Estimation of Day-Time Seeing Changes at Huairou Solar Observing Station Based on Neural Networks from 1989 to 2010
Abstract
:1. Introduction
2. Data and Preprocessing
2.1. Data
2.2. Obtaining by Spectral Ratio Method
2.3. Adjustment of the Resolution of Historical Data
2.4. PCA Dimensionality Reduction
3. Method for Estimating Based on BP Neural Network
3.1. Design of Vision Estimation Algorithm Based on BP Neural Network
3.2. Algorithm Implementation Platform
4. Experimental Results and Discussion
4.1. Method Testing
4.2. Actual Estimation of from 1989 to 2010
4.3. Systematic Error Estimation Experiment
- The position of the solar limb is extracted using phase congruency algorithm, and the angle-of-arrival (AA) is calculated for a set of images. This part of the algorithm is detailed in the paper by Song et al. [7] and will not be repeated here;
- is calculated using the following formula:
5. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fried, D.L. Optical Resolution Through a Randomly Inhomogeneous Medium for Very Long and Very Short Exposures. J. Opt. Soc. Am. 1966, 56, 1372–1379. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, P.Z.; Qiu, Y.H. Differential image motion visual acuity measurement experiment. Publ. Yunnan Obs. 1993, 4, 22–30. [Google Scholar]
- Deng, L.; Yang, F.; Chen, X.; He, F.; Liu, Q.; Zhang, B.; Zhang, C.; Wang, K.; Liu, N.; Ren, A.; et al. Lenghu on the Tibetan Plateau as an astronomical observing site. Nature 2021, 596, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Deng, Y.Y.; Ji, H.S.; Li, H. Ground-based giant solar telescope of China. Sci. Sin. Phys. Mech. Astron. 2012, 12, 1282–1291. [Google Scholar] [CrossRef]
- Liu, Y.; Song, T.F.; Zhang, X.F.; Liu, S.; Zhao, M.; Tian, Z.; Miao, Y.; Li, H.; Huang, J.; Su, B.; et al. Progress of site survey for large solar telescopes in western China. Proc. Int. Astron. Union 2016, 11, 447–449. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Y.Y.; Yang, D.H.; Ji, H.S.; Jin, Z.Y.; Lin, J. Chinese Giant Solar Telescope. Sci. Sin. Phys. Mech. Astron. 2019, 49, 059604. [Google Scholar] [CrossRef]
- Song, T.F.; Wen, Y.M.; Liu, Y.; Elmhamdi, A.; Kordi, A.S.; Zhao, M.Y.; Zhang, X.F.; Li, X.B.; Wang, J.X.; Fu, Y.; et al. Automatic Solar Seeing Observations at Mt. Wumingshan in Western China. Sol. Phys. 2018, 2, 37. [Google Scholar] [CrossRef]
- Roggemann, M.C.; Welsh, B.M. Imaging Through Turbulence, 1st ed.; CRC Press: Boca Raton, FL, USA, 1996; pp. 154–196. [Google Scholar]
- Martin, H.M. Image Motion as a Measure of Seeing Quality. Publ. Astron. Soc. Pac. 1987, 99, 1360. [Google Scholar] [CrossRef]
- Liu, Z.; Lou, K.; Zhang, R.L.; Lu, R.W.; Beckers, J. The Day-time Seeing Monitor at Fuxian Lake and Some Primary Results. Publ. Yunnan Obs. 2000, 4, 95–100. [Google Scholar]
- Liu, Z.; Beckers, J.M. Comparative Solar Seeing and Scintillation Studies at the Fuxian Lake Solar Station. Sol. Phys. 2001, 198, 197–209. [Google Scholar]
- Wu, S.; Hu, X.D.; Han, Y.J.; Wu, X.; Su, C.; Luo, T.; Li, X. Measurement and analysis of atmospheric optical turbulence in Lhasa based on thermosonde. J. Atmos. Sol. Terr. Phys. 2020, 201, 105241. [Google Scholar] [CrossRef]
- Labeyrie, A. Attainment of Diffraction Limited Resolution in Large Telescopes by Fourier Analysing Speckle Patterns in Star Images. Astron. Astrophys. 1973, 6, 85–87. [Google Scholar]
- Deng, Y.Y.; Ai, G.X.; Zhang, B.; Qiu, P.Z.; Qiu, Y.H.; Liu, Z. High resolution image recovery in the region of the Sun. Sinica 1994, 35, 380–386. [Google Scholar]
- Krotov, D.; Hopfield, J. Large Associative Memory Problem in Neurobiology and Machine Learning. arXiv 2021, arXiv:2008.06996. [Google Scholar]
- Hinton, G.E.; Sejnowski, T.J. Optimal perceptual inference. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, 19–23 June 1983; pp. 448–453. [Google Scholar]
- Hu, X.; Yang, S.B.; Ji, K.F.; Lin, J.B.; Deng, Y.Y.; Bai, X.Y.; Zhu, X.M.; Bai, Y.; Wang, Q. Calibration of Observing Wavelength Points of Birefringent Narrow Band Filter-Type Magnetograph Based on Neural Network. Chin. J. Lasers 2023, 13, 92–101. [Google Scholar]
- Huang, X.; Wang, H.N.; Xu, L.; Liu, J.; Li, R.; Dai, X. Deep Learning Based Solar Flare Forecasting Model. I. Results for Line-of-sight Magnetograms. Astrophys. J. 2018, 856, 11. [Google Scholar] [CrossRef]
