Editorial: Modified Theories of Gravity and Cosmological Applications—Topical Collection
Author Contributions
Conflicts of Interest
References
- Abdalla, E.; Franco Abellán, G.; Aboubrahim, A.; Agnello, A.; Akarsu, O.; Akrami, Y.; Alestas, G.; Aloni, D.; Amendola, L.; Anchordoqui, L.A.; et al. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. J. High Energy Astrophys. 2022, 34, 49–211. [Google Scholar] [CrossRef]
- Perivolaropoulos, L.; Skara, F. Challenges for ΛCDM: An update. New Astron. Rev. 2022, 95, 101659. [Google Scholar] [CrossRef]
- Saridakis, E.N.; et al.; [CANTATA] Modified Gravity and Cosmology. An Update by the CANTATA Network; Springer: Cham, Switzerland, 2021; ISBN 978-3-030-83714-3/978-3-030-83717-4/978-3-030-83715-0. [Google Scholar] [CrossRef]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B 1980, 91, 99. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Relativ. 2010, 13, 3. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Capozziello, S. Curvature quintessence. Int. J. Mod. Phys. D 2002, 11, 483–492. [Google Scholar] [CrossRef]
- Cai, Y.F.; Capozziello, S.; De Laurentis, M.; Saridakis, E.N. f(T) teleparallel gravity and cosmology. Rep. Prog. Phys. 2016, 79, 106901. [Google Scholar] [CrossRef]
- Linder, E.V. Einstein’s Other Gravity and the Acceleration of the Universe. Phys. Rev. D 2010, 81, 127301, Erratum in Phys. Rev. D 2010, 82, 109902. [Google Scholar] [CrossRef]
- Chen, S.H.; Dent, J.B.; Dutta, S.; Saridakis, E.N. Cosmological perturbations in f(T) gravity. Phys. Rev. D 2011, 83, 023508. [Google Scholar] [CrossRef]
- Wu, P.; Yu, H.W. Observational constraints on f(T) theory. Phys. Lett. B 2010, 693, 415. [Google Scholar] [CrossRef]
- Cai, Y.-F.; Chen, S.-H.; Dent, J.B.; Dutta, S.; Saridakis, E.N. Matter Bounce Cosmology with the f(T) Gravity. Class. Quant. Grav. 2011, 28, 2150011. [Google Scholar] [CrossRef]
- Li, M.; Miao, R.X.; Miao, Y.G. Degrees of freedom of f(T) gravity. J. High Energy Phys. 2011, 1107, 108. [Google Scholar] [CrossRef]
- Bamba, K.; Myrzakulov, R.; Nojiri, S.; Odintsov, S.D. Reconstruction of f(T) gravity: Rip cosmology, finite-time future singularities and thermodynamics. Phys. Rev. D 2012, 85, 104036. [Google Scholar] [CrossRef]
- Wu, Y.P.; Geng, C.Q. Primordial Fluctuations within Teleparallelism. Phys. Rev. D 2012, 86, 104058. [Google Scholar] [CrossRef]
- Myrzakulov, R. Accelerating universe from F(T) gravity. Eur. Phys. J. C 2011, 71, 1752. [Google Scholar] [CrossRef]
- Otalora, G. Scaling attractors in interacting teleparallel dark energy. J. Cosmol. Astropart. Phys. 2013, 1307, 044. [Google Scholar] [CrossRef]
- Bahamonde, S.; Böhmer, C.G.; Wright, M. Modified teleparallel theories of gravity. Phys. Rev. D 2015, 92, 104042. [Google Scholar] [CrossRef]
- Farrugia, G.; Said, J.L. Stability of the flat FLRW metric in f(T) gravity. Phys. Rev. D 2016, 94, 124054. [Google Scholar] [CrossRef]
- Awad, A.M.; Capozziello, S.; Nashed, G.G.L. D-dimensional charged Anti-de-Sitter black holes in f(T) gravity. J. High Energy Phys. 2017, 1707, 136. [Google Scholar] [CrossRef]
