Predicting Ground-Level Enhancement Events and >500 MeV Proton Intensity Using Proton and Electron Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. The GLE Occurrence Prediction Model
2.2. UMASEP-500 Intensity Model
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reames, D.V. Solar energetic particle variations. Adv. Space Res. 2004, 34, 381–390. [Google Scholar] [CrossRef]
- Dorman, L.; Pustilnik, L.A.; Sternlieb, A.; Zukerman, I.G.; Belov, A.V.; Eroshenko, E.A.; Yanke, V.G.; Mavromichalaki, H.; Sarlanis, C.; Souvatzoglou, G.; et al. Monitoring and forecasting of great solar proton events using the neutron monitor network in real-time. IEEE Trans. Plasma Sci. 2004, 32, 1478–1488. [Google Scholar] [CrossRef]
- Aschwanden, M. GeV particle acceleration in solar flares and ground level enhancement (GLE) events. Space Sci. Rev. 2012, 171, 3–21. [Google Scholar] [CrossRef]
- Wilson, J.W. Overview of radiation environments and human exposures. Health Phys. 2000, 79, 470–494. [Google Scholar] [CrossRef]
- IEC/TS 62396-1:2006(E); Process Management for Avionics—Atmospheric Radiation Effects—Part 1: Accommodation of Atmospheric Radiation Effects Via Single Event Effects within Avionics Electronic Equipment. International Electrotechnical Commission: Geneva, Switzerland, 2006.
- Beck, P.; Latocha, M.; Rollet, S.; Stehno, G. TEPC reference measurements at aircraft altitudes during a solar storm. Adv. Space Res. 2005, 16, 1627–1633. [Google Scholar] [CrossRef]
- Mertens, C.J.; Kress, B.T.; Wiltberger, M.; Blattnig, S.R.; Slaba, T.S.; Solomon, S.C.; Engel, M. Geomagnetic influence on aircraft radiation exposure during a solar energetic particle event in October 2003. Space Weather 2010, 8, S03006. [Google Scholar] [CrossRef]
- Shea, M.A.; Smart, D.F. Space weather and the ground-level solar proton events of the 23rd solar cycle. Space Sci. Rev. 2012, 171, 161–188. [Google Scholar] [CrossRef]
- Durante, M.; Cucinotta, F.A. Physical basis of radiation protection in space travel. Rev. Mod. Phys. 2011, 83, 1245. [Google Scholar] [CrossRef]
- Ho, J.L.; Townsend, L.W.; Zapp, E.N. Interplanetary crew doses and dose equivalents: Variations among di erent bone marrow and skin sites. Adv. Space Res. 2004, 34, 1347–1352. [Google Scholar]
- Mavromichalaki, H.; Souvatzoglou, G.; Sarlanis, C.; Mariatos, G.; Papaioannou, A.; Belov, A.; Eroshenko, E.; Yanke, V.; the NMDB team. Implementation of the ground level enhancement alert software at NMDB database. New Astron. 2010, 15, 744–748. [Google Scholar] [CrossRef]
- Mavromichalaki, H.; Paschalis, P.; Gerontidou, M.; Tezari, A.; Papailiou, M.-C.; Lingri, D.; Livada, M.; Stassinakis, A.; Crosby, N.; Dierckxsens, M. An Assessment of the GLE Alert++ Warning System. Atmosphere 2024, 15, 345. [Google Scholar] [CrossRef]
- Mariatos, G.; Mavromichalaki, H.; Sarlanis, C.; Souvatzoglou, G. Alert system for ground level cosmic-ray enhancements prediction at the Athens Neutron Monitor Network in real-time. Int. J. Mod. Phys. 2005, 20, 6711–6713. [Google Scholar] [CrossRef]
