Simultaneous Optical-to-X-Ray Spectrum of OJ 287 During Lowest X-Ray State: Synchrotron-Soft Tail and Harder X-Ray Spectrum †
Abstract
:1. Introduction
2. Data Reduction
3. SED Analysis and Results
4. Discussion
5. Summary and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Not strictly, exposure/data extraction vary significantly in different bands—in the order of a few minutes at optical and of sub-hour to hours at X-rays. |
2 | Source too faint for spectral/flux studies at BAT energies on an Obs-ID timescale e.g., Langejahn et al. [43]. |
3 | The project is named “MOMO” by the PIs. |
4 | https://www.swift.ac.uk/user_objects/ (accessed on 28 December 2022 and 26 March 2023). |
5 | Relaxing F-test value will have no effect on the outcome. It primarily affects the gray shaded regions (A, B, C) marked in Figure 1. |
6 | The labeling sequence used by the Swift team to host data for a given pointing observaiton (proposed/automatic). |
7 | Large error due to photon statistics—fewer photons. |
8 | 00030901002, 00030901024, 00030901144, 00030901145, 00033756003, 00034934105, 00035905228. |
9 | Degree of freedom. |
10 | With restriction that the SED peak due to synchrotron is ≲ Hz (the lowest NIR band: ∼K-band frequency). |
References
- Sitko, M.L.; Junkkarinen, V.T. Continuum and line fluxes of OJ287 at minimum light. Publ. Astron. Soc. Pac. 1985, 97, 1158–1162. [Google Scholar] [CrossRef]
- Nilsson, K.; Takalo, L.O.; Lehto, H.J.; Sillanpää, A. H-alpha monitoring of OJ 287 in 2005-08. Astron. Astrophys. 2010, 516, A60. [Google Scholar] [CrossRef]
- Huang, S.; Hu, S.; Yin, H.; Chen, X.; Alexeeva, S.; Gao, D.; Jiang, Y. A Possible Tidal Disruption Event Candidate in the Black Hole Binary System of OJ 287. Astrophys. J. 2021, 920, 12. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Agudo, I.; Ajello, M.; Aller, H.D.; Aller, M.F.; Angelakis, E.; Arkharov, A.A.; Axelsson, M.; Bach, U.; et al. The Spectral Energy Distribution of Fermi Bright Blazars. Astrophys. J. 2010, 716, 30–70. [Google Scholar] [CrossRef]
- Hayashida, M.; Nalewajko, K.; Madejski, G.M.; Sikora, M.; Itoh, R.; Ajello, M.; Blandford, R.D.; Buson, S.; Chiang, J.; Fukazawa, Y.; et al. Rapid Variability of Blazar 3C 279 during Flaring States in 2013–2014 with Joint Fermi-LAT, NuSTAR, Swift, and Ground-Based Multiwavelength Observations. Astrophys. J. 2015, 807, 79. [Google Scholar] [CrossRef]
- Kushwaha, P. BL Lac object OJ 287: Exploring a complete spectrum of issues concerning relativistic jets and accretion. J. Astrophys. Astron. 2022, 43, 79. [Google Scholar] [CrossRef]
- Goyal, A.; Stawarz, Ł.; Zola, S.; Marchenko, V.; Soida, M.; Nilsson, K.; Ciprini, S.; Baran, A.; Ostrowski, M.; Wiita, P.J.; et al. Stochastic Modeling of Multiwavelength Variability of the Classical BL Lac Object OJ 287 on Timescales Ranging from Decades to Hours. Astrophys. J. 2018, 863, 175. [Google Scholar] [CrossRef]
