Next Article in Journal
Statistical Strong Lensing as a Test of Conformal Gravity
Previous Article in Journal
Harmonizing Sunspot Datasets Consistency: Focusing on SOHO/MDI and SDO/HMI Data
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Bethe–Heitler Cascades and Hard Gamma-Ray Spectra in Flaring TeV Blazars: 1ES 0414009 and 1ES 1959650

by
Samuel Victor Bernardo da Silva
1,*,†,
Luiz Augusto Stuani Pereira
1,2,*,† and
Rita de Cássia Dos Anjos
3,4,5,6,7,8,*
1
Unidade Acadêmica de Física, Universidade Federal de Campina Grande (UAF-UFCG), R. Aprígio Veloso, 882, Campina Grande 58429-900, PB, Brazil
2
Instituto de Física, Universidade de São Paulo (IFUSP), R. do Matão, 1371, São Paulo 05508-090, SP, Brazil
3
Programa de póS-Graduação em Física, Departamento de Física, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid Km 380, Londrina 86057-970, PR, Brazil
4
Programa de Pós-Graduação em Física e Astronomia, Universidade Tecnológica Federal do Paraná (UTFPR), Av. Sete de Setembro, 3165, Curitiba 80230-901, PR, Brazil
5
Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
6
Departamento de Engenharias e Exatas, Universidade Federal do Paraná (UFPR), Rua Pioneiro, Palotina 85950-000, PR, Brazil
7
Programa de Pós-Graduação em Física Aplicada, Universidade Federal da Integração Latino-Americana, Av. Tarquínio Joslin dos Santos, 1000, Foz do Iguaçu 85867-670, PR, Brazil
8
Departamento de Física, Universidade Federal do Espírito Santo, Núcleo de Astrofísica e Cosmologia (Cosmo-Ufes), Av. Fernando Ferrari, 514, Vitória 29075-910, ES, Brazil
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Universe 2025, 11(6), 177; https://doi.org/10.3390/universe11060177
Submission received: 29 April 2025 / Revised: 28 May 2025 / Accepted: 29 May 2025 / Published: 31 May 2025
(This article belongs to the Special Issue 10th Anniversary of Universe: Galaxies and Their Black Holes)

Abstract

:
In this work, we present updated models of the spectral energy distributions (SEDs) for two high-frequency-peaked BL Lac objects (HBLs), that is, 1ES 0414+009 and 1ES 1959+650. The hard gamma-ray spectra observed during their flaring states suggest the presence of an additional emission component beyond the standard synchrotron self-Compton (SSC) scenario. We explore the possibility that this hard gamma-ray emission arises from inverse Compton (IC) scattering by Bethe–Heitler pairs produced along the line of sight, pointing to a more complex high-energy emission mechanism in these sources.

1. Introduction

Active galactic nuclei (AGN) constitute a prominent population of energetic extragalactic sources, with blazars representing an extreme subclass of radio-loud AGN. Blazars, a subclass of jetted AGN that includes flat-spectrum radio quasars (FSRQs) and BL Lac objects (BLOs), exhibit non-thermal continuum emission originating from relativistic jets aligned close to our line of sight [1]. Moreover, they are characterized by distinctive characteristics such as rapid variability, high luminosity, and strong polarization [2,3,4,5,6]. FSRQs are distinguished by their strong, broad emission lines, whereas BLOs exhibit weak or nearly absent emission lines [7]. Their multiwavelength spectral energy distributions (SEDs) typically feature a characteristic double-hump structure [3,4,8,9,10,11]. The low-energy hump, spanning from the radio to the X-ray bands, is well explained by synchrotron radiation. However, the origin of the high-energy hump, which falls within the MeV-TeV energy range, remains an open question. Two theoretical models describe the high-energy photon emission in blazars: the leptonic model and the hadronic model. In the leptonic model scenarios, the high-energy component may result from inverse Compton (IC) scattering of relativistic electrons, either on synchrotron photons (Synchrotron Self-Compton, SSC [12,13]) or on external photon fields (External Compton, EC [4,14,15]), such as the broad-line region (BLR), accretion disk, or the external torus. In contrast, the hadronic model suggests that high-energy gamma-rays are generated either through proton synchrotron radiation in sufficiently strong magnetic fields [16,17,18] or via meson and lepton production in cascades triggered by proton-proton or proton-photon interactions [19,20,21,22].
The position of the first peak in SEDs, ν p S (synchrotron peak frequency), classifies the sources as low-frequency peaked BL Lacs (LBLs; e.g., ν p S < 1014 Hz), intermediate-frequency peaked BL Lacs (IBLs; e.g., 1014 Hz < ν p S < 1015 Hz), and high-frequency peaked BL Lacs (HBLs; e.g., ν p S > 1015 Hz) [8]. Several studies [12,23,24] have shown that the SEDs of BL Lac objects, particularly HBLs, are well described by a pure SSC model. The formation of relativistic jets in AGN remains an open question, with various models proposed to explain their origin. Two of the most well-established theories are the Blandford-Znajek mechanism [25], in which the jet derives energy from the black hole’s rotation, and the Blandford-Payne mechanism [26], where the jet primarily extracts rotational energy from the accretion disk. In both scenarios, magnetic fields play a crucial role in channeling energy from the black hole or disk into the jet [27]. Initially, the jet’s energy is primarily carried by Poynting flux, which progressively converts into the kinetic energy of the plasma as the flow accelerates [28]. Theoretical studies on energy dissipation suggest that, in this scenario, the emitting electrons and the electromagnetic field may share an equal distribution of energy [29]. Understanding the strength of the magnetic field within the jet is essential for unraveling its formation and energy distribution. By analyzing the frequency-dependent position of the optically thick jet core [30], Zamaninasab et al. (2014) [31] found that the jet’s magnetic flux on parsec scales correlates with the power of the corresponding accretion current, aligning with predictions from magnetohydrodynamics. Another reliable approach for estimating the magnetic field in the innermost emission region of the jet is through modeling the SEDs of blazars [3,32,33,34].
Comparing multiwavelength emission from blazars with numerical models that simulate radiative emission and transfer under specific assumptions about particle content and emission region characteristics is a key method for investigating the source’s microphysics and physical parameters. Data from the very high-energy (VHE) segment of the SED is essential for constraining model parameters of high-frequency peaked BL Lac objects, which emit a significant portion of their radiation in this energy range. Additionally, VHE observations are valuable for softer sources, as they probe the extreme limits of particle acceleration and are particularly sensitive to photon-photon absorption within internal or external radiation fields [35]. An essential element for understanding the high-energy gamma-ray emission is the Bethe-Heitler pair production (also called the proton-photon ( p γ ) pair production process), which occurs when relativistic protons interact with soft photons (ambient synchrotron or external photons), leading to the production of electron-positron pairs [36,37]. The generated electron-positron pairs then undergo synchrotron and IC processes, contributing to the broadband gamma-ray emission observed from blazars. It is worth mentioning that this process is typically subdominant compared to proton synchrotron or pion decay (which predict correlated neutrino and gamma-ray emissions) mechanisms in hadronic models but can still play a role in shaping the observed SED of blazars.
In this work, we investigate the SED of two blazars detected at TeV energies: 1ES 0414+009 and 1ES 1959+650. These high-energy sources provide valuable insights into particle acceleration mechanisms and emission processes. By modeling their multiwavelength emission, we aim to constrain the physical properties of their jets and explore the contribution of leptonic and hadronic processes to their observed radiation. In Section 2, we introduce our sample. In Section 3 and Section 4, we present the fitting tools and the fitting process. Section 5 describes the results and provides a discussion. Finally, we present the conclusion of this work in Section 5. Throughout the paper, we assume the Hubble constant H 0 = 67.77 km s−1 Mpc−1, the matter energy density Ω M = 0.27, the radiation energy density Ω r = 0, and the dimensionless cosmological constant Ω Λ = 0.73.

2. TeV Blazars: 1ES 0414+009 and 1ES 1959+650

In this section, we are going to present a brief description of the two TeV blazars studied in this work and the set of data used in our analysis.

2.1. 1ES 0414+009

The BL Lac object 1ES 0414+009 was first detected by the HEAO 1 satellite [38] in the 0.9–13.3 keV energy range and later identified in X-ray images from the Einstein Observatory [39]. Situated at a redshift of z = 0.287 [40], it is powered by a supermassive black hole (SMBH) with a mass of approximately 2 × 109 M [41]. According to the scheme proposed by [42], 1ES 0414+009 belongs to the class of HBLs, which exhibit a synchrotron-emission peak at UV/soft X-ray frequencies. In such sources, X-ray emission is primarily dominated by synchrotron radiation. In the VHE gamma-ray domain, data from the HEGRA experiment were used to establish an upper limit on the integral flux of 1ES 0414+009, corresponding to 13.5 × 10−12 cm−2 s−1 above the threshold energy of 910 GeV [43]. Costamante & Ghisellini [44] identified 1ES 0414+009 as a strong candidate for VHE emission based on its high X-ray and radio flux. Its detection became even more probable following blazar gamma-ray spectrum analyses, which suggested a low intensity of the diffuse extragalactic background light (EBL) [45].
The H.E.S.S. array of Cherenkov telescopes has detected significant VHE gamma-ray emission from 1ES 0414+009. With an average flux of ∼0.6% of the Crab Nebula flux above E > 200 GeV, this blazar is among the faintest extragalactic sources observed in the TeV range. Additionally, 1ES 0414+009 was detected by the Fermi-LAT instrument during its first 20 months of operation (2008–2010), exhibiting very faint emission in the high-energy (HE) domain as well [46]. The HE and VHE spectra of 1ES 0414+009, corrected for absorption using an EBL model close to the lower limits, exhibit a best-fit power law with an index harder than 2, classifying it as a hard-TeV BL Lac object. The overall SED is averaged over five years, though there is no strict simultaneity between Swift and H.E.S.S. observations. With this limitation, the SED properties, particularly an IC peak energy above 1–2 TeV, are challenging to explain within the framework of a pure one-zone SSC model, unless unusual parameter values are assumed [47].
The study of 1ES 0414+009 has implications beyond its characterization, extending to the broader context of AGN and their role in multi-messenger astronomy [48]. This blazar, along with others, has been proposed as a potential source of ultra-high-energy cosmic rays [49]. These investigations collectively enhance our understanding of the extreme environments surrounding supermassive black holes and their relativistic jets, contributing to advancements in high-energy astrophysics [50,51].