- Kuwabara, T.; Bieber, J.W.; Clem, J.; Evenson, P.; Pyle, R.; Munakata, K.; Yasue, S.; Kato, C.; Akahane, S.; Koyama, M.; et al. Real-time cosmic ray monitoring system for space weather. Space Weather 2006, 4, S08001. [Google Scholar] [CrossRef]
- Souvatzoglou, G.; Mavromichalaki, H.; Sarlanis, C.; Mariatos, G.; Belov, A.; Eroshenko, E.; Yanke, V. Yanke, Real-time GLE alert for the December 13, 2006 event, at the ANMODAP center. Adv. Space Res. 2009, 43, 728–734. [Google Scholar] [CrossRef]
- Anashin, V.; Belov, A.V.; Eroshenko, E.; Kryakunova, O.; Mavromichalaki, H.; Ishutin, I.; Sarlanis, C.; Souvatsoglou, G.; Vashenyuk, E.; Yanke, V. The ALERT signal of ground level enhancements of solar cosmic rays: Physics basis, the ways of realization and development. In Proceedings of the 31st International Cosmic Ray Conference, Łód’z, Poland, 7–15 July 2009. [Google Scholar]
- Souvatzoglou, G.; Papaioannou, A.; Mavromichalaki, H.; Dimitroulakos, J.; Sarlanis, C. Optimizing the real-time ground level enhancement alert system based on neutron monitor measurements: Introducing GLE Alert Plus. Space Weather 2014, 12, 633–649. [Google Scholar] [CrossRef]
- Núñez, M.; Reyes-Santiago, P.J.; Malandraki, O.E. Real-time prediction of the occurrence of GLE events. Space Weather 2017, 15, 861–873. [Google Scholar] [CrossRef]
- Posner, A. Up to 1-hour forecasting of radiation hazards from solar energetic ion events with relativistic electrons. Space Weather 2007, 5, 5. [Google Scholar] [CrossRef]
- Papaioannou, A.; Sandberg, I.; Anastasiadis, A.; Kouloumvakos, A.; Georgoulis, M.K.; Tziotziou, K.; Tsiropoula, G.; Jiggens, P.; Hilgers, A. Solar Flares, Coronal Mass Ejections and Solar Energetic Particle Event Characteristics. J. Space Weather. Space Clim. 2016, 6, A42. [Google Scholar] [CrossRef]
- Núñez, M.; Nieves-Chinchilla, T.; Pulkkinen, A. Prediction of Shock Arrival Times from CME and Flare Data. Space Weather 2016, 14, 8. [Google Scholar] [CrossRef]
- Copeland, K. CARI-7A: Development and validation. Radiat. Prot. Dosim. 2017, 178, 419–431. [Google Scholar] [CrossRef]
- Matthiä, D.; Meier, M.M.; Reitz, G. Numerical calculation of the radiation exposure from galactic cosmic rays at aviation altitudes with the PANDOCA core model. Space Weather 2014, 12, 161–171. [Google Scholar] [CrossRef]
- Mertens, C.J.; Meier, M.M.; Brown, S.; Norman, R.B.; Xu, X. NAIRAS aircraft radiation model development, dose climatology, and initial validation. Space Weather 2013, 11, 603–635. [Google Scholar] [CrossRef] [PubMed]
- Mertens, C.J.; Gronoff, G.P.; Zheng, Y.; Buhler, J.; Willis, E.; Petrenko, M. NAIRAS Atmospheric and Space Radiation Environment Model. IEEE Trans. Nucl. Sci. 2023, 71, 618–625. [Google Scholar] [CrossRef]
- Hu, S.; Monadjemi, S.; Barzilla, J.E.; Semones, E. ARRT development for the upcoming human exploration missions. Space Weather 2020, 18, e2020SW002586. [Google Scholar] [CrossRef]
- Hu, S.; Barzilla, J.E.; Núñez, M.; Semones, E. Semones, E. Real-time dose prediction for Artemis missions. J. Space Weather Space Clim. 2025, 15, 1. [Google Scholar] [CrossRef]