- Visvanathan, N. The Spectrum of OJ 287. Astrophys. J. 1973, 185, 145–152. [Google Scholar] [CrossRef]
- Angelakis, E.; Hovatta, T.; Blinov, D.; Pavlidou, V.; Kiehlmann, S.; Myserlis, I.; Böttcher, M.; Mao, P.; Panopoulou, G.V.; Liodakis, I.; et al. RoboPol: The optical polarization of gamma-ray-loud and gamma-ray-quiet blazars. Mon. Not. R. Astron. Soc. 2016, 463, 3365–3380. [Google Scholar] [CrossRef]
- Liodakis, I.; Marscher, A.P.; Agudo, I.; Berdyugin, A.V.; Bernardos, M.I.; Bonnoli, G.; Borman, G.A.; Casadio, C.; Casanova, V.; Cavazzuti, E.; et al. Polarized blazar X-rays imply particle acceleration in shocks. Nature 2022, 611, 677–681. [Google Scholar] [CrossRef]
- Gupta, A.C.; Kushwaha, P.; Valtonen, M.J.; Savchenko, S.S.; Jorstad, S.G.; Imazawa, R.; Wiita, P.J.; Gu, M.; Marscher, A.P.; Zhang, Z.; et al. Quasi-simultaneous Optical Flux and Polarization Variability of the Binary Super Massive Black Hole Blazar OJ 287 from 2015 to 2023: Detection of an Anticorrelation in Flux and Polarization Variability. Astrophys. J. Lett. 2023, 957, L11. [Google Scholar] [CrossRef]
- Marscher, A.P.; Di Gesu, L.; Jorstad, S.G.; Kim, D.E.; Liodakis, I.; Middei, R.; Tavecchio, F. X-ray Polarization of Blazars and Radio Galaxies Measured by the Imaging X-ray Polarimetry Explorer. Galaxies 2024, 12, 50. [Google Scholar] [CrossRef]
- Gao, S.; Fedynitch, A.; Winter, W.; Pohl, M. Modelling the coincident observation of a high-energy neutrino and a bright blazar flare. Nat. Astron. 2019, 3, 88–92. [Google Scholar] [CrossRef]
- Murase, K.; Bartos, I. High-Energy Multimessenger Transient Astrophysics. Annu. Rev. Nucl. Part. Sci. 2019, 69, 477–506. [Google Scholar] [CrossRef]
- Fossati, G.; Maraschi, L.; Celotti, A.; Comastri, A.; Ghisellini, G. A unifying view of the spectral energy distributions of blazars. Mon. Not. R. Astron. Soc. 1998, 299, 433–448. [Google Scholar] [CrossRef]
- Inoue, S.; Takahara, F. Electron Acceleration and Gamma-Ray Emission from Blazars. Astrophys. J. 1996, 463, 555. [Google Scholar] [CrossRef]
- Kushwaha, P.; Sahayanathan, S.; Singh, K.P. High energy emission processes in OJ 287 during 2009 flare. Mon. Not. R. Astron. Soc. 2013, 433, 2380–2388. [Google Scholar] [CrossRef]
- Kushwaha, P. A Multi-Wavelength View of OJ 287 Activity in 2015–2017: Implications of Spectral Changes on Central-Engine Models and MeV-GeV Emission Mechanism. Galaxies 2020, 8, 15. [Google Scholar] [CrossRef]
- Sillanpaa, A.; Haarala, S.; Valtonen, M.J.; Sundelius, B.; Byrd, G.G. OJ 287: Binary Pair of Supermassive Black Holes. Astrophys. J. 1988, 325, 628. [Google Scholar] [CrossRef]
- Britzen, S.; Fendt, C.; Witzel, G.; Qian, S.J.; Pashchenko, I.N.; Kurtanidze, O.; Zajacek, M.; Martinez, G.; Karas, V.; Aller, M.; et al. OJ287: Deciphering the ‘Rosetta stone of blazars. Mon. Not. R. Astron. Soc. 2018, 478, 3199–3219. [Google Scholar] [CrossRef]