2.2. 1ES 1959+650

The object 1ES 1959+650 [52], with a redshift of z = 0.047, was classified as a BL Lac in 1993 using a specialized radio/optical/X-ray technique [53]. Its first detection at TeV energies was reported by the Utah Seven Telescope Array collaboration during the 1998 observational season [54], revealing an excess with a statistical significance of 3.9 σ above 600 GeV after 57 h of observation. In May 2002, 1ES 1959+650 experienced a powerful TeV outburst, observed by the VERITAS [55], HEGRA [56] collaborations. Significant flux variations were recorded, reaching levels up to three times the Crab Nebula flux [57].
As a HBL source, 1ES 1959+650 is generally faint in the Fermi-LAT energy range (20 MeV–300 GeV) compared to nearby LBLs and exhibits weaker variability in this band than in the X-ray and VHE ranges [58]. Notably, the 0.3–10 GeV flux did not display significant long-term flares, with the photon flux derived from two-week binned data rarely exceeding 4 × 10−8 photons cm−2 s−1 [59,60,61]. However, the source remained mostly above this threshold between August 2015 and August 2016, during which two strong, long-term HE flares were observed [62,63].
During intense X-ray flares in 2016–2017, the source exhibited very hard X-ray spectra, with the 0.3–300 GeV photon index also remaining hard during the same periods [63]. While reproducing such hard gamma-ray spectra can be challenging for standard leptonic models, certain hadronic scenarios may offer a more natural explanation under specific conditions [64]. For example, the proton blazar model introduced by Mannheim [20] predicts X-ray spectra with photon indices in the range 1.5–1.7 and can account for uncorrelated X-ray–TeV variability, a feature reported for this source [58]. Nonetheless, leptonic models remain widely favored in the literature (e.g., [12]), and further multiwavelength studies are needed to distinguish between competing scenarios.

3. Multi-Wavelength SED Fitting of Jetted AGNs

Modeling the SEDs of jetted AGN across the electromagnetic spectrum, from radio to gamma-rays, is essential for understanding the physical mechanisms governing relativistic jets. Through multiwavelength SED fitting, we can investigate particle acceleration, energy dissipation, and radiative processes responsible for the observed emission.

3.1. SED Leptonic Modeling

We employed the JetSeT v1.3.0 software package [65,66,67] for leptonic SED modeling. JetSeT is an open-source C/Python framework designed to simulate radiative and particle acceleration processes in relativistic jets and galactic sources, both beamed and unbeamed. It supports various leptonic emission mechanisms, including synchrotron radiation, SSC, and external Compton (EC) scattering of photons from the accretion disk, BLR, dusty torus (DT), and the cosmic microwave background (CMB). The framework also includes γ γ absorption based on established EBL models [68,69,70].
To ensure consistency across sources, we adopted a one-zone synchrotron+SSC scenario, where the emission originates from a spherical region of radius R = c t var δ / ( 1 + z )  [71], with t var set to one day [72,73]. The region moves relativistically with a Doppler factor δ = [ Γ ( 1 β cos θ ) ] 1 , where Γ is the bulk Lorentz factor and θ the viewing angle. Electrons are assumed to follow a broken power-law distribution [12,23,28]:
N ( γ ) = N 0 γ p 1 , γ min γ γ b , γ b p 2 p 1 γ p 2 , γ b < γ γ max ,
where γ min , γ b , and γ max are the minimum, break, and maximum electron Lorentz factors, and N 0 is the normalization constant.
JetSeT employs a two-stage fitting procedure. First, a phenomenological characterization of the SED is performed using the SEDShape module, which applies power-law and log-parabolic fits to binned data spanning the radio to TeV range. This step provides initial constraints on the synchrotron and SSC components, helping to define parameter boundaries. Next, the ObsConstrain module is used to derive input parameters for the physical modeling, where we adopt the broken power-law electron distribution defined in Equation (1). A Bayesian approach is adopted for the final model fitting, incorporating prior constraints to ensure that all parameters remain within physically meaningful bounds.
Model parameters are implemented as Astropy quantities, allowing seamless integration with other Python-based astrophysical tools. JetSeT supports both frequentist and Bayesian fitting approaches. For frequentist optimization, plugins are available for iminuit [74] and SciPy’s bounded least squares method [75]. Bayesian inference is carried out using a Markov chain Monte Carlo (MCMC) sampler through integration with the emcee package [76]. In all cases, the redshift is fixed, and we assume a cold proton to relativistic electron ratio of 0.1 [77].

3.2. SED Lepto-Hadronic Modeling

To explore scenarios involving hadronic contributions, we used the AM3 (astrophysical multi-messenger modeling) framework [78], an open-source software package designed to simulate time-dependent lepto-hadronic interactions in astrophysical sources. AM3 computes the coupled evolution of photon, electron, positron, proton, neutron, and neutrino populations, along with intermediate products, within an isotropic magnetic field. It includes non-linear processes such as electromagnetic cascades and secondary particle feedback, providing a self-consistent description of particle interactions.
The emission region is modeled as a spherical blob of radius R moving with bulk Lorentz factor Γ along the jet. Primary electrons and protons are injected isotropically into this region. Electrons follow a broken power-law energy distribution, while protons follow a single power-law extending up to γ p , max . These high-energy protons interact with ambient photon fields following the framework of Hümmer et al. (2010) [79], producing charged and neutral pions. The decay of pions gives rise to secondary gamma-rays, neutrinos, electrons, and positrons, which in turn participate in electromagnetic cascades.
AM3 incorporates several key processes: synchrotron emission and self-absorption, IC scattering by both electrons and protons, Bethe–Heitler pair production ( p + γ p + e + e + ), photon-photon pair production and annihilation, and the evolution of secondary particles. The magnetic field B is assumed to be randomly oriented within the blob, and its turbulence plays a significant role in shaping the resulting SED and multi-messenger signatures.
This approach allows us to assess the hadronic contribution to the SED and explore scenarios where neutrino and gamma-ray emission arise from the same physical region, providing insight into possible associations between high-energy astrophysical neutrinos and blazar flares.

4. Results and Discussion

Based on the methods presented in Section 3.1 and Section 3.2, it was possible to perform the non-thermal multi-wavelength modeling of the blazars 1ES 0414+009 and 1ES 1959+650. For this, data from space and ground-based observatories, ranging from radio to VHE gamma-rays, were extracted from the Space Science Data Center (SSDC)1 and Firmamento2. First, the multi-wavelength observations were fitted using the MCMC method in JetSeT, and the best-fitting parameters were then used as input for the lepto-hadronic modeling with AM3. Table 1 and Table 2 summarize the observatories employed in the modeling of the sources 1ES 0414+009 and 1ES 1959+650, respectively, together with the corresponding energy/wavelength ranges covered by the data collected at each facility.

4.1. SSC SED Fitting

In the fitting method, each free parameter has a specific physical boundary. We can fix specific parameters and set the fitting range of the remaining parameters to speed up the convergence of the fitting process. Given that all our samples are HBLs and we adopt the one-zone lepton model Syn+SSC, we fix the redshift and the distance of the radiation region from the central black hole, R H - 1017 cm (default value for JetSeT). To prevent biased results, ensure that output parameters remain within physically meaningful ranges (based on the literature [102,126]), and improve convergence, we define fitting ranges for the radius of the emission region R, magnetic field strength B, γ min , γ b , γ max , and the spectral indexes (p and p 1 ). The best-fitting values are described in Table 3.
Figure 1 shows the modeling via the SSC physical process for the 1ES 0414+009 source. The first peak in the figure represents the synchrotron emission, which occurs at lower frequencies, peaking at 10 17 Hz, thus indicating that 1ES 0414+009 is a HSP BL Lac. The second peak, at 10 25 Hz, represents the emission due to IC scattering. According to the residual plot at the bottom of the figure, the model fits the data well by plotting the difference between actual and predicted values, with only one discrepancy in the TeV region of the energy spectrum.
In JetSeT, jet power can be readily estimated by fitting the spectral energy distributions. The jet kinetic power is carried by electrons, magnetic fields, and cold protons [28,71,127], and is expressed as L i = π R 2 Γ 2 c U i , where U i represents the energy density of each component (i = e, p, B). Consequently, the total jet kinetic power is given by L kin = L e + L B + L p . The derived energy densities and luminosities for the source 1ES 0414+009 are summarized in Table 4. The total radiative power is calculated as L rad L syn + L SSC , where L syn and L SSC are the powers emitted through synchrotron and synchrotron self-Compton processes, respectively [13].
The comparison between the parameters of the SSC model for 1ES 0414+009 obtained in this work and those reported by Aliu et al. (2012) [102] reveals important similarities despite differences in the modeling approaches and data selections. Both studies find a comparable size for the emitting region, with R 10 16 17 cm, consistent with a compact emission zone typical of high-frequency peaked BL Lac objects. In addition, the viewing angle ( θ obs 1 . 61 ) and the general SSC framework adopted for the SED modeling are similar, indicating a shared assumption of a relativistic jet closely aligned with the observer’s line of sight. Both works also conclude that purely leptonic models face challenges in fully reproducing the broadband SED, particularly in explaining the hard TeV spectra, thus motivating the consideration of more complex scenarios, such as lepto-hadronic contributions. Although there are differences in specific parameter values, such as the minimum Lorentz factor, magnetic field strength, and bulk Lorentz factor, these arise naturally from the focus of each study: Aliu et al. (2012) [102] emphasized modeling the TeV emission with extreme parameters, while our work provides a global fit to a broader, multiwavelength dataset. Overall, both studies reinforce the notion that 1ES 0414+009 exhibits characteristics requiring detailed modeling beyond the simplest SSC assumptions.
Similarly to the previous source, Figure 2 shows the modeling of 1ES 1959+650 using the SSC physical process, considering also the presence of the host galaxy component (emission peak at approximately 10 15 Hz). As indicated by the figure, the synchrotron emission peaks at ∼ 10 18 Hz, classifying the source as an extreme high-frequency peaked BL Lac (EHBL) with ν sync peak > 10 16 Hz. The second peak, located at higher energies, is attributed to IC scattering. The best-fitting parameters are summarized in Table 3. For this source, as found for most HBLs, the kinetic powers carried by electrons and protons ( L e and L p ) dominate over the magnetic contribution L B [28].
A comparison between Table 3 and Table 4 from this work and Table 5 from Tavecchio et al. (2010) [12] highlights similarities in the physical parameters derived for 1ES 1959+650. Both studies model the broadband emission using a one-zone leptonic scenario dominated by synchrotron and SSC processes, adopting similar assumptions for the jet composition and emission region structure. The magnetic field strength ( B 0.1 G) and the size of the emission region ( R 3 × 10 15 cm) are consistent across the studies, suggesting comparable estimates for the energy balance within the jet. The inferred jet kinetic powers are also similar, with both analyses concluding that the power carried by particles (electrons and cold protons) largely exceeds the magnetic contribution, a common characteristic of high-frequency-peaked BL Lac objects. These similarities reinforce the model of the one-zone SSC interpretation for the quiescent state of 1ES 1959+650, as presented in both studies.