- Núñez, M. Real-time prediction of the occurrence and intensity of the first hours of >100 MeV solar energetic proton events. Space Weather 2015, 13, 11. [Google Scholar] [CrossRef]
- Mertens, C.; Gronoff, G.; Phoenix, D.; Zheng, Y.; Núñez, M. Forecasting SEP Atmospheric and Space Radiation Using UMASEP and NAIRAS Models. In Proceedings of the American Geophysical Union (AGU) Fall 2024, Washington, DC, USA, 9–13 December 2024. [Google Scholar]
- Núñez, M. Evaluation of the UMASEP-10 version 2 tool for predicting all >10 MeV SEP events of solar cycles 22, 23 and 24. Universe 2022, 8, 35. [Google Scholar] [CrossRef]
- Núñez, M, Predicting solar energetic proton events (E > 10 MeV). Space Weather 2011, 9, S07003. [CrossRef]
- Gopalswamy, N.; Xie, H.; Yashiro, S.; Usoskin, I. Coronal Mass Ejections and Ground Level Enhancements. In Proceedings of the 29th International Cosmic Ray Conference, Pune, India, 3–11 August 2005; pp. 101–104. [Google Scholar]
- Gopalswamy, N.; Yashiro, S.; Mäkelä, P.; Xie, H.; Akiyama, S.; Monstein, C. Extreme Kinematics of the 2017 September 10 Solar Eruption and the Spectral Characteristics of the Associated Energetic Particles. Astrophys. J. Lett. 2018, 863, L39. [Google Scholar] [CrossRef]
- Gopalswamy, N.; Xie, H.; Yashiro, S.; Akiyama, S.; Mäkelä, P.; Usoskin, I.G. Properties of Ground Level Enhancement Events and the Associated Solar Eruptions During Solar Cycle 23. Space Sci. Rev. 2012, 171, 23–60. [Google Scholar] [CrossRef]
- Neutron Monitor Data Base/Nest Page. Available online: http://nmdb.eu/nest/gle_list.php (accessed on 1 February 2025).
- Waterfall, C.O.G.; Dalla, S.; Raukunen, O.; Heynderickx, D.; Jiggens, P.; Vainio, R. High Energy Solar Particle Events and Their Relationship to Associated Flare, CME and GLE Parameters. Space Weather 2023, 21, e2022SW003334. [Google Scholar] [CrossRef]
- Frank, E.; Hall, M.A.; Witten, I.H. The WEKA Workbench. Online Appendix for “Data Mining: Practical Machine Learning Tools and Techniques”. In Morgan Kaufmann, 4th ed.; The University of Waikato: Hamilton, New Zealand, 2016. [Google Scholar]
- Quinlan, J.R. Learning with continuous classes. In Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Canberra, Australia, 1–5 December 1992; Adams, A., Sterling, L., Eds.; World Scientific: Singapore, 1992; pp. 343–348. [Google Scholar]
- Wang, Y.; Witten, I.H. Induction of model trees for predicting continuous classes. In Proceedings of the 9th European Conference on Machine Learning, Prague, Czech Republic, 23–25 April 1997. [Google Scholar]
- Schaefer, J.T. Critical success index as an indication of warning skill. Weather Forecast. 1990, 3, 570–575. [Google Scholar] [CrossRef]
- McKenna-Lawlor, S.M.P.; Dryer, M.; Kartalev, M.D.; Smith, Z.; Fry, C.D.; Sun, W.; Deehr, C.S.; Kecskemety, K.; Kudela, K. Near real-time predictions of the arrival at Earth of flare-related shocks during Solar Cycle 23. J. Geophys. Res. 2006, 11, A11103. [Google Scholar] [CrossRef]
GLE Event ID | GLE Start Onset Time (UTC) | GLE Forecast Time (UTC) | >500 MeV Peak Proton Flux (pfu) | Predicted >500 MeV Proton Flux (pfu) b | Forecasting Result a | Warning Time (min) a |
