916)]. Ann. Der Phys. 2005, 14, 517–571. [Google Scholar] [CrossRef]
- Einstein, A. The Meaning of Relativity: Four Lectures Delivered at Princeton University, May, 1921; Princeton University Press: Princeton, NJ, USA, 1922. [Google Scholar]
- Einstein, A. Zur Theorie des statischen Gravitationsfeldes. Ann. Phys. 1912, 343, 443–458. [Google Scholar] [CrossRef]
- Touboul, P.; Métris, G.; Rodrigues, M.; Bergé, J.; Robert, A.; Baghi, Q.; André, Y.; Bedouet, J.; Boulanger, D.; Bremer, S.; et al. MICROSCOPE Mission: Final results of the test of the equivalence principle. Phys. Rev. Lett. 2022, 129, 121102. [Google Scholar] [CrossRef]
- Norton, J. What was Einstein’s principle of equivalence? Stud. Hist. Philos. Sci. Part 1985, 16, 203–246. [Google Scholar] [CrossRef]
- Delva, P.; Puchades, N.; Schönemann, E.; Dilssner, F.; Courde, C.; Bertone, S.; Gonzalez, F.; Hees, A.; Le Poncin-Lafitte, C.; Meynadier, F.; et al. Gravitational redshift test using eccentric Galileo satellites. Phys. Rev. Lett. 2018, 121, 231101. [Google Scholar] [CrossRef]
- Herrmann, S.; Finke, F.; Lülf, M.; Kichakova, O.; Puetzfeld, D.; Knickmann, D.; List, M.; Rievers, B.; Giorgi, G.; Günther, C.; et al. Test of the gravitational redshift with Galileo satellites in an eccentric orbit. Phys. Rev. Lett. 2018, 121, 231102. [Google Scholar] [CrossRef]
- Takamoto, M.; Ushijima, I.; Ohmae, N.; Yahagi, T.; Kokado, K.; Shinkai, H.; Katori, H. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photonics 2020, 14, 411–415. [Google Scholar] [CrossRef]
- Gullstrand, A. Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie. Ark. Mat. Astron. Fys. 1922, 16, 15. [Google Scholar]
- Painlevé, P. Le Mecanique Classique et la theorie de la relativite. L’Astronomie 1922, 36, 6–9. [Google Scholar]
- Lemaître, G. L’Univers en Expansion. Annales Soc. Sci. Bruxelles A 1933, 53A, 51–83. [Google Scholar]
- Taylor, E.F.; Wheeler, J.A. Exploring Black Holes: Introduction to General Relativity; Addison Wesley Longman: New York, NY, USA, 2000. [Google Scholar]
- Güver, T.; Wroblewski, P.; Camarota, L.; Özel, F. The mass and radius of the neutron star in 4U 1820-30. Astrophys. J. 2010, 719, 1807. [Google Scholar] [CrossRef]
- Lee, J.; Adelberger, E.; Cook, T.; Fleischer, S.; Heckel, B. New test of the gravitational 1/r2 law at separations down to 52 μm. Phys. Rev. Lett. 2020, 124, 101101. [Google Scholar] [CrossRef] [PubMed]
- Ade, P.A.; Aghanim, N.; Alves, M.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; et al. Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 2014, 571, A1. [Google Scholar]
- Labbé, I.; van Dokkum, P.; Nelson, E.; Bezanson, R.; Suess, K.A.; Leja, J.; Brammer, G.; Whitaker, K.; Mathews, E.; Stefanon, M.; et al. A population of red candidate massive galaxies ∼600 Myr after the Big Bang. Nature 2023, 616, 266–269. [Google Scholar] [CrossRef]
- Donnan, C.; McLeod, D.; Dunlop, J.; McLure, R.; Carnall, A.; Begley, R.; Cullen, F.; Hamadouche, M.; Bowler, R.; Magee, D.; et al. The evolution of the galaxy UV luminosity function at redshifts z ≃ 8–15 from deep JWST and ground-based near-infrared imaging. Mon. Not. R. Astron. Soc. 2023, 518, 6011–6040. [Google Scholar] [CrossRef]
- Kakimoto, T.; Tanaka, M.; Onodera, M.; Shimakawa, R.; Wu, P.F.; Gould, K.M.; Ito, K.; Jin, S.; Kubo, M.; Suzuki, T.L.; et al. A massive quiescent galaxy in a group environment at z = 4.53. Astrophys. J. 2024, 963, 49. [Google Scholar] [CrossRef]
- McGaugh, S.S.; Lelli, F.; Schombert, J.M. Radial acceleration relation in rotationally supported galaxies. Phys. Rev. Lett. 2016, 117, 201101. [Google Scholar] [CrossRef]
- Tully, R.B.; Fisher, J.R. A new method of determining distances to galaxies. Astronomy and Astrophysics 1977, 54, 661–673. [Google Scholar]
- Bond, J.R.; Kofman, L.; Pogosyan, D. How filaments of galaxies are woven into the cosmic web. Nature 1996, 380, 603–606. [Google Scholar] [CrossRef]
- Plionis, M.; López-Cruz, O.; Hughes, D. A Pan-chromatic View of Clusters of Galaxies and the Large-Scale Structure; Springer: Dordrecht, The Netherlands, 2008; Volume 740. [Google Scholar] [CrossRef]
- Argüelles, C.R.; Díaz, M.I.; Krut, A.; Yunis, R. On the formation and stability of fermionic dark matter haloes in a cosmological framework. Mon. Not. R. Astron. Soc. 2020, 502, 4227–4246. [Google Scholar] [CrossRef]
- Clowe, D.; Gonzalez, A.; Markevitch, M. Weak-lensing mass reconstruction of the interacting cluster 1e 0657–558: Direct evidence for the existence of dark matter. Astrophys. J. 2004, 604, 596. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berkahn, D.L.; Chappell, J.M.; Abbott, D. Gravitational Redshift as a Measure of Rapid Mass Increase. Universe 2025, 11, 190. https://doi.org/10.3390/universe11060190
Berkahn DL, Chappell JM, Abbott D. Gravitational Redshift as a Measure of Rapid Mass Increase. Universe. 2025; 11(6):190. https://doi.org/10.3390/universe11060190
Chicago/Turabian StyleBerkahn, David L., James M. Chappell, and Derek Abbott. 2025. "Gravitational Redshift as a Measure of Rapid Mass Increase" Universe 11, no. 6: 190. https://doi.org/10.3390/universe11060190
APA StyleBerkahn, D. L., Chappell, J. M., & Abbott, D. (2025). Gravitational Redshift as a Measure of Rapid Mass Increase. Universe, 11(6), 190. https://doi.org/10.3390/universe11060190