4.2. Lepto-Hadronic SED Modeling

The lepto-hadronic SED modelling was performed using the open-source AM3 software. The non-thermal lepton distribution in the source came from the JetSeT fitting process (section above), where the electron luminosity in the jet is L e 2.50 × 10 43 erg/s for 1ES 0414+009 and L e 3.93 × 10 43 erg/s for 1ES 1959+650. For the hadronic interaction process, the proton luminosity L p was estimated to be less than or equal to the Eddington luminosity ( L p L Edd ) [128], where L Edd = 1.3 × 10 38 ( M BH / M ) erg/s. Assuming that M BH 2 × 10 9 M for 1ES 0414+009 [47], L Edd 2.52 × 10 47 erg/s. For 1ES 1959+650 we also assumed L p L Edd [128], where M BH 3.16 × 10 8 M [129] and the resulting Eddington luminosity is L Edd 3.98 × 10 46 erg/s. Although jet loading at super-Eddington rates may occur during brief episodes of flaring activity, it is unrealistic to expect such conditions to persist during extended periods of steady, quiescent emission [128]. For both sources, the injection of protons follows a simple power-law distribution with γ min = 100 , γ max = 10 6 and α p = 1 (spectral index).
Figure 3 and Figure 4 display the multiwavelength SED for the blazars 1ES 0414+009 and 1ES 1959+650 along with observational data from several catalogs, including BeppoSAX, VERITAS, Fermi-LAT and others, covering frequencies from radio to gamma-rays. The dark blue and red lines correspond to synchrotron emission and IC scattering of primary electrons (best fitting parameters from JetSeT). The black line represents synchrotron emission and IC scattering of protons. The light blue line represents Bethe-Heitler pair production ( p γ p e + e ) from 10 3 eV to 10 15 eV (in the case of 1ES 0414+009) and 10 16 eV (in the case of 1ES 1959+650). The green line refers to the synchrotron emission and IC scattering of electron-positron pair production ( γ γ e + e ), which is observed in the energy range from 10 3 eV to 10 15 eV (in the case of 1ES 0414+009) and 10 17 eV (in the case of 1ES 1959+650). The yellow line corresponds to the multi-wavelength emission from proton-photon interaction generating charged pions ( p γ π ± μ ± e ± ) in the range from 10 1 eV to 10 15 eV (in the case of 1ES 0414+009) and 10 17 eV (in the case of 1ES 1959+650). The purple dotted curve illustrates the gamma-ray emission resulting from the decay of neutral pions produced in proton–photon interactions ( p γ π 0 γ γ ) observed in the range from 10 11 eV to 10 16 eV (in the case of 1ES 0414+009) and 10 10 eV to 10 17 eV (in the case of 1ES 1959+650). The gamma-ray emission from the decay of neutral pions produced in proton–proton interactions ( p p π 0 γ γ ) is illustrated by the dark blue dashed line, which is observed in the range 10 11 eV to 10 15 eV (in the case of 1ES 0414+009) and 10 9 eV to 10 17 eV (in the case of 1ES 1959+650).
In Figure 3, the model suggests a possible hadronic contribution within the energy range of 108 to 2 × 10 12 eV. In this scenario, Bethe–Heitler pair production, arising from the interaction of ultra-high-energy protons with ambient photon fields, generates secondary electron–positron pairs that undergo IC scattering. These IC interactions upscatter low-energy ambient photons into the gamma-ray regime, producing the high-energy bump seen in the light blue curve, which matches the gamma-ray flux of 1.78 × 10 11 erg cm−2 s−1 at 1.08 × 10 12 eV, as reported in the 2FHL catalog by Fermi-LAT [98]. Additionally, a lower energy flux of 5.2 × 10 12 erg cm−2 s−1 at approximately 0.2 GeV, detected by Fermi-LAT (Fermi 1FGL catalog) [95], can be attributed either to synchrotron emission by secondary electrons from muon decay, originating from pion decay in proton-photon interactions, or possibly to inverse Compton scattering by electrons produced in Bethe–Heitler pair production. Both data points are highlighted with dashed-line circles in the figure. Thus, emissions from both Bethe–Heitler pairs and secondary electrons from muon decay contribute significantly to the broadband emission of the source, offering a coherent and self-consistent interpretation of the multiwavelength observations.
In Figure 4, the model indicates a potential hadronic contribution that fills the “gap” between the two characteristic broadband emission features. In this scenario, Bethe–Heitler pair production by ultra-high-energy protons accounts for the X-ray fluxes observed in this intermediate region. These X-ray emissions originate from synchrotron radiation produced by secondary electron–positron pairs generated through the Bethe–Heitler process. Additionally, the IC component, represented by the high-energy bump in the same light blue curve, contributes significantly to explaining the observational data between approximately 1011 eV and 1014 eV. This energy range corresponds to VHE gamma-rays detected during flaring activity by the Whipple observatory. Notably, on 4 June 2002, the source exhibited a dramatic gamma-ray flare without a simultaneous increase in the X-ray band, marking the first clear detection of an “orphan” gamma-ray flare from a blazar [130]. The analysis of such sources underscores the necessity of adopting a lepto-hadronic framework to fully account for their high-energy emission behavior. This approach has important implications, as it suggests the potential for future neutrino detections and provides strong support for the existence of nuclear acceleration processes in these environments [131,132,133,134].

5. Conclusions

We employed the open-source softwares JetSeT and AM3 to model the SEDs of two high-frequency peaked BL Lac (HBL) sources: 1ES 0414+009 and 1ES 1959+650. We determined the best-fit model parameters by matching the predicted multiwavelength emission to publicly available observational data for both sources. Initial modeling using a purely leptonic scenario yielded fits that could not adequately reproduce the observed hard gamma-ray spectra during flaring states, particularly above 1011 eV. We therefore extended our analysis to a lepto-hadronic model, incorporating proton-proton (pp) and proton-photon (p γ ) interactions within the jet environment. The inclusion of the p γ component indicates that hadronic processes may contribute significantly in the high-energy emission of these two HBLs during flaring episodes. For both sources, Bethe–Heitler pair production ( p γ p + e + + e ) by ultra-high-energy protons plays a key role in shaping the high-energy emission. In 1ES 1959+650, secondary electron–positron pairs generated through this process produce synchrotron radiation that accounts for the X-ray fluxes observed in the intermediate energy range, while their IC scattering of ambient photons contributes to the VHE gamma-ray emission. In 1ES 0414+009, the VHE gamma-ray flux can likewise be partially attributed to IC scattering by Bethe–Heitler secondaries. Thus, in both cases, Bethe–Heitler pair production injects relativistic leptons into the emission region, where they radiate via synchrotron and/or IC processes. These contributions complement the emission from primary electrons and offer a coherent explanation for the broadband spectral features observed during flaring episodes. In conclusion, the lepto-hadronic framework effectively reproduces the multiwavelength observations across a broad energy spectrum for the two sources, underscoring the importance of incorporating hadronic processes to achieve a comprehensive understanding of BL Lac emission.

Author Contributions

Conceptualization, L.A.S.P.; methodology, S.V.B.d.S. and L.A.S.P.; software, S.V.B.d.S.; formal analysis, S.V.B.d.S.; investigation, S.V.B.d.S., L.A.S.P. and R.d.C.D.A.; resources, L.A.S.P. and R.d.C.D.A.; data curation, S.V.B.d.S. and L.A.S.P.; writing—original draft preparation, S.V.B.d.S., L.A.S.P. and R.d.C.D.A.; writing—review and editing, S.V.B.d.S., L.A.S.P. and R.d.C.D.A.; visualization, S.V.B.d.S., L.A.S.P. and R.d.C.D.A.; supervision, L.A.S.P.; project administration, L.A.S.P.; funding acquisition, L.A.S.P. and R.d.C.D.A. All authors have read and agreed to the published version of the manuscript.

Funding

Stuani Pereira, L.A. gratefully acknowledges financial support from FAPESP under grant numbers 2021/01089-1, 2024/02267-9 and 2024/14769-9 and CNPq under grant numbers 403337/2024-0, 153839/2024-4 and 200164/2025-2. dos Anjos, R.C. acknowledges the financial support from the NAPI “Fenômenos Extremos do Universo” of Fundação de Apoio à Ciência, Tecnologia e Inovação do Paraná. R.C.A.’s research is supported by the CAPES/Alexander von Humboldt Program (88881.800216/2022-01), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grant numbers (307750/2017-5) and (401634/2018-3/AWS), Araucária Foundation (698/2022) and (721/2022), and FAPESP (2021/01089-1). She also thanks L’Oreal Brazil for the support, with the partnership of ABC and UNESCO in Brazil. The authors acknowledge the National Laboratory for Scientific Computing (LNCC/MCTI, Brazil) for providing HPC resources through the SDumont supercomputer, which significantly supported the computational aspects of this research, which have contributed to the research results reported in this paper. URL: https://sdumont.lncc.br accessed on 28 May 2025.

Data Availability Statement

The original contributions presented in this study are included in the article. Further inquiries can be directed to the corresponding authors.

