Using Machine Learning for Lunar Mineralogy-I: Hyperspectral Imaging of Volcanic Samples
Abstract
:1. Introduction
2. Data and Methodology
2.1. Hyperspectral Imaging Setup
2.2. Data Cube Creation with Hyperspectral Imaging (HSI)
2.3. Significance of Spectral Data
2.4. Data Acquisition and Preprocessing
2.5. Machine Learning: Clustering Methods
PCA Analysis
2.6. Non-Negative Matrix Factorization for Similarity Analysis
3. Results
3.1. Mineral Composition Similarity
3.2. The Overall Consequences for All Regions
3.3. Evaluation of Methods
4. Comparison of Lunar Volcanism Minerals
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | The choice of clusters is optimal, as both performance metrics and visual assessments indicate superior clustering quality compared to other cluster numbers. |
References
- Taylor, L.A.; Pieters, C.M.; Keller, L.P.; Morris, R.V.; McKay, D.S. Lunar mare soils: Space weathering and the major effects of surface-correlated nanophase Fe. J. Geophys. Res. Planets 2001, 106, 27985–27999. [Google Scholar]
- Jaumann, R.; Hiesinger, H.; Anand, M.; Crawford, I.; Wagner, R.; Sohl, F.; Jolliff, B.; Scholten, F.; Knapmeyer, M.; Hoffmann, H.; et al. Geology, geochemistry, and geophysics of the Moon: Status of current understanding. Planet. Space Sci. 2012, 74, 15–41. [Google Scholar] [CrossRef]
- Moriarty, D.P.; Dygert, N.; Valencia, S.N.; Watkins, R.N.; Petro, N.E. The search for lunar mantle rocks exposed on the surface of the Moon. Nat. Commun. 2021, 12, 4659. [Google Scholar] [CrossRef]
- McSween, H.Y.; Wyatt, M.B.; Gellert, R.; Bell III, J.F.; Morris, R.V.; Herkenhoff, K.E.; Crumpler, L.S.; Milam, K.A.; Stockstill, K.R.; Tornabene, L.L.; et al. Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars. J. Geophys. Res. Planets 2006, 111. [Google Scholar] [CrossRef]
- Pieters, C.M. Composition of the lunar highland crust from near-infrared spectroscopy. Rev. Geophys. 1986, 24, 557–578. [Google Scholar] [CrossRef]
- van der Meer, F. Remote-sensing image analysis and geostatistics. Int. J. Remote Sens. 2012, 33, 5644–5676. [Google Scholar] [CrossRef]
- Adams, J.B. Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system. J. Geophys. Res. 1974, 79, 4829–4836. [Google Scholar] [CrossRef]
- Cloutis, E.A.; Gaffey, M.J. Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry. J. Geophys. Res. Planets 1991, 96, 22809–22826. [Google Scholar] [CrossRef]
- Plaza, A.; Plaza, J.; Paz, A.; Sánchez, S. Parallel Hyperspectral Image and Signal Processing [Applications Corner]. IEEE Signal Process. Mag. 2011, 28, 119–126. [Google Scholar] [CrossRef]
- Spampinato, L.; Calvari, S.; Oppenheimer, C.; Boschi, E. Volcano surveillance using infrared cameras. Earth Sci. Rev. 2011, 106, 63–91. [Google Scholar] [CrossRef]
- Mandon, L.; Beck, P.; Quantin-Nataf, C.; Dehouck, E.; Thollot, P.; Loizeau, D.; Volat, M. ROMA: A Database of Rock Reflectance Spectra for Martian In Situ Exploration. Earth Space Sci. 2022, 9, e01871. [Google Scholar] [CrossRef] [PubMed]
