Bounce Cosmology in a Locally Scale Invariant Physics with a U(1) Symmetry
Abstract
:1. Introduction
2. Theoretical Framework
3. Cosmological Model
3.1. Underlying Symmetries of the Model
3.2. Evolution of the Cosmological Background
3.3. Einstein vs. Jordan Frame
3.4. Linear Perturbation Theory
3.5. Stability Analysis for a Toy Bouncing Model
4. Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Consequences of a Symmetric Bounce Scenario
References
- Borde, A.; Guth, A.H.; Vilenkin, A. Inflationary Spacetimes Are Incomplete in Past Directions. Phys. Rev. Lett. 2003, 90, 151301. [Google Scholar] [CrossRef]
- Adams, F.C.; Freese, K.; Guth, A.H. Constraints on the scalar-field potential in inflationary models. Phys. Rev. D 2009, 43, 965. [Google Scholar] [CrossRef] [PubMed]
- Goldwirth, D.S.; Piran, T. Initial conditions for inflation. Phys. Rep. 1992, 214, 223. [Google Scholar] [CrossRef]
- Brandenberger, R.H. Inflationary Cosmology: Progress and Problems; Springer: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Martin, J.; Brandenberger, R.H. Trans-Planckian problem of inflationary cosmology. Phys. Rev. D 2001, 63, 123501. [Google Scholar] [CrossRef]
- Brandenberger, R.H.; Martin, J. The Robustness of Inflation to Changes in Super-Planck-Scale Physics. Mod. Phys. Lett. A 2001, 16, 999. [Google Scholar] [CrossRef]
- Niemeyer, J.C. Inflation with a Planck-scale frequency cutoff. Phys. Rev. D 2001, 63, 123502. [Google Scholar] [CrossRef]
- Lemoine, M.; Lubo, M.; Martin, J.; Uzan, J.P. Stress-energy tensor for trans-Planckian cosmology. Phys. Rev. D 2001, 65, 023510. [Google Scholar] [CrossRef]
- Brandenberger, R.H. Conceptual Problems of Inflationary Cosmology and a New Approach to Cosmological Structure Formation; Lecture Notes in Physics; Springer: Berlin, Germany, 2007; p. 393. [Google Scholar]
- Ijjas, A.; Steinhardt, P.J.; Loeb, A. Inflationary paradigm in trouble after Planck 2013. Phys. Lett. B 2013, 723, 261. [Google Scholar] [CrossRef]
- Ijjas, A.; Steinhardt, P.J.; Loeb, A. Inflationary schism. Phys. Lett. B 2014, 736, 142. [Google Scholar] [CrossRef]
- Garfinkle, D.; Ijjas, A.; Steinhardt, P.J. Initial conditions problem in cosmological inflation revisited. Phys. Lett. B 2023, 843, 138028. [Google Scholar] [CrossRef]
- Addison, G.E.; Huang, Y.; Watts, D.J.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Weil, J.L. Quantifying Discordance in the 2015 Planck CMB Spectrum. Astrophys. J. 2016, 818, 132. [Google Scholar] [CrossRef]
- Hinshaw, G.; Branday, A.J.; Bennett, C.L.; Gorski, K.M.; Kogut, A.; Lineweaver, C.H.; Smoot, G.F.; Wright, E.L. Two-Point Correlations in the COBE DMR Four-Year Anisotropy Maps. Astrophys. J. Lett. 1996, 464, L25. [Google Scholar] [CrossRef]
- Copi, C.J.; Huterer, D.; Schwarz, D.J.; Starkman, G.D. No large-angle correlations on the non-Galactic microwave sky. Mon. Not. R. Astron. Soc. 2009, 399, 295. [Google Scholar] [CrossRef]
- Schwarz, D.J.; Copi, C.J.; Huterer, D.; Starkman, G.D. CMB anomalies after Planck. Class. Quantum Gravity 2016, 33, 184001. [Google Scholar] [CrossRef]
- Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar]