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:
AGNsActive Galactic Nuclei
FSRQflat-spectrum radio quasar
AGNActive Galactic Nuclei
FSRQFlat-Spectrum Radio Quasar
BLOBL Lac Object
SEDSpectral Energy Distribution
LBLLow-Frequency Peaked BL Lac
IBLIntermediate-Frequency Peaked BL Lac
HBLHigh-Frequency Peaked BL Lac
EHBLExtreme High-Frequency Peaked BL Lac
SynSynchrotron
ICInverve Compton
ECExternal Compton
BLRBroad-Line Region
DTDusty Torus
SMBHSupermassive Black Hole
CMBCosmic Microwave Background
EBLExtragalactic Background Light
SSCSynchrotron Self-Compton
MCMCMarkov Chain Monte Carlo
SSDCSpace Science Data Center
HEHigh-Energy
VHEVery High-Energy

Notes

1
https://www.ssdc.asi.it/, accessed on 1 February 2025.
2
https://firmamento.hosting.nyu.edu/home, accessed on 1 February 2025.

References

  1. Urry, C.M.; Padovani, P. Unified Schemes for Radio-Loud Active Galactic Nuclei. Astron. Soc. Pac. 1995, 107, 803–891. [Google Scholar] [CrossRef]
  2. Wills, B.J.; Wills, D.; Breger, M.; Antonucci, R.R.J.; Barvainis, R. A Survey for High Optical Polarization in Quasars with Core-dominant Radio Structure: Is There a Beamed Optical Continuum? Astrophys. J. 1992, 398, 454–475. [Google Scholar] [CrossRef]
  3. Ghisellini, G.; Tavecchio, F.; Foschini, L.; Ghirlanda, G.; Maraschi, L.; Celotti, A. General physical properties of bright Fermi blazars. Mon. Not. R. Astron. Soc. 2010, 402, 497–518. [Google Scholar] [CrossRef]
  4. Kang, S.J.; Chen, L.; Wu, Q. Constraints on the minimum electron lorentz factor and matter content of jets for a sample of bright Fermi blazars. Astrophys. J. Suppl. Ser. 2014, 215, 5. [Google Scholar] [CrossRef]
  5. Fan, J.H.; Yang, J.H.; Liu, Y.; Luo, G.Y.; Lin, C.; Yuan, Y.H.; Xiao, H.B.; Zhou, A.Y.; Hua, T.X.; Pei, Z.Y. The spectral energy distributions of Fermi blazars. Astrophys. J. Suppl. Ser. 2016, 226, 20. [Google Scholar] [CrossRef]
  6. Yang, J.H.; Fan, J.H.; Liu, Y.; Tuo, M.X.; Pei, Z.Y.; Yang, W.X.; Yuan, Y.H.; He, S.L.; Wang, S.H.; Wang, X.C.; et al. The Spectral Energy Distributions for 4FGL Blazars. Astrophys. J. Suppl. Ser. 2022, 262, 18. [Google Scholar] [CrossRef]
  7. Cao, G.; Wang, J. The Hadronic Origin of the Hard Gamma-Ray Spectrum from Blazar 1ES 1101-232. Astrophys. J. 2014, 783, 108–110. [Google Scholar] [CrossRef]
  8. Abdo, A.A.; Ackermann, M.; Agudo, I.; Ajello, M.; Aller, H.D.; Aller, M.F.; Angelakis, E.; Arkharov, A.A.; Axelsson, M.; Bach, U.; et al. The spectral energy distribution of Fermi bright blazars. Astrophys. J. 2010, 716, 30. [Google Scholar] [CrossRef]
  9. Zhou, R.X.; Zheng, Y.G.; Zhu, K.R.; Kang, S.J. The Intrinsic Properties of Multiwavelength Energy Spectra for Fermi Teraelectronvolt Blazars. Astrophys. J. 2021, 915, 59. [Google Scholar] [CrossRef]
  10. Zhou, R.X.; Zheng, Y.G.; Zhu, K.R.; Kang, S.J.; Li, X.P. Modeling the Multiwavelength Spectral Energy Distributions of the Fermi-4LAC Bright Flat-spectrum Radio Quasars. Astrophys. J. 2024, 962, 22. [Google Scholar] [CrossRef]
  11. Hu, H.B.; Wang, H.Q.; Xue, R.; Peng, F.K.; Wang, Z.R. The physical properties of Fermi-4LAC low-synchrotron-peaked BL Lac objects. Mon. Not. R. Astron. Soc. 2024, 528, 7587–7599. [Google Scholar] [CrossRef]
  12. Tavecchio, F.; Ghisellini, G.; Ghirlanda, G.; Foschini, L.; Maraschi, L. TeV BL Lac objects at the dawn of the Fermi era. Mon. Not. R. Astron. Soc. 2010, 401, 1570–1586. [Google Scholar] [CrossRef]
  13. Zheng, Y.G.; Long, G.B.; Yang, C.Y.; Bai, J.M. Verification of the diffusive shock acceleration in Mrk 501. Mon. Not. R. Astron. Soc. 2018, 478, 3855–3861. [Google Scholar] [CrossRef]
  14. Dermer, C.D.; Schlickeiser, R. Model for the High-Energy Emission from Blazars. Astrophys. J. 1993, 416, 458–484. [Google Scholar] [CrossRef]
  15. Sikora, M.; Begelman, M.C.; Rees, M.J. Comptonization of Diffuse Ambient Radiation by a Relativistic Jet: The Source of Gamma Rays from Blazars? Astrophys. J. 1994, 421, 153–162. [Google Scholar] [CrossRef]
  16. Aharonian, F.A. TeV gamma rays from BL Lac objects due to synchrotron radiation of extremely high energy protons. New Astronomy. 2000, 5, 377–395. [Google Scholar] [CrossRef]
  17. Mücke, A.; Protheroe, R.J.; Engel, R.; Rachen, J.P.; Stanev, T. BL Lac objects in the synchrotron proton blazar model. Astropart. Phys. 2003, 18, 593–613. [Google Scholar] [CrossRef]
  18. Petropoulou, M. The role of hadronic cascades in GRB models of efficient neutrino production. Mthly. Not. R. Astron. Soc. 2014, 442, 3026–3036. [Google Scholar] [CrossRef]
  19. Mannheim, K.; Biermann, P.L. Gamma-ray flaring of 3C 279: A proton-initiated cascade in the jet? Astron. Astrophys. 1992, 253, L21–L24. [Google Scholar]
  20. Mannheim, K. The proton blazar. Astron. Astrophys. 1993, 269, 67–76. [Google Scholar] [CrossRef]
  21. Pohl, M.; Schlickeiser, R. On the conversion of blast wave energy into radiation in active galactic nuclei and gamma-ray bursts. Astron. Astrophys. 2000, 354, 395–410. [Google Scholar] [CrossRef]
  22. Atoyan, A.; Dermer, C.D. High-Energy Neutrinos from Photomeson Processes in Blazars. Physical. Rev. Lett. 2001, 87, 221102–221105. [Google Scholar] [CrossRef] [PubMed]
  23. Zhang, J.; Liang, E.W.; Zhang, S.N.; Bai, J.M. Radiation mechanisms and physical properties of GeV–TeV BL Lac objects. Astrophys. J. 2012, 752, 157. [Google Scholar] [CrossRef]
  24. Fan, J.; Xiao, H.; Yang, W.; Zhang, L.; Strigachev, A.A.; Bachev, R.S.; Yang, J. Characterizing the Emission Region Properties of Blazars. Astrophys. J. Suppl. Ser. 2023, 268, 23. [Google Scholar] [CrossRef]
  25. Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
  26. Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 1982, 199, 883–903. [Google Scholar] [CrossRef]
  27. Maraschi, L.; Tavecchio, F. The Jet-Disk Connection and Blazar Unification. Astrophys. J. 2003, 593, 667. [Google Scholar] [CrossRef]
  28. Zhao, X.Z.; Yang, H.Y.; Zheng, Y.G.; Kang, S.J. The Energy Budget in the Jet of High-frequency Peaked BL Lacertae Objects. Astrophys. J. 2024, 967, 104. [Google Scholar] [CrossRef]
  29. Sironi, L.; Petropoulou, M.; Giannios, D. Relativistic jets shine through shocks or magnetic reconnection? Mon. Not. R. Astron. Soc. 2015, 450, 183–191. [Google Scholar] [CrossRef]
  30. Lobanov, A.P. Ultracompact jets in AGN. Astron. Astrophys. 1998, 330, 79–90. [Google Scholar]
  31. Zamaninasab, M.; Clausen-Brown, E.; Savolainen, T.; Tchekhovskoy, A. Dynamically important magnetic fields near accreting supermassive black holes. Nature 2014, 510, 126–128. [Google Scholar] [CrossRef] [PubMed]
  32. Ghisellini, G.; Celotti, A.; Fossati, G.; Maraschi, L.; Comastri, A. A theoretical unifying scheme for gamma-ray bright blazars. Mon. Not. R. Astron. Soc. 1998, 301, 451–468. [Google Scholar] [CrossRef]
  33. Tavecchio, F.; Maraschi, L.; Ghisellini, G. Constraints on the Physical Parameters of TeV Blazars. Astrophys. J. 1998, 509, 608. [Google Scholar] [CrossRef]
  34. Tavecchio, F.; Ghisellini, G.; Bonnoli, G.; Ghirlanda, G. Constraining the location of the emitting region in Fermi blazars through rapid γ-ray variability. Mon. Not. R. Astron. Soc. Lett. 2010, 405, L94–L98. [Google Scholar] [CrossRef]
  35. Sol, H.; Zech, A. Blazars at Very High Energies: Emission Modelling. Galaxies 2022, 10, 105. [Google Scholar] [CrossRef]
  36. Kelner, S.R.; Aharonian, F.A. Energy spectra of gamma rays, electrons, and neutrinos produced at interactions of relativistic protons with low energy radiation. Phys. Rev. D 2008, 78, 034013–034028. [Google Scholar] [CrossRef]
  37. Karavola, D.; Petropoulou, M. A closer look at the electromagnetic signatures of Bethe-Heitler pair production process in blazars. J. Cosmol. Astropart. Phys. 2024, 2024, 6–55. [Google Scholar] [CrossRef]
  38. Gursky, H.; Bradt, H.; Doxsey, R.; Schwartz, D.; Schwarz, J.; Dower, R.; Fabbiano, G.; Griffiths, R.E.; Johnston, M.; Leach, R.; et al. Measurements of X-ray source positions by the scanning modulation collimator on HEAO 1. Astrophys. J. 1978, 223, 973–978. [Google Scholar] [CrossRef]