- Korda, D.; Penttilä, A.; Klami, A.; Kohout, T. Neural network for determining an asteroid mineral composition from reflectance spectra. Astron. Astrophys. 2023, 669, A101. [Google Scholar] [CrossRef]
- Head, J.W., III. Lunar volcanism in space and time. Rev. Geophys. Space Phys. 1976, 14, 265–300. [Google Scholar] [CrossRef]
- Corley, L.M.; McGovern, P.J.; Kramer, G.Y.; Lemelin, M.; Trang, D.; Gillis-Davis, J.J.; Taylor, G.J.; Powell, K.E.; Kiefer, W.S.; Wieczorek, M.; et al. Olivine-bearing lithologies on the Moon: Constraints on origins and transport mechanisms from M3 spectroscopy, radiative transfer modeling, and GRAIL crustal thickness. Icarus 2018, 300, 287–304. [Google Scholar] [CrossRef]
- Surkov, Y.; Shkuratov, Y.; Kaydash, V.; Korokhin, V.; Videen, G. Lunar ilmenite content as assessed by improved Chandrayaan-1 M3 data. Icarus 2020, 341, 113661. [Google Scholar] [CrossRef]
- Bhatt, M.; Wöhler, C.; Grumpe, A.; Hasebe, N.; Naito, M. Global mapping of lunar refractory elements: Multivariate regression vs. machine learning. Astron. Astrophys. 2019, 627, A155. [Google Scholar] [CrossRef]
- Thoresen, F.; Drozdovskiy, I.; Cowley, A.; Laban, M.; Besse, S.; Blunier, S. Insights into Lunar Mineralogy: An Unsupervised Approach for Clustering of the Moon Mineral Mapper (M3) spectral data. arXiv 2024, arXiv:2411.03186. [Google Scholar] [CrossRef]
- Zhang, X.; Cloutis, E. Near-infrared Spectra of Lunar Ferrous Mineral Mixtures. Earth Space Sci. 2021, 8, e2020EA001153. [Google Scholar] [CrossRef]
- Clénet, H.; Pinet, P.; Daydou, Y.; Heuripeau, F.; Rosemberg, C.; Baratoux, D.; Chevrel, S. A new systematic approach using the Modified Gaussian Model: Insight for the characterization of chemical composition of olivines, pyroxenes and olivine–pyroxene mixtures. Icarus 2011, 213, 404–422. [Google Scholar] [CrossRef]
- Dhingra, D. The New Moon: Major Advances in Lunar Science Enabled by Compositional Remote Sensing from Recent Missions. Geosciences 2018, 8, 498. [Google Scholar] [CrossRef]
- Staid, M.I.; Pieters, C.M.; Besse, S.; Boardman, J.; Dhingra, D.; Green, R.; Head, J.W.; Isaacson, P.; Klima, R.; Kramer, G.; et al. The mineralogy of late stage lunar volcanism as observed by the Moon Mineralogy Mapper on Chandrayaan-1. J. Geophys. Res. Planets 2011, 116. [Google Scholar] [CrossRef]
- Sabat-Tomala, A.; Raczko, E.; Zagajewski, B. Comparison of Support Vector Machine and Random Forest Algorithms for Invasive and Expansive Species Classification Using Airborne Hyperspectral Data. Remote Sens. 2020, 12, 516. [Google Scholar] [CrossRef]
- Bhatt, P.; Maclean, A.; Dickinson, Y.; Kumar, C. Fine-Scale Mapping of Natural Ecological Communities Using Machine Learning Approaches. Remote Sens. 2022, 14, 563. [Google Scholar] [CrossRef]
Region | Method | Olivine (100% Pyroxene) | Max Similarity | Median | RMSE | |
---|---|---|---|---|---|---|
1 | Hierarchical | 100.00 | 99.66 | 97.36 | 3.30 | 0.54 |
1 | GMM | 100.00 | 97.83 | 93.64 | 1.78 | 0.55 |
1 | K-Means | 100.00 | 98.09 | 93.79 | 4.12 | 0.52 |
1 | Spectral | 90.00 | 97.69 | 95.62 | 0.80 | 0.53 |
2 | Hierarchical | 100.00 | 99.20 | 89.19 | 5.32 | 0.51 |
2 | GMM | 25.00 | 97.55 | 79.25 | 12.94 | 0.54 |
2 | K-Means | 100.00 | 97.08 | 88.94 | 4.08 | 0.53 |
2 | Spectral | 100.00 | 94.77 | 80.19 | 1.98 | 0.52 |
3 | Hierarchical | 100.00 | 85.84 | 79.54 | 3.2 | 0.53 |
3 | GMM | 100.00 | 87.99 | 78.63 | 1.49 | 0.50 |
3 | K-Means | 100.00 | 92.71 | 81.35 | 1.53 | 0.48 |
3 | Spectral | 100.00 | 94.76 | 81.92 | 6.27 | 0.50 |
4 | Hierarchical | 100.00 | 96.30 | 95.40 | 0.54 | 0.50 |
4 | GMM | 90.00 | 97.69 | 89.66 | 4.21 | 0.52 |
4 | K-Means | 100.00 | 95.58 | 89.84 | 4.05 | 0.53 |
4 | Spectral | 90.00 | 96.33 | 93.04 | 5.28 | 0.49 |
5 | Hierarchical | 100.00 | 84.50 | 72.60 | 3.72 | 0.46 |
5 | GMM | 100.00 | 79.76 | 76.65 | 2.20 | 0.44 |
5 | K-Means | 100.00 | 84.36 | 81.10 | 2.04 | 0.43 |
5 | Spectral | 100.00 | 84.70 | 79.35 | 2.94 | 0.45 |
6 | Hierarchical | 100.00 | 97.39 | 76.52 | 2.62 | 0.50 |
6 | GMM | 100.00 | 93.10 | 77.13 | 2.15 | 0.51 |
6 | K-Means | 75.00 | 95.56 | 95.56 | 0.00 | 0.54 |
6 | Spectral | 75.00 | 96.89 | 96.89 | 0.00 | 0.55 |
7 | Hierarchical | 100.00 | 94.64 | 83.24 | 3.81 | 0.52 |
7 | GMM | 100.00 | 94.64 | 87.13 | 2.30 | 0.50 |
7 | K-Means | 100.00 | 89.85 | 86.57 | 1.40 | 0.49 |
7 | Spectral | 100.00 | 94.47 | 83.71 | 2.61 | 0.54 |
8 | Hierarchical | 90.00 | 93.79 | 88.99 | 2.18 | 0.52 |
8 | GMM | 90.00 | 96.43 | 91.10 | 1.83 | 0.55 |
8 | K-Means | 75.00 | 95.68 | 86.09 | 6.78 | 0.57 |
8 | Spectral | 90.00 | 95.46 | 94.28 | 2.27 | 0.52 |
9 | Hierarchical | 100.00 | 90.24 | 75.57 | 2.91 | 0.38 |
9 | GMM | 100.00 | 90.28 | 72.00 | 2.76 | 0.40 |
9 | K-Means | 100.00 | 90.28 | 71.45 | 2.85 | 0.38 |
9 | Spectral | 100.00 | 90.72 | 73.90 | 2.92 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazel Hesar, F.; Raouf, M.; Soltani, P.; Foing, B.; de Dood, M.J.A.; Verbeek, F.J. Using Machine Learning for Lunar Mineralogy-I: Hyperspectral Imaging of Volcanic Samples. Universe 2025, 11, 117. https://doi.org/10.3390/universe11040117
Fazel Hesar F, Raouf M, Soltani P, Foing B, de Dood MJA, Verbeek FJ. Using Machine Learning for Lunar Mineralogy-I: Hyperspectral Imaging of Volcanic Samples. Universe. 2025; 11(4):117. https://doi.org/10.3390/universe11040117
Chicago/Turabian StyleFazel Hesar, Fatemeh, Mojtaba Raouf, Peyman Soltani, Bernard Foing, Michiel J. A. de Dood, and Fons J. Verbeek. 2025. "Using Machine Learning for Lunar Mineralogy-I: Hyperspectral Imaging of Volcanic Samples" Universe 11, no. 4: 117. https://doi.org/10.3390/universe11040117
APA StyleFazel Hesar, F., Raouf, M., Soltani, P., Foing, B., de Dood, M. J. A., & Verbeek, F. J. (2025). Using Machine Learning for Lunar Mineralogy-I: Hyperspectral Imaging of Volcanic Samples. Universe, 11(4), 117. https://doi.org/10.3390/universe11040117