- Freedman, W.L. Correction: Cosmology at a crossroads. Nat. Astron. 2017, 1, 0169. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.; Bucciarelli, B.; Lattanzi, M.G.; MacKenty, J.W.; Bowers, J.B.; Zheng, W.K.; Filippenko, A.V. Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant. Astrophys. J. 2018, 861, 126. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.M.; Scolnic, D. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM. Astrophys. J. 2019, 876, 85. [Google Scholar] [CrossRef]
- Wong, K.C.; Suyu, S.H.; Chen, G.C.-F.; Rusu, C.E.; Millon, M.; Sluse, D.; Bonvin, V.; Fassnacht, C.D.; Taubenberger, S.; Auger, M.W.; et al. H0LiCOW—XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes. Mon. Not. R. Astron. Soc. 2020, 498, 1420. [Google Scholar] [CrossRef]
- Jones, J.; Copi, C.J.; Starkman, G.D.; Akrami, Y. The Universe is not statistically isotropic. arXiv 2023, arXiv:2310.12859. [Google Scholar]
- Harrison, E.R. Fluctuations at the Threshold of Classical Cosmology. Phys. Rev. D 1970, 1, 2726. [Google Scholar] [CrossRef]
- Zeldovich, Y.B. A hypothesis, unifying the structure and the entropy of the Universe. Mon. Not. R. Astron. Soc. 1972, 160, 1P. [Google Scholar] [CrossRef]
- Peebles, P.J.E.; Yu, J.T. Primeval Adiabatic Perturbation in an Expanding Universe. Astrophys. J. 1970, 162, 815. [Google Scholar] [CrossRef]
- Baumann, D.; McAllister, L. Inflation and String Theory; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Rubakov, V.A. Harrison–Zeldovich spectrum from conformal invariance. J. Cosmol. Astropart. Phys. 2009, 2009, 030. [Google Scholar] [CrossRef]
- Libanov, M.; Mironov, S.; Rubakov, V. Properties of scalar perturbations generated by conformal scalar field. Prog. Theor. Phys. Suppl. 2011, 190, 120. [Google Scholar] [CrossRef]
- Armendáriz-Picón, C.; Lim, E.A. Scale invariance without inflation? J. Cosmol. Astropart. Phys. 2003, 2003, 002. [Google Scholar] [CrossRef]
- Helbig, P. Is there a flatness problem in classical cosmology? Mon. Not. R. Astron. Soc. 2012, 421, 561. [Google Scholar] [CrossRef]
- Carroll, S.M. In What Sense Is the Early Universe Fine-Tuned? arXiv 2014, arXiv:1406.3057. [Google Scholar]
- Helbig, P. The flatness problem and the age of the Universe. Mon. Not. R. Astron. Soc. 2020, 495, 3571. [Google Scholar] [CrossRef]
- Albrecht, A.; Magueijo, J. Time varying speed of light as a solution to cosmological puzzles. Phys. Rev. D 1999, 59, 043516. [Google Scholar] [CrossRef]
- Hu, Y.; Turner, M.S.; Weinberg, E.J. Dynamical solutions to the horizon and flatness problems. Phys. Rev. D 1994, 49, 3830. [Google Scholar] [CrossRef]
- Novello, M.; Bergliaffa, S.E.P. Bouncing cosmologies. Phys. Rep. 2008, 463, 127. [Google Scholar] [CrossRef]
- Peter, P.; Pinto-Neto, N. Cosmology without inflation. Phys. Rev. D 2008, 78, 063506. [Google Scholar] [CrossRef]
- Brandenberger, R.H. The Matter Bounce Alternative to Inflationary Cosmology. arXiv 2012, arXiv:1206.4196. [Google Scholar]
- Lilley, M.; Peter, P. Bouncing alternatives to inflation. C. R. Phys. 2015, 16, 1038. [Google Scholar] [CrossRef]