- Yuan, Y.; Shih, F.; Jing, J.; Wang, H. Automated flare forecasting using a statistical learning technique. Res. Astron. Astrophys. 2010, 10, 785–796. [Google Scholar] [CrossRef]
- Hu, T.Z.; Zhang, Y.; Cui, X.Q.; Zhang, Q.Y.; Li, Y.P.; Cao, Z.H.; Pan, X.S.; Fu, Y. Telescope performance real-time monitoring based on machine learning. Mon. Not. R. Astron. Soc. 2012, 1, 388–396. [Google Scholar] [CrossRef]
- Guo, J.J.; Bai, X.Y.; Deng, Y.Y.; Liu, H.; Lin, J.B.; Su, J.T.; Yang, X.; Ji, K.F. A Non-Linear Magnetic Field Calibration Method for Filter-Based Magnetographs by Multilayer Perceptron. Solar Phys. 2020, 295, 18. [Google Scholar] [CrossRef]
- Wen, X.; Li, X.; Zhang, X.W. Implementing Neural Networks with MATLAB, 1st ed.; National Defence Industry Press: Beijing, China, 2015; pp. 95–100. [Google Scholar]
- Mitchell, T.M. Machine Learning, 1st ed.; International Edition: New York, NY, USA, 1997; pp. 9–20. [Google Scholar]
- Haykin, S.O. Neural Networks and Learning Machines, 1st ed.; Pearson: New York, NY, USA, 2008; pp. 15–25. [Google Scholar]
- Wang, J.M.; Qian, Z.Y.; Ai, G.X.; Shi, Z.X.; Hu, Y.F. Comparison of candidate solar optical observation sites in Shahe, Xinglong, and Huairou (II)—Observation of atmospheric temperature fluctuations in the near surface layer. Acta Astron. Sin. 1977, 02, 182–191. [Google Scholar]
- Ai, G.X.; Li, W.; Zhang, H.Q. FeI lambda 5324.19 A line forms in the solar magnetic field and the theoretical calibration of the solar magnetic field telescope. Acta Astron. Sin. 1982, 23, 39–48. [Google Scholar]
- von der Lühe, O. Estimating Fried’s parameter from a time series of an arbitrary resolved object imaged through atmospheric turbulence. J. Opt. Soc. Am. 1984, 5, 510–519. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010. [Google Scholar]
- Guido, S.; Mueller, A.C. Introduction to Machine Learning with Python, 1st ed.; O’Reilly Media: New York, NY, USA, 2016; pp. 154–166. [Google Scholar]
- Tokovinin, A. From Differential Image Motion to Seeing. Publ. Astron. Soc. Pac. 2002, 114, 1556–1566. [Google Scholar] [CrossRef]
- Özışık, T.; Ak, T. First day-time seeing observations at the TÜBİTAK. Astron. Astrophys. 2004, 3, 1129–1133. [Google Scholar] [CrossRef]
DATA (YYYYMMDD) | Pixel Resolution | Exposure Time |
---|---|---|
19890101–20010825 | 30 ms–60 ms | |
20010825–20011130 | 30 ms–60 ms | |
20011201–20101231 | 30 ms–60 ms | |
20200101–20211212 | 30 ms–60 ms | |
2021–2023 spectral ratio method data | 10 ms |
Hardware Environment | Specifications |
---|---|
CPU | Intel Core i9-9900KF @ 3.60 GHz 8-Core |
RAM | 64 GB |
GPU | NVIDIA GeForce RTX 2070 (8 GB) |
MainBoard | ASUS TUF Z390-PLUS GAMING |
Parameter Name | Description |
---|---|
Aperture diameter D | 6 cm |
Aperture separation d | 22 cm |
Solar filter | BAADER Film |
Software | Self-made |
Site/Period | April–June | July–September | October–December |
---|---|---|---|
Big Bear | 6.21 | 6.45 | 5.93 |
Haleakala | 3.03 | 3.33 | 3.57 |
La Palma | 3.65 | 3.73 | 2.96 |
Panguitch Lake | 3.77 | 3.59 | 2.77 |
Sacramento Peak | 2.40 | 3.13 | 2.72 |
San Pedro Martir | 3.00 | 2.73 | - |
TUG | 4.89 | 3.56 | 6.12 |
Mt. WMS | 7.14 | - | 7.33 |
HSOS(Neural Network) | 2.53 | 2.55 | 2.53 |
HSOS(SDIMM) | 5.56 | 5.61 | 5.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Yang, S.; Song, T.; Bao, X.; Sun, W.; Deng, Y.; Liu, Y.; Zhao, M. Estimation of Day-Time Seeing Changes at Huairou Solar Observing Station Based on Neural Networks from 1989 to 2010. Universe 2025, 11, 169. https://doi.org/10.3390/universe11060169
Hu X, Yang S, Song T, Bao X, Sun W, Deng Y, Liu Y, Zhao M. Estimation of Day-Time Seeing Changes at Huairou Solar Observing Station Based on Neural Networks from 1989 to 2010. Universe. 2025; 11(6):169. https://doi.org/10.3390/universe11060169
Chicago/Turabian StyleHu, Xing, Shangbin Yang, Tengfei Song, Xingming Bao, Wenjun Sun, Yuanyong Deng, Yu Liu, and Mingyu Zhao. 2025. "Estimation of Day-Time Seeing Changes at Huairou Solar Observing Station Based on Neural Networks from 1989 to 2010" Universe 11, no. 6: 169. https://doi.org/10.3390/universe11060169
APA StyleHu, X., Yang, S., Song, T., Bao, X., Sun, W., Deng, Y., Liu, Y., & Zhao, M. (2025). Estimation of Day-Time Seeing Changes at Huairou Solar Observing Station Based on Neural Networks from 1989 to 2010. Universe, 11(6), 169. https://doi.org/10.3390/universe11060169