- Hohmann, M.; Jarv, L.; Ualikhanova, U. Dynamical systems approach and generic properties of f(T) cosmology. Phys. Rev. D 2017, 96, 043508. [Google Scholar] [CrossRef]
- Bahamonde, S.; Böhmer, C.G.; Kršxsxák, M.M. New classes of modified teleparallel gravity models. Phys. Lett. B 2017, 775, 37. [Google Scholar] [CrossRef]
- Awad, A.; El Hanafy, W.; Nashed, G.G.L.; Saridakis, E.N. Phase Portraits of general f(T) Cosmology. J. Cosmol. Astropart. Phys. 2018, 1802, 052. [Google Scholar] [CrossRef]
- Hohmann, M.; Järv, L.; Ualikhanova, U. Covariant formulation of scalar-torsion gravity. Phys. Rev. D 2018, 97, 104011. [Google Scholar] [CrossRef]
- Abedi, H.; Capozziello, S.; D’Agostino, R.; Luongo, O. Effective gravitational coupling in modified teleparallel theories. Phys. Rev. D 2018, 97, 084008. [Google Scholar] [CrossRef]
- Bahamonde, S.; Capozziello, S. Noether Symmetry Approach in f(T,B) teleparallel cosmology. Eur. Phys. J. C 2017, 77, 107. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Heisenberg, L.; Koivisto, T. Coincident General Relativity. Phys. Rev. D 2018, 98, 044048. [Google Scholar] [CrossRef]
- Heisenberg, L. Review on f(Q) gravity. Phys. Rep. 2024, 1066, 1–78. [Google Scholar] [CrossRef]
- Capozziello, S.; Shokri, M. Slow-roll inflation in f(Q) non-metric gravity. Phys. Dark Univ. 2022, 37, 101113. [Google Scholar] [CrossRef]
- Capozziello, S.; D’Agostino, R. Model-independent reconstruction of f(Q) non-metric gravity. Phys. Lett. B 2022, 832, 137229. [Google Scholar] [CrossRef]
- Gadbail, G.N.; Mandal, S.; Sahoo, P.K. Reconstruction of ΛCDM universe in f(Q) gravity. Phys. Lett. B 2022, 835, 137509. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, X.; Cai, Y.F.; Luo, W.; Saridakis, E.N. Observational Test of f(Q) Gravity with Weak Gravitational Lensing. Astrophys. J. 2024, 974, 7. [Google Scholar] [CrossRef]
- Hu, Y.M.; Li, B.C.; Yu, Y.; Kršxsxák, M.; Saridakis, E.N.; Cai, Y.F. Lowering the strong coupling mode of modified teleparallel gravity theories. J. Cosmol. Astropart. Phys. 2025, 2025, 88. [Google Scholar] [CrossRef]
- De, A.; Loo, T.H.; Saridakis, E.N. Non-metricity with boundary terms: f(Q,C) gravity and cosmology. J. Cosmol. Astropart. Phys. 2024, 2024, 50. [Google Scholar] [CrossRef]
- Kobayashi, T. Horndeski theory and beyond: A review. Rep. Prog. Phys. 2019, 82, 086901. [Google Scholar] [CrossRef]
- Maartens, R.; Koyama, K. Brane-World Gravity. Living Rev. Relativ. 2010, 13, 5. [Google Scholar] [CrossRef]
- Stavrinos, P.C.; Vacaru, S.I. Cyclic and Ekpyrotic Universes in Modified Finsler Osculating Gravity on Tangent Lorentz Bundles. Class. Quant. Grav. 2013, 30, 055012. [Google Scholar] [CrossRef]
- Basilakos, S.; Kouretsis, A.P.; Saridakis, E.N.; Stavrinos, P. Resembling dark energy and modified gravity with Finsler-Randers cosmology. Phys. Rev. D 2013, 88, 123510. [Google Scholar] [CrossRef]
- Kapsabelis, E.; Triantafyllopoulos, A.; Basilakos, S.; Stavrinos, P.G. Applications of the Schwarzschild–Finsler–Randers model. Eur. Phys. J. C 2021, 81, 990. [Google Scholar] [CrossRef]
- Hohmann, M.; Pfeifer, C. Geodesics and the magnitude-redshift relation on cosmologically symmetric Finsler spacetimes. Phys. Rev. D 2017, 95, 104021. [Google Scholar] [CrossRef]