  39. Giacconi, R.; Branduardi, G.; Briel, U.; Epstein, A.; Fabricant, D.; Feigelson, E.; Forman, W.; Gorenstein, P.; Grindlay, J.; Gursky, H.; et al. The Einstein (HEAO 2) X-ray Observatory. Astrophys. J. 1979, 230, 540–550. [Google Scholar] [CrossRef]
  40. Halpern, J.P.; Chen, V.S.; Madejski, G.M.; Chanan, G.A. The Redshift of the X-ray Selected BL Lacertae Object H0414+009. Astron. J. 1991, 101, 818. [Google Scholar] [CrossRef]
  41. Falomo, R.; Carangelo, N.; Treves, A. Host galaxies and black hole masses of low- and high-luminosity radio-loud active nuclei. Mthly. Not. R. Astron. Soc. 2003, 343, 505–511. [Google Scholar] [CrossRef]
  42. Padovani, P.; Giommi, P. A sample-oriented catalogue of BL Lacertae objects. Mthly. Not. R. Astron. Soc. 1995, 277, 1477–1490. [Google Scholar] [CrossRef]
  43. Aharonian, F.A.; Akhperjanian, A.G.; Barrio, J.A.; Bernlöhr, K.; Bojahr, H.; Calle, I.; Contreras, J.L.; Cortina, J.; Daum, A.; Deckers, T.; et al. HEGRA search for TeV emission from BL Lacertae objects. Astronomy. Astrophys. 2000, 353, 847–852. [Google Scholar] [CrossRef]
  44. Costamante, L.; Ghisellini, G. TeV candidate BL Lac objects. Astronomy. Astrophys. 2002, 384, 56–71. [Google Scholar] [CrossRef]
  45. Aharonian, F.; Akhperjanian, A.G.; Bazer-Bachi, A.R.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; Borrel, V.; et al. A low level of extragalactic background light as revealed by γ-rays from blazars. Nature 2006, 440, 1018–1021. [Google Scholar] [CrossRef]
  46. Volpe, F.; Ohm, S.; Hauser, M.; Kaufmann, S.; Gérard, L.; Costamante, L.; Fegan, S.; Ajello, M. Discovery of VHE and HE emission from the blazar 1ES 0414+009 with H.E.S.S and Fermi-LAT. arXiv 2011, arXiv:1105.5114. [Google Scholar]
  47. Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A.; Anton, G.; Balzer, A.; Barnacka, A.; De Almeida, U.B.; Becherini, Y.; Becker, J.; et al. Discovery of hard-spectrum γ-ray emission from the BL Lacertae object 1ES 0414+ 009. Astron. Astrophys. 2012, 538, A103. [Google Scholar]
  48. Zhang, B.; Zhao, X.; Cao, Z. TeV Blazars as the Sources of Ultra High Energy Cosmic Rays. Int. J. Astron. Astrophys. 2014, 4, 499–509. [Google Scholar] [CrossRef]
  49. Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Engels, A.A.; Asano, K.; Baack, D.; Babić, A.; Banerjee, B.; Barres de Almeida, U.; Barrio, J.A.; et al. New Hard-TeV Extreme Blazars Detected with the MAGIC Telescopes. Astrophys. J. 2020, 247, 16–39. [Google Scholar] [CrossRef]
  50. Piner, B.G.; Edwards, P.G. First-Epoch VLBA Imaging of 20 New TeV Blazars. Astrophys. J. 2014, 797, 25–40. [Google Scholar] [CrossRef]
  51. Pueschel, E. The Extragalactic Background Light: Constraints from TeV Blazar Observations. Proc. Sci. 2017, ICRC2017, 1107. [Google Scholar] [CrossRef]
  52. Elvis, M.; Plummer, D.; Schachter, J.; Fabbiano, G. The Einstein slew survey. Astrophys. J. 1992, 80, 257–303. [Google Scholar] [CrossRef]
  53. Schachter, J.F.; Stocke, J.T.; Perlman, E.; Elvis, M.; Remillard, R.; Granados, A.; Luu, J.; Huchra, J.P.; Humphreys, R.; Urry, C.M.; et al. Ten New BL Lacertae Objects Discovered by an Efficient X-Ray/Radio/Optical Technique. Astrophys. J. 1993, 412, 541. [Google Scholar] [CrossRef]
  54. Nishiyama, T.; Chamoto, N.; Chikawa, M. Detection of a new TeV gamma-ray source of BL Lac object 1ES 1959+650. In Proceedings of the 26th International Cosmic-Ray Conference, Salt Lake City, UT, USA, 17–25 August 1999. [Google Scholar]
  55. Holder, J.; Bond, I.H.; Boyle, P.J.; Bradbury, S.M.; Buckley, J.H.; Carter-Lewis, D.A.; Cui, W.; Dowdall, C.; Duke, C.; de la Calle Perez, I.; et al. Detection of TeV Gamma Rays from the BL Lacertae Object 1ES 1959+650 with the Whipple 10 Meter Telescope. Astrophys. J. 2002, 583, L9. [Google Scholar] [CrossRef]
  56. Horns, D. Multi-wavelength Observations of the TeV Blazars Mkn 421, 1ES1959+650, and H1426+428 with the HEGRA Cherenkov Telescopes and the RXTE X-ray Satellite. In High Energy Blazar Astronomy; Takalo, L.O., Valtaoja, E., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2003; Volume 299, p. 13. [Google Scholar] [CrossRef]
  57. Aharonian, F.; Akhperjanian, A.; Beilicke, M.; Bernlöhr, K.; Börst, H.G.; Bojahr, H.; Bolz, O.; Coarasa, T.; Contreras, J.L.; Cortina, J.; et al. Detection of TeV gamma-rays from the BL Lac 1ES 1959+650 in its low states and during a major outburst in 2002. Astronomy. Astrophys. 2003, 406, L9–L13. [Google Scholar] [CrossRef]
  58. Kapanadze, B.; Dorner, D.; Romano, P.; Vercellone, S.; Tabagari, L. The TeV blazar 1ES 1959+650—A short review. Proc. Sci. 2018, 4, 33. [Google Scholar] [CrossRef]
  59. Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Bird, R.; Böttcher, M.; Bouvier, A.; Bugaev, V.; et al. Multiwavelength Observations and Modeling of 1ES 1959+650 in a Low Flux State. Astrophys. J. 2013, 775, 3–11. [Google Scholar] [CrossRef]
  60. Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Barnacka, A.; Beilicke, M.; Benbow, W.; Berger, K.; Bird, R.; Bouvier, A.; et al. Investigating Broadband Variability of the TeV Blazar 1ES 1959+650. Astrophys. J. 2014, 797, 89–99. [Google Scholar] [CrossRef]
  61. Kapanadze, B.; Romano, P.; Vercellone, S.; Kapanadze, S.; Mdzinarishvili, T.; Kharshiladze, G. The long-term Swift observations of the high-energy peaked BL Lacertae source 1ES 1959+650. Mon. Not. R. Astron. Soc. 2016, 457, 704–722. [Google Scholar] [CrossRef]
  62. Kapanadze, B.; Dorner, D.; Vercellone, S.; Romano, P.; Kapanadze, S.; Mdzinarishvili, T. A recent strong X-ray flaring activity of 1ES 1959+650 with possibly less efficient stochastic acceleration. Mon. Not. R. Astron. Soc. 2016, 461, L26–L31. [Google Scholar] [CrossRef]
  63. Kapanadze, B.; Dorner, D.; Vercellone, S.; Romano, P.; Hughes, P.; Aller, M.; Aller, H.; Reynolds, M.; Kapanadze, S.; Tabagari, L. The second strong X-ray flare and multifrequency variability of 1ES 1959+650 in 2016 January-August. Mon. Not. R. Astron. Soc. 2018, 473, 2542–2564. [Google Scholar] [CrossRef]
  64. Shukla, A.; Chitnis, V.R.; Singh, B.B.; Acharya, B.S.; Anupama, G.C.; Bhattacharjee, P.; Britto, R.J.; Mannheim, K.; Prabhu, T.P.; Saha, L.; et al. Multi-frequency, multi-epoch study of Mrk 501: Hints for a two-component nature of the emission. Astrophys. J. 2014, 798, 2. [Google Scholar] [CrossRef]
  65. Tramacere, A.; Giommi, P.; Perri, M.; Verrecchia, F.; Tosti, G. Swift observations of the very intense flaring activity of Mrk 421 during 2006. I. Phenomenological picture of electron acceleration and predictions for MeV/GeV emission. Astronomy. Astrophys. 2009, 501, 879–898. [Google Scholar] [CrossRef]
  66. Tramacere, A.; Massaro, E.; Taylor, A.M. Stochastic Acceleration and the Evolution of Spectral Distributions in Synchro-Self-Compton Sources: A Self-consistent Modeling of Blazars’ Flares. Astrophys. J. 2011, 739, 66–81. [Google Scholar] [CrossRef]
  67. Tramacere, A. JetSeT: Numerical Modeling and SED Fitting Tool for Relativistic Jets; record ascl:2009.001; Astrophysics Source Code Library: College Park, MD, USA, 2020. [Google Scholar]
  68. Dominguez, A.; Primack, J.R.; Rosario, D.J.; Prada, F.; Gilmore, R.C.; Faber, S.M.; Koo, D.C.; Somerville, R.S.; Perez-Torres, M.A.; Perez-Gonzalez, P.; et al. Extragalactic Background Light Inferred from AEGIS Galaxy SED-type Fractions. Mon. Not. Roy. Astron. Soc. 2011, 410, 2556–2579. [Google Scholar] [CrossRef]
  69. Franceschini, A.; Rodighiero, G.; Vaccari, M. The extragalactic optical-infrared background radiations, their time evolution and the cosmic photon-photon opacity. Astron. Astrophys. 2008, 487, 837–852. [Google Scholar] [CrossRef]
  70. Finke, J.D.; Razzaque, S.; Dermer, C.D. Modeling the Extragalactic Background Light from Stars and Dust. Astrophys. J. 2010, 712, 238–249. [Google Scholar] [CrossRef]
  71. Ghisellini, G.; Tavecchio, F.; Maraschi, L.; Celotti, A.; Sbarrato, T. The power of relativistic jets is larger than the luminosity of their accretion disks. Nature 2014, 515, 376–395. [Google Scholar] [CrossRef]
  72. Fan, J.-H.; Yang, J.H.; Liu, Y.; Zhang, J.-Y. The gamma-ray Doppler factor determinations for a Fermi blazar sample. Res. Astron. Astrophys. 2013, 13, 259. [Google Scholar] [CrossRef]