- Ijjas, A.; Steinhardt, P.J. Bouncing cosmology made simple. Class. Quantum Gravity 2018, 35, 135004. [Google Scholar] [CrossRef]
- Battefeld, D.; Peter, P. A critical review of classical bouncing cosmologies. Phys. Rep. 2015, 571, 1. [Google Scholar] [CrossRef]
- Brandenberger, R.; Peter, P. Bouncing Cosmologies: Progress and Problems. Found. Phys. 2017, 47, 797. [Google Scholar] [CrossRef]
- Deser, S. Scale invariance and gravitational coupling. Ann. Phys. 1970, 59, 248. [Google Scholar] [CrossRef]
- Anderson, J.L. Scale Invariance of the Second Kind and the Brans-Dicke Scalar-Tensor Theory. Phys. Rev. D 1971, 3, 1689. [Google Scholar] [CrossRef]
- Freund, P.G.O. Local scale invarlance and gravitation. Ann. Phys. 1974, 84, 440. [Google Scholar] [CrossRef]
- Kallosh, R. On the renormalization problem of quantum gravity. Phys. Lett. B 1975, 55, 321. [Google Scholar] [CrossRef]
- Englert, F.; Gunzig, E.; Truffin, C.; Windey, P. Conformal invariant general relativity with dynamical symmetry breakdown. Phys. Lett. B 1975, 57, 73. [Google Scholar] [CrossRef]
- Smolin, L. Gravitational radiative corrections as the origin of spontaneous symmetrybreaking! Phys. Lett. B 1980, 93, 95. [Google Scholar] [CrossRef]
- Padmanabhan, T. LETTER TO THE EDITOR: Conformal invariance, gravity and massive gauge theories. Class. Quantum Gravity 1985, 2, L105. [Google Scholar] [CrossRef]
- Edery, A.; Fabbri, L.; Paranjape, M.B. Spontaneous breaking of conformal invariance intheories of conformally coupled matter and Weyl gravity. Class. Quantum Gravity 2006, 23, 6409. [Google Scholar] [CrossRef]
- ’t Hooft, G. A Class of Elementary Particle Models Without Any Adjustable Real Parameters. Found. Phys. 2011, 41, 1829. [Google Scholar] [CrossRef]
- Bars, I.; Chen, S.-H.; Steinhardt, P.J.; Turok, N. Complete set of homogeneous isotropic analytic solutions in scalar-tensor cosmology with radiation and curvature. Phys. Rev. D 2012, 86, 083542. [Google Scholar] [CrossRef]
- Bars, I.; Chen, S.-H.; Steinhardt, P.J.; Turok, N. Antigravity and the big crunch/Big Bang transition. Phys. Lett. B 2012, 715, 278. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A. Universality class in conformal inflation. J. Cosmol. Astropart. Phys. 2013, 002. [Google Scholar] [CrossRef]
- Scholz, E. The unexpected resurgence of Weyl geometry in late 20-th century physics. arXiv 2017, arXiv:1703.03187. [Google Scholar]
- Ghilencea, D.M.; Harko, T. Cosmological evolution in Weyl conformal geometry. arXiv 2021, arXiv:2110.07056. [Google Scholar]
- Shimon, M. Locally Scale-Invariant Gravity. arXiv 2021, arXiv:2108.11788. [Google Scholar]
- Lombriser, L. Cosmology in Minkowski space. Class. Quantum Gravity 2023, 40, 155005. [Google Scholar] [CrossRef]
- Deruelle, N.; Sasaki, M. Conformal Equivalence in Classical Gravity: The Example of “Veiled” General Relativity. Cosmol. Quantum Vac. Zeta Funct. 2011, 247. [Google Scholar]
- Rosen, N. Weyl’s geometry and physics. Found. Phys. 1982, 12, 213. [Google Scholar] [CrossRef]
- Wetterich, C. A Universe without expansion. Phys. Dark Universe 2013, 2, 184. [Google Scholar] [CrossRef]