- Hohmann, M.; Pfeifer, C.; Voicu, N. Finsler gravity action from variational completion. Phys. Rev. D 2019, 100, 064035. [Google Scholar] [CrossRef]
- Pfeifer, C. Finsler spacetime geometry in Physics. arXiv 2019, arXiv:1903.10185. [Google Scholar] [CrossRef]
- Bogoslovsky, G.Y.; Goenner, H.F. Finslerian spaces possessing local relativistic symmetry. Gen. Rel. Grav. 1999, 31, 1565. [Google Scholar] [CrossRef]
- Chang, Z.; Li, X. Lorentz invariance violation and symmetry in Randers-Finsler spaces. Phys. Lett. B 2008, 663, 103. [Google Scholar] [CrossRef]
- Vacaru, S.I. Principles of Einstein-Finsler Gravity and Perspectives in Modern Cosmology. Int. J. Mod. Phys. D 2012, 21, 1250072. [Google Scholar] [CrossRef]
- Kostelecky, V.A.; Mewes, M. Astrophysical Tests of Lorentz and CPT Violation with Photons. Astrophys. J. 2008, 689, L1. [Google Scholar] [CrossRef]
- Kostelecky, A. Riemann-Finsler geometry and Lorentz-violating kinematics. Phys. Lett. B 2011, 701, 137. [Google Scholar] [CrossRef]
- Alan Kostelecky, V.; Russell, N.; Tso, R. Bipartite Riemann–Finsler geometry and Lorentz violation. Phys. Lett. B 2012, 716, 470. [Google Scholar] [CrossRef]
- Aluri, P.K.; Cea, P.; Chingangbam, P.; Chu, M.C.; Clowes, R.G.; Hutsemékers, D.; Kochappan, J.P.; Lopez, A.M.; Liu, L.; Martens, N.C.M. Is the observable Universe consistent with the cosmological principle? Class. Quant. Grav. 2023, 40, 094001. [Google Scholar] [CrossRef]
- Kapsabelis, E.; Kevrekidis, P.G.; Stavrinos, P.G.; Triantafyllopoulos, A. Schwarzschild–Finsler–Randers spacetime: Geodesics, dynamical analysis and deflection angle. Eur. Phys. J. C 2022, 82, 1098. [Google Scholar] [CrossRef]
- Cipriano, R.A.C.; Ganiyeva, N.; Harko, T.; Lobo, F.S.N.; Pinto, M.A.S.; Rosa, J.L. Energy-Momentum Squared Gravity: A Brief Overview. Universe 2024, 10, 339. [Google Scholar] [CrossRef]
- Agashe, A.; Modumudi, S.M. On the Effects of Non-Metricity in an Averaged Universe. Universe 2024, 10, 261. [Google Scholar] [CrossRef]
- Singh, J.K.; Singh, P.; Saridakis, E.N.; Myrzakul, S.; Balhara, H. New Parametrization of the Dark-Energy Equation of State with a Single Parameter. Universe 2024, 10, 246. [Google Scholar] [CrossRef]
- Wojnar, A.; Gomes, D.A. Bose and Fermi Gases in Metric-Affine Gravity and Linear Generalized Uncertainty Principle. Universe 2024, 10, 217. [Google Scholar] [CrossRef]
- Saha, D.; Chakrabortty, M.; Sanyal, A.K. Reconstructing Modified and Alternative Theories of Gravity. Universe 2024, 10, 44. [Google Scholar] [CrossRef]
- Escamilla-Rivera, C.; de Albornoz-Caratozzolo, J.M.; Nájera, S. Fab-Four Cosmography to Tackle the Hubble Tension. Universe 2023, 9, 311. [Google Scholar] [CrossRef]
- Frolovsky, D.; Ketov, S.V. Production of Primordial Black Holes in Improved E-Models of Inflation. Universe 2023, 9, 294. [Google Scholar] [CrossRef]
- Varieschi, G.U. Newtonian Fractional-Dimension Gravity and Galaxies without Dark Matter. Universe 2023, 9, 246. [Google Scholar] [CrossRef]
- Voicu, N.; Friedl-Szász, A.; Popovici-Popescu, E.; Pfeifer, C. The Finsler Spacetime Condition for (α,β)-Metrics and Their Isometries. Universe 2023, 9, 198. [Google Scholar] [CrossRef]