  73. Nalewajko, K. The brightest gamma-ray flares of blazars. Mon. Not. R. Astron. Soc. 2013, 430, 1324–1333. [Google Scholar] [CrossRef]
  74. Dembinski, H.; Ongmongkolkul, P.; Deil, C.; Schreiner, H.; Feickert, M.; Burr, C.; Watson, J.; Rost, F.; Pearce, A.; Geiger, L.; et al. Scikit-Hep/Iminuit; Zenodo: Geneva, Switzerland, 2024. [Google Scholar] [CrossRef]
  75. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
  76. Foreman-Mackey, D.; Hogg, D.W.; Lang, D.; Goodman, J. emcee: The MCMC Hammer. Astron. Soc. Pac. 2013, 125, 306–312. [Google Scholar] [CrossRef]
  77. Ghisellini, G. Electron—Positron pairs in blazar jets and γ-ray loud radio galaxies. Mon. Not. R. Astron. Soc. Lett. 2012, 424, L26–L30. [Google Scholar] [CrossRef]
  78. Klinger, M.; Rudolph, A.; Rodrigues, X.; Yuan, C.; de Clairfontaine, G.F.; Fedynitch, A.; Winter, W.; Pohl, M.; Gao, S. AM3: An Open-source Tool for Time-dependent Lepto-hadronic Modeling of Astrophysical Sources. Astrophys. J. Suppl. 2024, 275, 4–26. [Google Scholar] [CrossRef]
  79. Hümmer, S.; Rüger, M.; Spanier, F.; Winter, W. Simplified models for photohadronic interactions in cosmic accelerators. Astrophys. J. 2010, 721, 630. [Google Scholar] [CrossRef]
  80. White, R.L.; Becker, R.H. A New Catalog of 30,239 1.4 GHz Sources. Astrophys. J. Suppl. Ser. 1992, 79, 331. [Google Scholar] [CrossRef]
  81. Condon, J.J.; Cotton, W.D.; Greisen, E.W.; Yin, Q.F.; Perley, R.A.; Taylor, G.B.; Broderick, J.J. The NRAO VLA Sky Survey. Astron. J. 1998, 115, 1693–1716. [Google Scholar] [CrossRef]
  82. Healey, S.E.; Romani, R.W.; Taylor, G.B.; Sadler, E.M.; Ricci, R.; Murphy, T.; Ulvestad, J.S.; Winn, J.N. CRATES: An All-Sky Survey of Flat-Spectrum Radio Sources. Astrophys. J. 2007, 171, 61. [Google Scholar] [CrossRef]
  83. Myers, S.T.; Jackson, N.J.; Browne, I.W.A.; de Bruyn, A.G.; Pearson, T.J.; Readhead, A.C.S.; Wilkinson, P.N.; Biggs, A.D.; Blandford, R.D.; Fassnacht, C.D.; et al. The Cosmic Lens All-Sky Survey: Survey Selection and Images. Astrophys. J. 2003, 591, 575. [Google Scholar] [CrossRef]
  84. Griffith, M.R.; Wright, A.E. The Parkes-MIT-NRAO (PMN) surveys. I. Astron. J. 1993, 105, 1666. [Google Scholar]
  85. Gregory, P.C.; Scott, W.K.; Douglas, K.; Condon, J.J. The GB6 catalog of radio sources. Astrophys. J. Suppl. Ser. 1996, 103, 427–432. [Google Scholar] [CrossRef]
  86. Taylor, B.G.; Andresen, R.D.; Peacock, A.; Zobl, R. The EXOSAT mission. Space Sci. Rev. 1986, 40, 391–420. [Google Scholar]
  87. Wright, A.E.; Griffith, M.R.; Troup, E.; Hunt, A.J.; Burke, B. The Parkes-MIT-NRAO (PMN) Surveys. VIII: Source Catalog for the Zenith Survey (−37.0 < d < −29.0). Astrophys. J. 1997, 103, 145. [Google Scholar]
  88. Boller, T.; Freyberg, M.; Trümper, J.; Haberl, F.; Voges, W.; Nandra, K. Second ROSAT all-sky survey (2RXS) source catalogue. Astron. Astrophys. 2016, 588, A103. [Google Scholar] [CrossRef]
  89. Voges, W.; Aschenbach, B.; Boller, T.; Braeuninger, H.; Briel, U.; Burkert, W.; Dennerl, K.; Englhauser, J.; Gruber, R.; Haberl, F.; et al. The ROSAT all-sky survey bright source catalogue. Astron. Astrophys. 1999, 349, 389–405. [Google Scholar]
  90. Levine, A.; Lang, F.; Lewin, W.; Primini, F.; Dobson, C.; Doty, J.; Hoffman, J.; Howe, S.; Scheepmaker, A.; Wheaton, W.; et al. The HEAO 1 A-4 catalog of high-energy X-ray sources. Astrophys. J. Suppl. Ser. 1984, 54, 581–617. [Google Scholar] [CrossRef]
  91. Evans, P.A.; Beardmore, A.P.; Page, K.L.; Osborne, J.P.; O’Brien, P.T.; Willingale, R.; Starling, R.L.C.; Burrows, D.N.; Godet, O.; Vetere, L.; et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Astron. Astrophys. 2007, 469, 379–385. [Google Scholar] [CrossRef]
  92. Evans, P.A.; Osborne, J.P.; Beardmore, A.P.; Page, K.L.; Willingale, R.; Mountford, C.J.; Pagani, C.; Burrows, D.N.; Kennea, J.A.; Perri, M.; et al. 1SXPS: A deep Swift X-ray telescope point source catalog. Astrophys. J. 2014, 210, 8. [Google Scholar] [CrossRef]
  93. Giommi, P.; Capalbi, M.; Fiocchi, M.; Memola, E.; Perri, M.; Piranomonte, S.; Rebecchi, S.; Massaro, E. A catalog of 157 X-ray spectra and 84 spectral energy distributions of blazars observed with BeppoSAX. In Blazar Astrophysics with BeppoSAX and Other Observatories; ESA-ESRIN: Frascati, Italy, 2002. [Google Scholar] [CrossRef]
  94. Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Gonzalez, J.B.; Bellazzini, R.; Bissaldi, E.; et al. The third catalog of active galactic nuclei detected by the fermi large area telescope. Astrophys. J. 2015, 810, 14. [Google Scholar] [CrossRef]
  95. Abdo, A.A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; et al. Fermi large area telescope first source catalog. Astrophys. J. Suppl. Ser. 2010, 188, 405. [Google Scholar] [CrossRef]
  96. Nolan, P.L.; Abdo, A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W.; Axelsson, M.; Baldini, L.; Ballet, J.; et al. Fermi large area telescope second source catalog. Astrophys. J. Suppl. Ser. 2012, 199, 31. [Google Scholar] [CrossRef]
  97. Acero, F.; Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; et al. Fermi large area telescope third source catalog. Astrophys. J. Suppl. Ser. 2015, 218, 23. [Google Scholar] [CrossRef]
  98. Ackermann, M.; Ajello, M.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Gonzalez, J.B.; Bellazzini, R.; Bissaldi, E.; et al. 2FHL: The second catalog of hard Fermi-LAT sources. Astrophys. J. Suppl. Ser. 2016, 222, 5. [Google Scholar] [CrossRef]
  99. Abdollahi, S.; Acero, F.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Berenji, B.; Berretta, A.; Bissaldi, E.; Blandford, R.D.; et al. Incremental fermi large area telescope fourth source catalog. Astrophys. J. Suppl. Ser. 2022, 260, 53. [Google Scholar] [CrossRef]
  100. Johnston, C. One size does not fit all: Evidence for a range of mixing efficiencies in stellar evolution calculations. Astron. Astrophys. 2021, 655, A29. [Google Scholar] [CrossRef]
  101. Bartoli, B.; Bernardini, P.; Bi, X.J.; Bolognino, I.; Branchini, P.; Budano, A.; Calabrese Melcarne, A.K.; Camarri, P.; Cao, Z.; Cardarelli, R.; et al. TeV gamma-ray survey of the northern sky using the ARGO-YBJ detector. Astrophys. J. 2013, 779, 27. [Google Scholar] [CrossRef]
  102. Aliu, E.; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Boettcher, M.; Bouvier, A.; Bugaev, V.; Cannon, A.; et al. Multiwavelength observations of the AGN 1ES 0414+ 009 with VERITAS, Fermi-LAT, Swift-XRT, and MDM. Astrophys. J. 2012, 755, 118. [Google Scholar] [CrossRef]
  103. Skrutskie, M.F.; Cutri, R.M.; Stiening, R.; Weinberg, M.D.; Schneider, S.; Carpenter, J.M.; Beichman, C.; Capps, R.; Chester, T.; Elias, J.; et al. The Two Micron All Sky Survey (2MASS). Astron. J. 2006, 131, 1163. [Google Scholar] [CrossRef]
  104. Cutri, R.; Wright, E.; Conrow, T.; Fowler, J.W.; Eisenhardt, P.R.M.; Grillmair, C.; Kirkpatrick, J.D.; Masci, F.; McCallon, H.L.; Wheelock, S.L.; et al. VizieR On-line Data Catalog: II/328; Caltech: Pasadena, CA, USA, 2013. [Google Scholar]
  105. Akrami, Y.; Argüeso, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.; Bartolo, N.; Basak, S.; et al. Planck intermediate results-LIV. The Planck multi-frequency catalogue of non-thermal sources. Astron. Astrophys. 2018, 619, A94. [Google Scholar]
  106. Intema, H.T.; Jagannathan, P.; Mooley, K.P.; Frail, D.A. The GMRT 150 MHz all-sky radio survey. First alternative data release TGSS ADR1. Astron. Astrophys. 2017, 598, A78. [Google Scholar] [CrossRef]
  107. Gregory, P.C.; Condon, J.J. The 87GB catalog of radio sources. Astrophys. J. Suppl. Ser. 1991, 75, 1011–1291. [Google Scholar] [CrossRef]
  108. Gordon, Y.A.; Boyce, M.M.; O’Dea, C.P.; Rudnick, L.; Andernach, H.; Vantyghem, A.N.; Baum, S.A.; Bui, J.P.; Dionyssiou, M. A catalog of very large array sky survey epoch 1 quick look components, sources, and host identifications. Res. Notes AAS 2020, 4, 175. [Google Scholar] [CrossRef]