- Bars, I.; Steinhardt, P.; Turok, N. Local conformal symmetry in physics and cosmology. Phys. Rev. D 2014, 89, 043515. [Google Scholar] [CrossRef]
- Padmanabhan, T. Gravitation: Foundations and Frontiers; Cambridge University Press: Cambridge, UK, 2010; ISBN 9780521882231. [Google Scholar]
- Englert, F.; Truffin, C.; Gastmans, R. Conformal invariance in quantum gravity. Nucl. Phys. B 1976, 117, 407. [Google Scholar] [CrossRef]
- Tsamis, N.C.; Woodard, R.P. No new physics in conformal scalar-metric theory. Ann. Phys. 1986, 168, 457. [Google Scholar] [CrossRef]
- Hertzberg, M.P. Inflation, symmetry, and B-modes. Phys. Lett. B 2015, 745, 118. [Google Scholar] [CrossRef]
- Campigotto, M.; Fatibene, L. Gauge natural formulation of conformal gravity. Ann. Phys. 2015, 354, 328. [Google Scholar] [CrossRef]
- Jackiw, R.; Pi, S.-Y. Fake conformal symmetry in conformal cosmological models. Phys. Rev. D 2015, 91, 067501. [Google Scholar] [CrossRef]
- Caldwell, R.R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 2002, 545, 23. [Google Scholar] [CrossRef]
- Felder, G.; Kofman, L.; Linde, A. Tachyonic instability and dynamics of spontaneous symmetry breaking. Phys. Rev. D 2001, 64, 123517. [Google Scholar] [CrossRef]
- Peter, P.; Pinto-Neto, N. Primordial perturbations in a nonsingular bouncing Universe model. Phys. Rev. D 2002, 66, 063509. [Google Scholar] [CrossRef]
- Cline, J.M.; Jeon, S.; Moore, G.D. The phantom menaced: Constraints on low-energy effective ghosts. Phys. Rev. D 2004, 70, 043543. [Google Scholar] [CrossRef]
- Hwang, J.-C.; Noh, H. Gauge-ready formulation of the cosmological kinetic theory in generalized gravity theories. Phys. Rev. D 2001, 65, 023512. [Google Scholar] [CrossRef]
- Misner, C.W. Mixmaster Universe. Phys. Rev. Lett. 1969, 22, 1071. [Google Scholar] [CrossRef]
- Levy, A.M. Fine-tuning challenges for the matter bounce scenario. Phys. Rev. D 2017, 95, 023522. [Google Scholar] [CrossRef]
- Shimon, M. Elucidation of ‘Cosmic Coincidence’. New Astron. 2024, 106, 102126. [Google Scholar] [CrossRef]
- Barcelo, C.; Visser, M. Living on the edge: Cosmology on the boundary of anti-de Sitter space. Phys. Lett. B 2000, 482, 183. [Google Scholar] [CrossRef]
- Barrow, J.D.; Kimberly, D.; Magueijo, J. Bouncing Universes with varying constants. Class. Quantum Gravity 2004, 21, 4289. [Google Scholar] [CrossRef]
- Weinberg, S. Entropy Generation and the Survival of Protogalaxies in an Expanding Universe. Astrophys. J. 1971, 168, 175. [Google Scholar] [CrossRef]
- Khatri, R.; Sunyaev, R.A. Creation of the CMB spectrum: Precise analytic solutions for the blackbody photosphere. J. Cosmol. Astropart. Phys. 2012, 2012, 038. [Google Scholar] [CrossRef]
- Wands, D. Duality invariance of cosmological perturbation spectra. Phys. Rev. D 1999, 60, 023507. [Google Scholar] [CrossRef]
- Finelli, F.; Brandenberger, R. Generation of a scale-invariant spectrum of adiabatic fluctuations in cosmological models with a contracting phase. Phys. Rev. D 2002, 65, 103522. [Google Scholar] [CrossRef]
- Gratton, S.; Khoury, J.; Steinhardt, P.J.; Neil, T. Conditions for generating scale-invariant density perturbations. Phys. Rev. D 2004, 69, 103505. [Google Scholar] [CrossRef]