---|---|---|---|---|---|---|
GLE-59 | 14 July 2000 10:30 | 14 July 2000 10:22 | 10.5 | 3.89 | Hit | 8 |
GLE-60 | 15 April 2001 14:00 | 15 April 2001 13:52 | 21.8 | 3.3 | Hit | 8 |
GLE-61 | 18 April 2001 02:35 | Miss | ||||
GLE-62 | 04 November 2001 17:00 | Miss | ||||
GLE-63 | 26 December 2001 05:30 | Miss | ||||
GLE-64 | 24 August 2002 01:18 | 24 August 2002 01:12 | 1.8 | 2.2 | Hit | 6 |
GLE-65 | 28 October 2003 11:22 | 28 October 2003 11:11 | 1.6 | 2.6 | Hit | 11 |
GLE-66 | 29 October 2003 21:30 | 29 October 2003 20:49 | 2.8 | 3.13 | Hit | 41 |
GLE-67 | 02 November 2003 17:30 | 02 November 2003 17:22 | 2.7 | 3.89 | Hit | 8 |
GLE-68 | 17 January 2005 09:55 | 17 January 2005 09:54 | 0.8 | 3.89 | Hit | 1 |
GLE-69 | 20 January 2005 06:51 | Miss | ||||
GLE-70 | 13 December 2006 02:45 | 13 December 2006 02:35 | 6.3 | 4.01 | Hit | 10 |
GLE-71 | 17 May 2012 01:43 | Miss | ||||
GLE-72 | 10 September 2017 16:08 | 10 September 2017 16:04 | 2.0 | 1.67 | Hit | 4 |
GLE-73 | 28 December 2021 15:50 | Miss |
Performance Metric | Abrev. | Formula | Description |
---|---|---|---|
Prob. of detection | POD | a/(a + c) | Proportion of GLE observations that were correctly forecast |
False alarm ratio | FAR | b/(a + b) | Proportion of GLE forecasts that were incorrect |
Critical success index | CSI | a/(a + b + c) | Proportion of hits that were either forecast or observed |
Heidke skill score a | HSS | (a + d – C1)/(N − C1) | Percent correct, corrected by those expected correct by chance |
Gilbert skill score a | GSS | (a − C2)/(a + b + c − C2) | CSI, corrected by number of hits expected by chance (C2) |
Mean absolute error b | MAE | Average (AE) | Average of absolute errors (AEs) of successful predictions |
Average Warning Time c | AWT | Average (WT) | Average of Warning Times (WTs) of successful predictions |
Performance Metrics | UMASEP-500 | HESPERIA UMASEP-500 |
---|---|---|
Probability of detection (POD) | 60.0% (9/15) | 53.3% (8/15) |
False alarm ratio (FAR) | 30.7% (4/13) | 27.3% (3/11) |
Critical success index (CSI) | 47.3% | 44.4% |
Heidke skill score (HSS) | 0.638 | 0.624 |
Gilbert skill score (GSS) | 0.468 | 0.439 |
Average Warning Time (AWT) | 10.8 min | 10 min |
Mean Average Error (MAE) | 0.303 | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez, M. Predicting Ground-Level Enhancement Events and >500 MeV Proton Intensity Using Proton and Electron Observations. Universe 2025, 11, 94. https://doi.org/10.3390/universe11030094
Núñez M. Predicting Ground-Level Enhancement Events and >500 MeV Proton Intensity Using Proton and Electron Observations. Universe. 2025; 11(3):94. https://doi.org/10.3390/universe11030094
Chicago/Turabian StyleNúñez, Marlon. 2025. "Predicting Ground-Level Enhancement Events and >500 MeV Proton Intensity Using Proton and Electron Observations" Universe 11, no. 3: 94. https://doi.org/10.3390/universe11030094
APA StyleNúñez, M. (2025). Predicting Ground-Level Enhancement Events and >500 MeV Proton Intensity Using Proton and Electron Observations. Universe, 11(3), 94. https://doi.org/10.3390/universe11030094