  109. Chambers, K.C.; Magnier, E.A.; Metcalfe, N.; Flewelling, H.A.; Huber, M.E.; Waters, C.Z.; Denneau, L.; Draper, P.W.; Farrow, D.; Finkbeiner, D.P.; et al. The Pan-STARRS1 Surveys. arXiv 2016, arXiv:1612.05560. [Google Scholar]
  110. Collaboration, G.; Brown, A.G.A.; Vallenari, A.; Prusti, T.; de Bruijne, J.H.J.; Babusiaux, C.; Bailer-Jones, C.A.L.; Biermann, M.; Evans, D.W.; Eyer, L.; et al. Gaia Data Release 2: Summary of the contents and survey properties. Astron. Astrophys. 2018, 616, A1. [Google Scholar] [CrossRef]
  111. Lasker, B.M.; Lattanzi, M.G.; McLean, B.J.; Bucciarelli, B.; Drimmel, R.; Garcia, J.; Greene, G.; Guglielmetti, F.; Hanley, C.; Hawkins, G.; et al. The Second-Generation Guide Star Catalog: Description and Properties. Astron. J. 2008, 136, 735. [Google Scholar] [CrossRef]
  112. Acciari, V.A.; Ansoldi, S.; Antonelli, L.A.; Engels, A.A.; Baack, D.; Babić, A.; Banerjee, B.; De Almeida, U.B.; Barrio, J.A.; González, J.B.; et al. Broadband characterisation of the very intense TeV flares of the blazar 1ES 1959+ 650 in 2016. Astron. Astrophys. 2020, 638, A14. [Google Scholar]
  113. Yershov, V. Serendipitous UV source catalogues for 10 years of XMM and 5 years of Swift. Astrophys. Space Sci. 2014, 354, 97–101. [Google Scholar] [CrossRef]
  114. Morrissey, P.; Conrow, T.; Barlow, T.A.; Small, T.; Seibert, M.; Wyder, T.K.; Budavári, T.; Arnouts, S.; Friedman, P.G.; Forster, K.; et al. The calibration and data products of GALEX. Astrophys. J. Suppl. Ser. 2007, 173, 682. [Google Scholar] [CrossRef]
  115. Page, M.; Brindle, C.; Talavera, A.; Still, M.; Rosen, S.; Yershov, V.; Ziaeepour, H.; Mason, K.; Cropper, M.; Breeveld, A.; et al. The XMM—Newton serendipitous ultraviolet source survey catalogue. Mon. Not. R. Astron. Soc. 2012, 426, 903–926. [Google Scholar] [CrossRef]
  116. Middei, R.; Giommi, P.; Perri, M.; Turriziani, S.; Sahakyan, N.; Chang, Y.; Leto, C.; Verrecchia, F. The first hard X-ray spectral catalogue of Blazars observed by NuSTAR. Mon. Not. R. Astron. Soc. 2022, 514, 3179–3190. [Google Scholar] [CrossRef]
  117. Giommi, P.; Brandt, C.; de Almeida, U.B.; Pollock, A.; Arneodo, F.; Chang, Y.; Civitarese, O.; De Angelis, M.; D’Elia, V.; Vera, J.D.R.; et al. Open Universe for Blazars: A new generation of astronomical products based on 14 years of Swift-XRT data. Astron. Astrophys. 2019, 631, A116. [Google Scholar] [CrossRef]
  118. Evans, P.; Page, K.; Osborne, J.; Beardmore, A.; Willingale, R.; Burrows, D.; Kennea, J.; Perri, M.; Capalbi, M.; Tagliaferri, G.; et al. 2SXPS: An improved and expanded swift X-Ray telescope point-source catalog. Astrophys. J. Suppl. Ser. 2020, 247, 54. [Google Scholar] [CrossRef]
  119. Giommi, P. Multi-frequency, multi-messenger astrophysics with Swift. The case of blazars. J. High Energy Astrophys. 2015, 7, 173–179. [Google Scholar] [CrossRef]
  120. Webb, N.A.; Coriat, M.; Traulsen, I.; Ballet, J.; Motch, C.; Carrera, F.J.; Koliopanos, F.; Authier, J.; de La Calle, I.; Ceballos, M.T.; et al. The XMM-Newton serendipitous survey-IX. The fourth XMM-Newton serendipitous source catalogue. Astron. Astrophys. 2020, 641, A136. [Google Scholar] [CrossRef]
  121. Saxton, R.; Read, A.; Esquej, P.; Freyberg, M.; Altieri, B.; Bermejo, D. The first XMM-Newton slew survey catalogue: XMMSL1. Astron. Astrophys. 2008, 480, 611–622. [Google Scholar] [CrossRef]
  122. Oh, K.; Koss, M.; Markwardt, C.B.; Schawinski, K.; Baumgartner, W.H.; Barthelmy, S.D.; Cenko, S.B.; Gehrels, N.; Mushotzky, R.; Petulante, A.; et al. The 105-month Swift-BAT all-sky hard X-ray survey. Astrophys. J. Suppl. Ser. 2018, 235, 4. [Google Scholar] [CrossRef]
  123. Chang, Y.L.; Arsioli, B.; Giommi, P.; Padovani, P.; Brandt, C. The 3HSP catalogue of extreme and high-synchrotron peaked blazars. Astron. Astrophys. 2019, 632, A77. [Google Scholar] [CrossRef]
  124. Aleksić, J. et al. [MAGIC Collaboration]. The major upgrade of the MAGIC telescopes, Part I: The hardware improvements and the commissioning of the system. Astropart. Phys. 2016, 72, 61–75. [Google Scholar] [CrossRef]
  125. Daniel, M.; Badran, H.; Bond, I.; Boyle, P.; Bradbury, S.; Buckley, J.; Carter-Lewis, D.; Catanese, M.; Celik, O.; Cogan, P.; et al. Spectrum of very high energy gamma-rays from the blazar 1ES 1959+ 650 during flaring activity in 2002. Astrophys. J. 2005, 621, 181. [Google Scholar] [CrossRef]
  126. Acciari, M.C.V.; Ansoldi, S.; Antonelli, L.; Arbet Engels, A.; Babić, A.; Banerjee, B.; Barres de Almeida, U.; Barrio, J.; Becerra González, J.; Bednarek, W.; et al. An intermittent extreme BL Lac: MWL study of 1ES 2344+ 514 in an enhanced state. Mon. Not. R. Astron. Soc. 2020, 496, 3912–3928. [Google Scholar] [CrossRef]
  127. Singh, K.K.; Bisschoff, B.; van Soelen, B.; Tolamatti, A.; Marais, J.P.; Meintjes, P.J. Long-term multiwavelength view of the blazar 1ES 1218+304. Mon. Not. R. Astron. Soc. 2019, 489, 5076–5086. [Google Scholar] [CrossRef]
  128. Rodrigues, X.; Paliya, V.S.; Garrappa, S.; Omeliukh, A.; Franckowiak, A.; Winter, W. Leptohadronic multi-messenger modeling of 324 gamma-ray blazars. Astron. Astrophys. 2024, 681, A119. [Google Scholar] [CrossRef]
  129. Wani, K.; Gaur, H.; Patil, M. X-Ray Studies of Blazar 1ES 1959+ 650 Using Swift and XMM-Newton Satellite. Astrophys. J. 2023, 951, 94. [Google Scholar] [CrossRef]
  130. Krawczynski, H.; Hughes, S.B.; Horan, D.; Aharonian, F.; Aller, M.F.; Aller, H.; Boltwood, P.; Buckley, J.; Coppi, P.; Fossati, G.; et al. Multiwavelength Observations of Strong Flares from the TeV Blazar 1ES 1959+650. Astrophys. J. 2004, 601, 151. [Google Scholar] [CrossRef]
  131. Sahakyan, N. Lepto-hadronic γ-Ray and Neutrino Emission from the Jet of TXS 0506+056. Astrophys. J. 2018, 866, 109. [Google Scholar] [CrossRef]
  132. Aguilar-Ruiz, E.; Galván-Gámez, A.; Fraija, N. Testing a Lepto-Hadronic Two-Zone Model with Extreme High-Synchrotron Peaked BL Lacs and Track-like High-Energy Neutrinos. Galaxies 2023, 11, 117. [Google Scholar] [CrossRef]
  133. Aguilar-Ruiz, E.; Fraija, N.; Galván-Gámez, A. High-energy neutrino fluxes from hard-TeV BL Lacs. J. High Energy Astrophys. 2023, 38, 1–11. [Google Scholar] [CrossRef]
  134. Sasse, R.; Costa, R., Jr.; Pereira, L.A.S.; dos Anjos, R.C. Blazars Jets and Prospects for TeV-PeV Neutrinos and Gamma Rays Through Cosmic-Ray Interactions. Braz. J. Phys. 2025, 55, 60. [Google Scholar] [CrossRef]
Figure 1. Broadband SED of 1ES 0414+009 modeled using a one-zone SSC model. The solid red line shows the best-fit SED, and the filled gray area represents the 1 σ statistical uncertainty of the fit. Radio data points (low-energy range, < 10 4 eV) are included for completeness but are not fitted, as synchrotron self-absorption in the compact emission region renders them unconstraining within this modeling framework.
Figure 1. Broadband SED of 1ES 0414+009 modeled using a one-zone SSC model. The solid red line shows the best-fit SED, and the filled gray area represents the 1 σ statistical uncertainty of the fit. Radio data points (low-energy range, < 10 4 eV) are included for completeness but are not fitted, as synchrotron self-absorption in the compact emission region renders them unconstraining within this modeling framework.
Universe 11 00177 g001
Figure 2. Broadband SED of 1ES 1959+650 modeled using a one-zone SSC model. The solid red line shows the best-fit SED, and the filled gray area represents the 1 σ statistical uncertainty of the fit. Radio data points (low-energy range, < 10 3 eV) are included for completeness but are not fitted, as synchrotron self-absorption in the compact emission region renders them unconstraining within this modeling framework.
Figure 2. Broadband SED of 1ES 1959+650 modeled using a one-zone SSC model. The solid red line shows the best-fit SED, and the filled gray area represents the 1 σ statistical uncertainty of the fit. Radio data points (low-energy range, < 10 3 eV) are included for completeness but are not fitted, as synchrotron self-absorption in the compact emission region renders them unconstraining within this modeling framework.
Universe 11 00177 g002