- Heidt, J.; Nilsson, K.; Appenzeller, I.; Jäger, K.; Seifert, W.; Szeifert, T.; Gässler, W.; Häfner, R.; Hummel, W.; Muschielok, B.; et al. Observations of the host galaxies of the BL Lacertae objects H 0414+009 and OJ 287 with FORS1 at VLT-UT1. Astron. Astrophys. 1999, 352, L11–L16. [Google Scholar]
- Agudo, I.; Marscher, A.P.; Jorstad, S.G.; Gómez, J.L.; Perucho, M.; Piner, B.G.; Rioja, M.; Dodson, R. Erratic Jet Wobbling in the BL Lacertae Object OJ287 Revealed by Sixteen Years of 7 mm VLBA Observations. Astrophys. J. 2012, 747, 63. [Google Scholar] [CrossRef]
- Gopal-Krishna. Clues on the nature of the quasi-periodic optical outbursts of the blazar OJ 287. Astron. Astrophys. 2024, 688, L16. [Google Scholar] [CrossRef]
- Seta, H.; Isobe, N.; Tashiro, M.S.; Yaji, Y.; Arai, A.; Fukuhara, M.; Kohno, K.; Nakanishi, K.; Sasada, M.; Shimajiri, Y.; et al. Suzaku and Multi-Wavelength Observations of OJ 287 during the Periodic Optical Outburst in 2007. Publ. Astron. Soc. Jpn. 2009, 61, 1011–1022. [Google Scholar] [CrossRef]
- Komossa, S.; Kraus, A.; Grupe, D.; Gonzalez, A.G.; Gurwell, M.A.; Gallo, L.C.; Liu, F.K.; Myserlis, I.; Krichbaum, T.P.; Laine, S.; et al. MOMO. VI. Multifrequency Radio Variability of the Blazar OJ 287 from 2015 to 2022, Absence of Predicted 2021 Precursor-flare Activity, and a New Binary Interpretation of the 2016/2017 Outburst. Astrophys. J. 2023, 944, 177. [Google Scholar] [CrossRef]
- Valtonen, M.J.; Zola, S.; Gupta, A.C.; Kishore, S.; Gopakumar, A.; Jorstad, S.G.; Wiita, P.J.; Gu, M.; Nilsson, K.; Marscher, A.P.; et al. Evidence of Jet Activity from the Secondary Black Hole in the OJ 287 Binary System. Astrophys. J. Lett. 2024, 968, L17. [Google Scholar] [CrossRef]
- Kishore, S.; Gupta, A.C.; Wiita, P.J. Rapid Optical Flares in the Blazar OJ 287 on Intraday Timescales with TESS. Astrophys. J. 2024, 960, 11. [Google Scholar] [CrossRef]
- Kapanadze, B.; Vercellone, S.; Romano, P.; Hughes, P.; Aller, M.; Aller, H.; Kapanadze, S.; Tabagari, L. Strong X-ray flaring activity of the BL Lacertae source OJ 287 in 2016 October-2017 April. Mon. Not. R. Astron. Soc. 2018, 480, 407–430. [Google Scholar] [CrossRef]
- Valtonen, M.J.; Lehto, H.J.; Nilsson, K.; Heidt, J.; Takalo, L.O.; Sillanpää, A.; Villforth, C.; Kidger, M.; Poyner, G.; Pursimo, T.; et al. A massive binary black-hole system in OJ287 and a test of general relativity. Nature 2008, 452, 851–853. [Google Scholar] [CrossRef]
- Horbatsch, M.W.; Burgess, C.P. Cosmic black-hole hair growth and quasar OJ287. J. Cosmol. Astropart. Phys. 2012, 2012, 010. [Google Scholar] [CrossRef]
- Kushwaha, P.; Gupta, A.C.; Wiita, P.J.; Gaur, H.; de Gouveia Dal Pino, E.M.; Bhagwan, J.; Kurtanidze, O.M.; Larionov, V.M.; Damljanovic, G.; Uemura, M.; et al. Multiwavelength temporal and spectral variability of the blazar OJ 287 during and after the 2015 December flare: A major accretion disc contribution. Mon. Not. R. Astron. Soc. 2018, 473, 1145–1156. [Google Scholar] [CrossRef]
- Komossa, S.; Grupe, D.; Schartel, N.; Gallo, L.; Gomez, J.L.; Kollatschny, W.; Kriss, G.; Leighly, K.; Longinotti, A.L.; Parker, M.; et al. The Extremes of AGN Variability. Proc. Int. Astron. Union 2016, 12, 168–171. [Google Scholar] [CrossRef]
- Komossa, S.; Grupe, D.; Parker, M.L.; Valtonen, M.J.; Gómez, J.L.; Gopakumar, A.; Dey, L. The 2020 April-June super-outburst of OJ 287 and its long-term multiwavelength light curve with Swift: Binary supermassive black hole and jet activity. Mon. Not. R. Astron. Soc. 2020, 498, L35–L39. [Google Scholar] [CrossRef]
- Kushwaha, P.; Gupta, A.C.; Wiita, P.J.; Pal, M.; Gaur, H.; de Gouveia Dal Pino, E.M.; Kurtanidze, O.M.; Semkov, E.; Damljanovic, G.; Hu, S.M.; et al. The ever-surprising blazar OJ 287: Multiwavelength study and appearance of a new component in X-rays. Mon. Not. R. Astron. Soc. 2018, 479, 1672–1684. [Google Scholar] [CrossRef]
- Pal, M.; Kushwaha, P.; Dewangan, G.C.; Pawar, P.K. Strong Soft X-Ray Excess in 2015 XMM-Newton Observations of BL Lac OJ 287. Astrophys. J. 2020, 890, 47. [Google Scholar] [CrossRef]
- Siejkowski, H.; Wierzcholska, A. Characterizing long-term optical, ultraviolet and X-ray variability in different activity states of OJ 287. Mon. Not. R. Astron. Soc. 2017, 468, 426–434. [Google Scholar] [CrossRef]
- Isobe, N.; Tashiro, M.; Sugiho, M.; Makishima, K. ASCA Observations of the BL Lacertae Object OJ 287 in 1997 April and November. Publ. Astron. Soc. Jpn. 2001, 53, 79–84. [Google Scholar] [CrossRef]
- Singh, K.P.; Kushwaha, P.; Sinha, A.; Pal, M.; Agarwal, A.; Dewangan, G.C. Spectral States of OJ 287 blazar from Multiwavelength Observations with AstroSat. Mon. Not. R. Astron. Soc. 2022, 509, 2696–2706. [Google Scholar] [CrossRef]
- Kushwaha, P.; Pal, M.; Kalita, N.; Kumari, N.; Naik, S.; Gupta, A.C.; de Gouveia Dal Pino, E.M.; Gu, M. Blazar OJ 287 after First VHE Activity: Tracking the Reemergence of the HBL-like Component in 2020. Astrophys. J. 2021, 921, 18. [Google Scholar] [CrossRef]
- Prince, R.; Agarwal, A.; Gupta, N.; Majumdar, P.; Czerny, B.; Cellone, S.A.; Andruchow, I. Multiwavelength analysis and modeling of OJ 287 during 2017–2020. Astron. Astrophys. 2021, 654, A38. [Google Scholar] [CrossRef]
- Acharyya, A.; Adams, C.B.; Archer, A.; Bangale, P.; Bartkoske, J.T.; Batista, P.; Benbow, W.; Brill, A.; Caldwell, J.P.; Carini, M.; et al. A Multiwavelength Study to Decipher the 2017 Flare of the Blazar OJ 287. Astrophys. J. 2024, 973, 134. [Google Scholar] [CrossRef]
- Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K.O.; Nousek, J.A.; Wells, A.A.; White, N.E.; Barthelmy, S.D.; Burrows, D.N.; Cominsky, L.R.; et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 2004, 611, 1005–1020. [Google Scholar] [CrossRef]
- Langejahn, M.; Kadler, M.; Wilms, J.; Litzinger, E.; Kreter, M.; Gehrels, N.; Baumgartner, W.H.; Markwardt, C.B.; Tueller, J. Hard X-ray properties of radio-selected blazars. Astron. Astrophys. 2020, 637, A55. [Google Scholar] [CrossRef]