- Piao, Y.-S.; Zhang, Y.-Z. Primordial perturbation spectra from various expanding and contracting phases before the “bounce”. Phys. Rev. D 2004, 70, 043516. [Google Scholar] [CrossRef]
- Allen, L.E.; Wands, D. Cosmological perturbations through a simple bounce. Phys. Rev. D 2004, 70, 063515. [Google Scholar] [CrossRef]
- Piao, Y.-S. On dualities of primordial perturbation spectra. Phys. Rev. B 2005, 606, 245. [Google Scholar] [CrossRef]
- Cai, Y.-F.; Qiu, T.; Brandenberger, R.; Zhang, X. Nonsingular cosmology with a scale-invariant spectrum of cosmological perturbations from Lee-Wick theory. Phys. Rev. D 2009, 80, 023511. [Google Scholar] [CrossRef]
- Magueijo, J.; Noller, J. Primordial fluctuations without scalar fields. Phys. Rev. D 2010, 81, 043509. [Google Scholar] [CrossRef]
- Khoury, J.; Steinhardt, P.J. Adiabatic Ekpyrosis: Scale-Invariant Curvature Perturbations from a Single Scalar Field in a Contracting Universe. Phys. Rev. Lett. 2010, 104, 091301. [Google Scholar] [CrossRef]
- Lin, C.; Brandenberger, R.H.; Levasseur, L.P. A Matter Bounce By Means of Ghost Condensation. J. Cosmol. Astropart. Phys. 2011, 2011, 019. [Google Scholar] [CrossRef]
- Cai, Y.-F.; Brandenberger, R.; Zhang, X. The matter bounce curvaton scenario. J. Cosmol. Astropart. Phys. 2011, 2011, 003. [Google Scholar] [CrossRef]
- Maier, R.; Pereira, S.; Pinto-Neto, N.; Siffert, B.B. Bouncing models with a cosmological constant. Phys. Rev. D 2012, 85, 023508. [Google Scholar] [CrossRef]
- Martin, J.; Peter, P. On the “Causality Argument” in Bouncing Cosmologies. Phys. Rev. Lett. 2004, 92, 061301. [Google Scholar] [CrossRef]
- Martin, J.; Peter, P. Parametric amplification of metric fluctuations through a bouncing phase. Phys. Rev. D 2003, 68, 103517. [Google Scholar] [CrossRef]
- Turok, N.; Boyle, L. Gravitational entropy and the flatness, homogeneity and isotropy puzzles. Phys. Lett. B 2024, 849, 138443. [Google Scholar] [CrossRef]
- Peter, P.; Pinto-Neto, N.; Gonzalez, D.A. Propagation of adiabatic and entropy perturbations in a bouncing Universe. J. Cosmol. Astropart. Phys. 2003, 2003, 003. [Google Scholar] [CrossRef]
- Kodwani, D.; Meerburg, P.D.; Pen, U.-L.; Wang, X. Initial conditions of the Universe: A sign of the sine mode. Phys. Rev. D 2019, 99, 123518. [Google Scholar] [CrossRef]
- Hu, W.; Sugiyama, N. Small-Scale Cosmological Perturbations: An Analytic Approach. Astrophys. J. 1996, 471, 542. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimon, M. Bounce Cosmology in a Locally Scale Invariant Physics with a U(1) Symmetry. Universe 2025, 11, 93. https://doi.org/10.3390/universe11030093
Shimon M. Bounce Cosmology in a Locally Scale Invariant Physics with a U(1) Symmetry. Universe. 2025; 11(3):93. https://doi.org/10.3390/universe11030093
Chicago/Turabian StyleShimon, Meir. 2025. "Bounce Cosmology in a Locally Scale Invariant Physics with a U(1) Symmetry" Universe 11, no. 3: 93. https://doi.org/10.3390/universe11030093
APA StyleShimon, M. (2025). Bounce Cosmology in a Locally Scale Invariant Physics with a U(1) Symmetry. Universe, 11(3), 93. https://doi.org/10.3390/universe11030093