- Czuchry, E. Resolution of Cosmological Singularity in Hořava–Lifshitz Cosmology. Universe 2023, 9, 160. [Google Scholar] [CrossRef]
- Shen, B.; Yu, M. Geometric Outlines of the Gravitational Lensing and Its Astronomic Applications. Universe 2023, 9, 153. [Google Scholar] [CrossRef]
- Castro Perelman, C. On Born’s Reciprocal Relativity, Algebraic Extensions of the Yang and Quaplectic Algebra, and Noncommutative Curved Phase Spaces. Universe 2023, 9, 144. [Google Scholar] [CrossRef]
- Saha, S.; Chattopadhyay, S. Realization of Bounce in a Modified Gravity Framework and Information Theoretic Approach to the Bouncing Point. Universe 2023, 9, 136. [Google Scholar] [CrossRef]
- Golovnev, A. On the Role of Constraints and Degrees of Freedom in the Hamiltonian Formalism. Universe 2023, 9, 101. [Google Scholar] [CrossRef]
- Solanki, R.; Arora, S.; Sahoo, P.K.; Moraes, P.H.R.S. Bulk Viscous Fluid in Symmetric Teleparallel Cosmology: Theory versus Experiment. Universe 2023, 9, 12. [Google Scholar] [CrossRef]
- Kalita, S.; Sarmah, L.; Wojnar, A. Cooling Process of White Dwarf Stars in Palatini f(R) Gravity. Universe 2022, 8, 647. [Google Scholar] [CrossRef]
- Kuptsov, S.; Ioffe, M.; Manida, S.; Paston, S. Weak Field Limit for Embedding Gravity. Universe 2022, 8, 635. [Google Scholar] [CrossRef]
- Chakraborty, K.; Rahaman, F.; Ray, S.; Sen, B.; Deb, D. Galactic Wormhole under Lovelock Gravity. Universe 2022, 8, 581. [Google Scholar] [CrossRef]
- Socorro, J.; Pérez-Payán, S.; Hernández-Jiménez, R.; Espinoza-García, A.; Díaz-Barrón, L.R. Quintom Fields from Chiral K-Essence Cosmology. Universe 2022, 8, 548. [Google Scholar] [CrossRef]
- Di Gennaro, S.; Ong, Y.C. Sign Switching Dark Energy from a Running Barrow Entropy. Universe 2022, 8, 541. [Google Scholar] [CrossRef]
- Frolov, A.M. Metric Gravity in the Hamiltonian Form—Canonical Transformations—Dirac’s Modifications of the Hamilton Method and Integral Invariants of the Metric Gravity. Universe 2022, 8, 533. [Google Scholar] [CrossRef]
- Haug, E.G. Progress in the Composite View of the Newton Gravitational Constant and Its Link to the Planck Scale. Universe 2022, 8, 454. [Google Scholar] [CrossRef]
- Rasouli, S.M.M.; Jalalzadeh, S.; Moniz, P. Noncompactified Kaluza–Klein Gravity. Universe 2022, 8, 431. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavrinos, P.; Saridakis, E.N. Editorial: Modified Theories of Gravity and Cosmological Applications—Topical Collection. Universe 2025, 11, 182. https://doi.org/10.3390/universe11060182
Stavrinos P, Saridakis EN. Editorial: Modified Theories of Gravity and Cosmological Applications—Topical Collection. Universe. 2025; 11(6):182. https://doi.org/10.3390/universe11060182
Chicago/Turabian StyleStavrinos, Panayiotis, and Emmanuel N. Saridakis. 2025. "Editorial: Modified Theories of Gravity and Cosmological Applications—Topical Collection" Universe 11, no. 6: 182. https://doi.org/10.3390/universe11060182
APA StyleStavrinos, P., & Saridakis, E. N. (2025). Editorial: Modified Theories of Gravity and Cosmological Applications—Topical Collection. Universe, 11(6), 182. https://doi.org/10.3390/universe11060182