- Komossa, S.; Grupe, D.; Parker, M.L.; Gómez, J.L.; Valtonen, M.J.; Nowak, M.A.; Jorstad, S.G.; Haggard, D.; Chandra, S.; Ciprini, S.; et al. X-ray spectral components of the blazar and binary black hole candidate OJ 287 (2005–2020). Mon. Not. R. Astron. Soc. 2021, 504, 5575–5587. [Google Scholar] [CrossRef]
- Cardelli, J.A.; Clayton, G.C.; Mathis, J.S. The Relationship between Infrared, Optical, and Ultraviolet Extinction. Astrophys. J. 1989, 345, 245. [Google Scholar] [CrossRef]
- Evans, P.A.; Beardmore, A.P.; Page, K.L.; Osborne, J.P.; O’Brien, P.T.; Willingale, R.; Starling, R.L.C.; Burrows, D.N.; Godet, O.; Vetere, L.; et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 2009, 397, 1177–1201. [Google Scholar] [CrossRef]
- Kaastra, J.S. On the use of C-stat in testing models for X-ray spectra. Astron. Astrophys. 2017, 605, A51. [Google Scholar] [CrossRef]
- Ben Bekhti, N.; Flöer, L.; Keller, R.; Kerp, J.; Lenz, D.; Winkel, B.; Bailin, J.; Calabretta, M.R.; Dedes, L.; et al.; HI4PI Collaboration HI4PI: A full-sky H I survey based on EBHIS and GASS. Astron. Astrophys. 2016, 594, A116. [Google Scholar] [CrossRef]
- Siemiginowska, A.; Burke, D.; Günther, H.M.; Lee, N.P.; McLaughlin, W.; Principe, D.A.; Cheer, H.; Fruscione, A.; Laurino, O.; McDowell, J.; et al. Sherpa: An Open-source Python Fitting Package. Astrophys. J. Suppl. Ser. 2024, 274, 43. [Google Scholar] [CrossRef]
- Kushwaha, P. Simultaneous Optical to X-ray Spectra of OJ 287 and X-ray spectral changes. arXiv 2024, arXiv:2410.05783. [Google Scholar]
- Hillas, A.M. The Origin of Ultra-High-Energy Cosmic Rays. In Annual Review of Astronomy and Astrophysics; Annual Reviews, Inc.: Palo Alto, CA, USA, 1984; Volume 22, pp. 425–444. [Google Scholar] [CrossRef]
- Guo, F.; Li, H.; Daughton, W.; Liu, Y.H. Formation of Hard Power Laws in the Energetic Particle Spectra Resulting from Relativistic Magnetic Reconnection. Phys. Rev. Lett. 2014, 113, 155005. [Google Scholar] [CrossRef] [PubMed]
- Malkov, M.A.; Drury, L.O. Nonlinear theory of diffusive acceleration of particles by shock waves. Rep. Prog. Phys. 2001, 64, 429–481. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kushwaha, P. Simultaneous Optical-to-X-Ray Spectrum of OJ 287 During Lowest X-Ray State: Synchrotron-Soft Tail and Harder X-Ray Spectrum. Universe 2025, 11, 84. https://doi.org/10.3390/universe11030084
Kushwaha P. Simultaneous Optical-to-X-Ray Spectrum of OJ 287 During Lowest X-Ray State: Synchrotron-Soft Tail and Harder X-Ray Spectrum. Universe. 2025; 11(3):84. https://doi.org/10.3390/universe11030084
Chicago/Turabian StyleKushwaha, Pankaj. 2025. "Simultaneous Optical-to-X-Ray Spectrum of OJ 287 During Lowest X-Ray State: Synchrotron-Soft Tail and Harder X-Ray Spectrum" Universe 11, no. 3: 84. https://doi.org/10.3390/universe11030084
APA StyleKushwaha, P. (2025). Simultaneous Optical-to-X-Ray Spectrum of OJ 287 During Lowest X-Ray State: Synchrotron-Soft Tail and Harder X-Ray Spectrum. Universe, 11(3), 84. https://doi.org/10.3390/universe11030084