Figure 3. Lepto-hadronic SED modeling and multi-wavelength data of 1ES 0414+009 (see Table 1 for detailed observatory data used in the modeling). In comparison to the purely leptonic model, the lepto-hadronic model is characterized by the dominant contributions to the emissions of high-energy photons and neutrinos. These processes originate from the following interactions: proton–photon interactions (p γ , purple dotted curve) are observed from 10 11 eV to 10 17 eV. Pion production from proton–proton interactions (pp π 0 , dark blue dashed curve) is mainly observed from approximately 10 11 to 10 15 eV, while proton-driven SSC processes (black curve) are significant from 10 6 to 10 16 eV.
Figure 3. Lepto-hadronic SED modeling and multi-wavelength data of 1ES 0414+009 (see Table 1 for detailed observatory data used in the modeling). In comparison to the purely leptonic model, the lepto-hadronic model is characterized by the dominant contributions to the emissions of high-energy photons and neutrinos. These processes originate from the following interactions: proton–photon interactions (p γ , purple dotted curve) are observed from 10 11 eV to 10 17 eV. Pion production from proton–proton interactions (pp π 0 , dark blue dashed curve) is mainly observed from approximately 10 11 to 10 15 eV, while proton-driven SSC processes (black curve) are significant from 10 6 to 10 16 eV.
Universe 11 00177 g003
Figure 4. Lepto-hadronic SED modeling and multi-wavelength data of 1ES 1959+650 (see Table 2 for detailed observatory data used in the modeling). In comparison to the purely leptonic model, the lepto-hadronic model is characterized by the dominant contributions to the emissions of high-energy photons and neutrinos. These processes originate from the following interactions: proton–photon interactions (p γ , purple dotted curve) are observed from 10 11 eV to 10 17 eV. Pion production from proton–proton interactions (pp π 0 , dark blue dashed curve) is mainly observed from approximately 10 11 to 10 15 eV, while proton-driven SSC processes (black curve) are significant from 10 6 to 10 16 eV.
Figure 4. Lepto-hadronic SED modeling and multi-wavelength data of 1ES 1959+650 (see Table 2 for detailed observatory data used in the modeling). In comparison to the purely leptonic model, the lepto-hadronic model is characterized by the dominant contributions to the emissions of high-energy photons and neutrinos. These processes originate from the following interactions: proton–photon interactions (p γ , purple dotted curve) are observed from 10 11 eV to 10 17 eV. Pion production from proton–proton interactions (pp π 0 , dark blue dashed curve) is mainly observed from approximately 10 11 to 10 15 eV, while proton-driven SSC processes (black curve) are significant from 10 6 to 10 16 eV.
Universe 11 00177 g004
Table 1. Observatory catalogs used in the modeling of the broadband SED of the source 1ES 0414+009, listed with their respective energy ranges and references.
Table 1. Observatory catalogs used in the modeling of the broadband SED of the source 1ES 0414+009, listed with their respective energy ranges and references.
Observatory/InstrumentCatalog(s)Energy/Wavelength RangeCatalog Reference
NRAO 91-m TelescopeNORTH20CMRadio (1.4 GHz)[80]
VLANVSS, CRATES, CLASSSCATRadio (1.4–8.4 GHz)[81,82,83]
Parkes TelescopePMNRadio (4.85 GHz)[84]
Green Bank TelescopeGBERadio (4.85 GHz)[85]
EXOSAT CMACMAX-ray (0.05–2.0 keV)[86]
ROSATRASS, RXS2CAT, WGACAT2X-ray (0.1–2.4 keV)[87,88,89]
Einstein IPCIPCX-ray (0.15–4.5 keV)[39,52,90]
Swift-XRT1SWXRT, 1SXPSX-ray (0.3–10 keV)[91,92]
BeppoSAXBeppoSAX SpectraX-ray/Gamma-ray (0.1–300 keV)[93]
NASA/IPAC Database (Multi)NEDMulti-wavelength (Radio to Gamma-ray)[94]
Fermi-LATFermi1FGL, FERMI2FGL, FERMI3FGL, 2FHL, FERMI 4FGL-DR3, BAND P5Gamma-Ray (50 MeV–2 TeV)[95,96,97,98,99,100]
ARGO-YBJARGO2LACGamma-ray (0.3–10 TeV)[101]
VERITASVERITASVHE Gamma-ray (85 GeV–30 TeV)[102]
H.E.S.S.HESSVHE Gamma-ray (100 GeV–100 TeV)[47]
Table 2. Observatory catalogs used in the modeling of the broadband SED of the source 1ES 1959+650, listed with their respective energy ranges and references.
Table 2. Observatory catalogs used in the modeling of the broadband SED of the source 1ES 1959+650, listed with their respective energy ranges and references.
Observatory/InstrumentCatalog(s)Energy/Wavelength RangeCatalog Reference
2MASS Survey2MASSNear-Infrared (1.25–2.17 µm)[103]
WISEWISEMid-Infrared (3.4–22 µm)[104]
PlanckPCCS2143Microwave (30–857 GHz)[105]
GMRTTGSS150Radio (150 MHz)[106]
Green Bank Telescope (GB)GB6, GB87Radio (4.85 GHz)[85,107]
VLACRATES, NVSS, VLASSQLRadio (1.4–8.4 GHz)[81,82,108]
NRAO 91-m TelescopeNORTH20Radio (1.4 GHz)[80]
Pan-STARRSPanSTARRSOptical (400–1000 nm)[109]
GaiaGAIAOptical (330–1050 nm)[110]
HST, GSCHSTGSCOptical (300–1000 nm)[111]
Compiled from multiple optical surveysDEBLOptical (350–950 nm)[112]
Swift-UVOTUVOTUV/Optical (170–650 nm)[113]
GALEXGALEXUV (135–280 nm)[114]
XMM-Newton Optical MonitorXMMOMUV/Optical (180–600 nm)[115]
Owens Valley + othersOUNBLZ, OUSXBOptical (400–800 nm), X-ray (0.3–10 keV)[116,117]
Einstein IPCIPCSLX-ray (0.16–3.5 keV)[52]
ROSATRASSX-ray (0.1–2.4 keV)[88]
Swift-XRT2SXPS, XRTSPECX-ray (0.3–10 keV)[118,119]
XMM-Newton4XMM-DR10, XMMSL2X-ray (0.2–12 keV)[120,121]
Swift-BATBAT105mHard X-ray (14–195 keV)[122]
BeppoSAXBeppoSAXX-ray/Gamma-ray (0.1–300 keV)[93]
Oulu Neutron MonitorOULCCosmic-ray flux (secondary particles, ∼GeV range)[123]
Fermi-LAT3FGL, 4FGL-DR2, 3FHL, 2FHL, 2BIGB, FMonLCGamma-ray (50 MeV–2 TeV)[95,96,97,98,99]
MAGICMAGICVHE Gamma-ray (50 GeV–50 TeV)[124]
VERITASVERITASVHE Gamma-ray (85 GeV–30 TeV)[59]
Whipple TelescopeWHIPPLEVHE Gamma-ray (300 GeV–10 TeV)[125]
Table 3. SSC model parameters for 1ES 0414+009 and 1ES 1959+650.
Table 3. SSC model parameters for 1ES 0414+009 and 1ES 1959+650.
SymbolDescription1ES 0414+0091ES 1959+650
γ min Minimum electron Lorentz factor 6.35 × 10 1 9.60 × 10 2
γ break Break electron Lorentz factor 8.11 × 10 4 1.96 × 10 5
γ max Maximum electron Lorentz factor 1.70 × 10 6 2.40 × 10 6
B [G]Magnetic field strength 3.62 × 10 1 1.05 × 10 1
R [cm]Radius of the emitting region (blob) 1.02 × 10 16 3.15 × 10 15
θ obs [deg]Viewing angle 1.61 2.9
N [cm−3]Particle number density 45.11 12.47
pSpectral index below γ break 2.29 2.41
p 1 Spectral index above γ break 4.45 4.37
Γ Bulk Lorentz factor 15.02 37.25
Table 4. Derived physical quantities for 1ES 0414+009 and 1ES 1959+650.
Table 4. Derived physical quantities for 1ES 0414+009 and 1ES 1959+650.
SymbolDescription1ES 0414+0091ES 1959+650
U e [erg cm−3]Electron energy density 9.19 × 10 3 3.04 × 10 2
U B [erg cm−3]Magnetic energy density 5.22 × 10 3 4.37 × 10 4
U sync [erg cm−3]Synchrotron photon energy density 1.22 × 10 3 3.54 × 10 4
L syn [erg s−1]Synchrotron radiative power 3.33 × 10 42 3.98 × 10 41
L SSC [erg s−1]SSC radiative power 5.83 × 10 41 1.81 × 10 41
L rad [erg s−1]Total radiated power 3.91 × 10 42 5.79 × 10 41
L kin [erg s−1]Jet kinetic power 2.09 × 10 44 5.52 × 10 43
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Bernardo da Silva, S.V.; Stuani Pereira, L.A.; Dos Anjos, R.d.C. Bethe–Heitler Cascades and Hard Gamma-Ray Spectra in Flaring TeV Blazars: 1ES 0414009 and 1ES 1959650. Universe 2025, 11, 177. https://doi.org/10.3390/universe11060177

AMA Style

Bernardo da Silva SV, Stuani Pereira LA, Dos Anjos RdC. Bethe–Heitler Cascades and Hard Gamma-Ray Spectra in Flaring TeV Blazars: 1ES 0414009 and 1ES 1959650. Universe. 2025; 11(6):177. https://doi.org/10.3390/universe11060177

Chicago/Turabian Style

Bernardo da Silva, Samuel Victor, Luiz Augusto Stuani Pereira, and Rita de Cássia Dos Anjos. 2025. "Bethe–Heitler Cascades and Hard Gamma-Ray Spectra in Flaring TeV Blazars: 1ES 0414009 and 1ES 1959650" Universe 11, no. 6: 177. https://doi.org/10.3390/universe11060177

APA Style

Bernardo da Silva, S. V., Stuani Pereira, L. A., & Dos Anjos, R. d. C. (2025). Bethe–Heitler Cascades and Hard Gamma-Ray Spectra in Flaring TeV Blazars: 1ES 0414009 and 1ES 1959650. Universe, 11(6), 177. https://doi.org/10.3390/universe11060177

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop