Properties of Heavy Higgs Bosons and Dark Matter Under Current Experimental Limits in the μNMSSM
Abstract
:1. Introduction
2. Theoretical Preliminaries
2.1. The Basics of the NMSSM
2.2. The Heavy Higgs Bosons
2.3. The Anomalous Magnetic Moment of the Muon in the NMSSM
2.4. DM-Nucleon Scattering Cross-Section
3. Numerical Results
3.1. Properties of Dark Matter
3.2. Properties of Heavy Higgs Bosons
4. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aad, G. et al. [Atlas Collaboration] Combined search for the Standard Model Higgs boson using up to 4.9 fb−1 of pp collision data at TeV with the ATLAS detector at the LHC. Phys. Lett. B 2012, 710, 49–66. [Google Scholar] [CrossRef]
- Chatrchyan, S. et al. [CMS Collaboration] Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC. Phys. Lett. B 2012, 716, 30–61. [Google Scholar] [CrossRef]
- Chatrchyan, S. et al. [CMS Collaboration] Combined Results of Searches for the Standard Model Higgs Boson in pp Collisions at TeV. Phys. Lett. B 2012, 710, 26–48. [Google Scholar] [CrossRef]
- Abi, B. et al. [(Muon g − 2 Collaboration)] Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm. Phys. Rev. Lett. 2021, 126, 141801. [Google Scholar] [CrossRef] [PubMed]
- Bennett, G.W. et al. [(Muon g − 2 Collaboration)] Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL. Phys. Rev. D 2006, 73, 072003. [Google Scholar] [CrossRef]
- Franke, F.; Fraas, H. Mass bounds for the neutral Higgs bosons in the next-to-minimal supersymmetric standard model. Phys. Lett. B 1995, 353, 234–242. [Google Scholar] [CrossRef]
- Szleper, M. Search for the NMSSM Higgs bosons at the photon collider. Int. J. Mod. Phys. A 2005, 20, 7404–7411. [Google Scholar] [CrossRef]
- Ellwanger, U. Phenomenological Aspects of the Next-to-Minimal Supersymmetric Standard Model. Nucl. Phys. B Proc. Suppl. 2010, 200–202, 113–119. [Google Scholar] [CrossRef]
- Franke, F.; Fraas, H. Neutralinos and Higgs bosons in the next-to-minimal supersymmetric standard model. Int. J. Mod. Phys. A 1997, 12, 479–534. [Google Scholar] [CrossRef]
- Ellwanger, U.; Hugonie, C.; Teixeira, A.M. The Next-to-Minimal Supersymmetric Standard Model. Phys. Rept. 2010, 496, 1–77. [Google Scholar] [CrossRef]
- Cao, J.; Li, F.; Lian, J.; Pan, Y.; Zhang, D. Impact of LHC probes of SUSY and recent measurement of (g − 2)μ on ℤ3-NMSSM. Sci. China Phys. Mech. Astron. 2022, 65, 291012. [Google Scholar] [CrossRef]
- Cao, J.; Lian, J.; Pan, Y.; Zhang, D.; Zhu, P. Improved (g − 2)μ measurement and singlino dark matter in μ-term extended ℤ3-NMSSM. J. High Energy Phys. 2021, 9, 175. [Google Scholar] [CrossRef]
- Zhou, H.; Cao, J.; Lian, J.; Zhang, D. Singlino-dominated dark matter in Z3-symmetric NMSSM. Phys. Rev. D 2021, 104, 015017. [Google Scholar] [CrossRef]
- Cao, J.; Lian, J.; Pan, Y.; Yue, Y.; Zhang, D. Impact of recent (g − 2)μ measurement on the light CP-even Higgs scenario in general Next-to-Minimal Supersymmetric Standard Model. J. High Energy Phys. 2022, 3, 203. [Google Scholar] [CrossRef]
- Cao, J.; Li, D.; Lian, J.; Yue, Y.; Zhou, H. Singlino-dominated dark matter in general NMSSM. J. High Energy Phys. 2021, 6, 176. [Google Scholar] [CrossRef]
- Cao, J.; Jia, X.; Meng, L.; Yue, Y.; Zhang, D. Status of the singlino-dominated dark matter in general Next-to-Minimal Supersymmetric Standard Model. J. High Energy Phys. 2023, 3, 198. [Google Scholar] [CrossRef]
- Lopez-Fogliani, D.E.; Munoz, C. Proposal for a Supersymmetric Standard Model. Phys. Rev. Lett. 2006, 97, 041801. [Google Scholar] [CrossRef]
- Sirunyan, A.M. et al. [CMS Collaboration] Search for a heavy pseudoscalar boson decaying to a Z and a Higgs boson at TeV. Eur. Phys. J. C 2019, 79, 564. [Google Scholar] [CrossRef]
- Aaboud, M. et al. [The ATLAS Collaboration] Search for heavy resonances decaying into a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36 fb−1 of TeV pp collisions with the ATLAS detector. J. High Energy Phys. 2018, 3, 174, Erratum in J. High Energy Phys. 2018, 11, 51. [Google Scholar] [CrossRef]
- Aad, G. et al. [The ATLAS Collaboration] Search for heavy resonances decaying into a Z or W boson and a Higgs boson in final states with leptons and b-jets in 139 fb−1 of pp collisions at TeV with the ATLAS detector. J. High Energy Phys. 2023, 6, 16. [Google Scholar] [CrossRef]
- Khachatryan, V. et al. [CMS Collaboration] Search for a pseudoscalar boson decaying into a Z boson and the 125 GeV Higgs boson in final states. Phys. Lett. B 2015, 748, 221–243. [Google Scholar] [CrossRef]
- Sirunyan, A.M. et al. [The CMS Collaboration] Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at TeV. J. High Energy Phys. 2020, 3, 65. [Google Scholar] [CrossRef]
- Sirunyan, A.M. et al. [The CMS Collaboration] Search for new neutral Higgs bosons through the H→ ZA process in pp collisions at TeV. J. High Energy Phys. 2020, 3, 55. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS Collaboration] Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the and final states in pp collisions at TeV with the ATLAS detector. Eur. Phys. J. C 2021, 81, 396. [Google Scholar] [CrossRef]
- Tumasyan, A. et al. [The CMS Collaboration] Search for a heavy Higgs boson decaying into two lighter Higgs bosons in the bb final state at 13 TeV. J. High Energy Phys. 2021, 11, 57. [Google Scholar] [CrossRef]
- Ellwanger, U.; Hugonie, C. Benchmark planes for Higgs-to-Higgs decays in the NMSSM. Eur. Phys. J. C 2022, 82, 406. [Google Scholar] [CrossRef]
- Kling, F.; Li, H.; Pyarelal, A.; Song, H.; Su, S. Exotic Higgs Decays in Type-II 2HDMs at the LHC and Future 100 TeV Hadron Colliders. J. High Energy Phys. 2019, 6, 31. [Google Scholar] [CrossRef]
- Kling, F.; Li, H.; Li, S.; Pyarelal, A.; Song, H.; Su, S.; Su, W. Exotic Higgs Decays in the Type-II 2HDMs at Current and Future pp Colliders. arXiv 2022, arXiv:2205.12198. [Google Scholar]
- Abel, S.A. Destabilizing divergences in the NMSSM. Nucl. Phys. B 1996, 480, 55–72. [Google Scholar] [CrossRef]
- Maniatis, M. The Next-to-Minimal Supersymmetric extension of the Standard Model reviewed. Int. J. Mod. Phys. A 2010, 25, 3505–3602. [Google Scholar] [CrossRef]
- Panagiotakopoulos, C.; Tamvakis, K. Stabilized NMSSM without domain walls. Phys. Lett. B 1999, 446, 224–227. [Google Scholar] [CrossRef]
- Ferrara, S.; Kallosh, R.; Linde, A.; Marrani, A.; Van Proeyen, A. Superconformal Symmetry, NMSSM, and Inflation. Phys. Rev. D 2011, 83, 025008. [Google Scholar] [CrossRef]
- Hollik, W.G.; Liebler, S.; Moortgat-Pick, G.; Paßehr, S.; Weiglein, G. Phenomenology of the inflation-inspired NMSSM at the electroweak scale. Eur. Phys. J. C 2019, 79, 75. [Google Scholar] [CrossRef]
- Hollik, W.G.; Li, C.; Moortgat-Pick, G.; Paasch, S. Phenomenology of a Supersymmetric Model Inspired by Inflation. Eur. Phys. J. C 2021, 81, 141. [Google Scholar] [CrossRef]
- Kolda, C.F.; Pokorski, S.; Polonsky, N. Stabilized singlets in supergravity as a source of the mu-parameter. Phys. Rev. Lett. 1998, 80, 5263–5266. [Google Scholar] [CrossRef]
- Miller, D.J.; Nevzorov, R.; Zerwas, P.M. The Higgs sector of the next-to-minimal supersymmetric standard model. Nucl. Phys. B 2004, 681, 3–30. [Google Scholar] [CrossRef]
- Cao, J.J.; Heng, Z.X.; Yang, J.M.; Zhang, Y.M.; Zhu, J.Y. A SM-like Higgs near 125 GeV in low energy SUSY: A comparative study for MSSM and NMSSM. J. High Energy Phys. 2012, 3, 86. [Google Scholar] [CrossRef]
- King, S.F.; Mühlleitner, M.; Nevzorov, R.; Walz, K. Natural NMSSM Higgs Bosons. Nucl. Phys. B 2013, 870, 323–352. [Google Scholar] [CrossRef]
- Wang, F.; Wang, W.; Wu, L.; Yang, J.M.; Zhang, M. Probing degenerate heavy Higgs bosons in NMSSM with vector-like particles. Int. J. Mod. Phys. A 2017, 32, 1745005. [Google Scholar] [CrossRef]
- Aoyama, T.; Asmussen, N.; Benayoun, M.; Bijnens, J.; Blum, T.; Bruno, M.; Caprini, I.; Calame, C.C.; Cè, M.; Colangelo, G.; et al. The anomalous magnetic moment of the muon in the Standard Model. Phys. Rep. 2020, 887, 1–166. [Google Scholar] [CrossRef]
- Aoyama, T.; Hayakawa, M.; Kinoshita, T.; Nio, M. Complete Tenth-Order QED Contribution to the Muon g − 2. Phys. Rev. Lett. 2012, 109, 111808. [Google Scholar] [CrossRef] [PubMed]
- Aoyama, T.; Kinoshita, T.; Nio, M. Theory of the Anomalous Magnetic Moment of the Electron. Atoms 2019, 7, 28. [Google Scholar] [CrossRef]
- Czarnecki, A.; Marciano, W.J.; Vainshtein, A. Refinements in electroweak contributions to the muon anomalous magnetic moment. Phys. Rev. D 2003, 67, 073006, Erratum in Phys. Rev. D 2006, 73, 119901. [Google Scholar] [CrossRef]
- Gnendiger, C.; Stöckinger, D.; Stöckinger-Kim, H. The electroweak contributions to (g − 2)μ after the Higgs boson mass measurement. Phys. Rev. D 2013, 88, 053005. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Nomura, D.; Teubner, T. Muon and : A new data-based analysis. Phys. Rev. D 2018, 97, 114025. [Google Scholar] [CrossRef]
- Stoffer, P.; Colangelo, G.; Hoferichter, M. Two-pion contributions to the muon g − 2. PoS 2019, CD2018, 84. [Google Scholar] [CrossRef]
- Colangelo, G.; Hoferichter, M.; Stoffer, P. Two-pion contribution to hadronic vacuum polarization. J. High Energy Phys. 2019, 2, 6. [Google Scholar] [CrossRef]
- Davier, M.; Hoecker, A.; Malaescu, B.; Zhang, Z. Reevaluation of the hadronic vacuum polarisation contributions to the Standard Model predictions of the muon and using newest hadronic cross-section data. Eur. Phys. J. C 2017, 77, 827. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Nomura, D.; Teubner, T. of charged leptons, , and the hyperfine splitting of muonium. Phys. Rev. D 2020, 101, 014029. [Google Scholar] [CrossRef]
- Hoferichter, M.; Hoid, B.L.; Kubis, B. Three-pion contribution to hadronic vacuum polarization. J. High Energy Phys. 2019, 8, 137. [Google Scholar] [CrossRef]
- Kurz, A.; Liu, T.; Marquard, P.; Steinhauser, M. Hadronic contribution to the muon anomalous magnetic moment to next-to-next-to-leading order. Phys. Lett. B 2014, 734, 144–147. [Google Scholar] [CrossRef]
- Melnikov, K.; Vainshtein, A. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited. Phys. Rev. D 2004, 70, 113006. [Google Scholar] [CrossRef]
- Masjuan, P.; Sanchez-Puertas, P. Pseudoscalar-pole contribution to the (gμ − 2): A rational approach. Phys. Rev. D 2017, 95, 054026. [Google Scholar] [CrossRef]
- Hoferichter, M.; Hoid, B.L.; Kubis, B.; Leupold, S.; Schneider, S.P. Dispersion relation for hadronic light-by-light scattering: Pion pole. J. High Energy Phys. 2018, 10, 141. [Google Scholar] [CrossRef]
- Gérardin, A.; Meyer, H.B.; Nyffeler, A. Lattice calculation of the pion transition form factor with Wilson quarks. Phys. Rev. D 2019, 100, 034520. [Google Scholar] [CrossRef]
- Colangelo, G.; Hagelstein, F.; Hoferichter, M.; Laub, L.; Stoffer, P. Longitudinal short-distance constraints for the hadronic light-by-light contribution to (g − 2)μ with large-Nc Regge models. J. High Energy Phys. 2020, 3, 101. [Google Scholar] [CrossRef]
- Blum, T.; Chowdhury, S.; Hayakawa, M.; Izubuchi, T. Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD. Phys. Rev. Lett. 2015, 114, 012001. [Google Scholar] [CrossRef]
- Boccaletti, A.; Borsanyi, S.; Davier, M.; Fodor, Z.; Frech, F.; Gerardin, A.; Giusti, D.; Kotov, A.Y.; Lellouch, L.; Lippert, T.; et al. High precision calculation of the hadronic vacuum polarisation contribution to the muon anomaly. arXiv 2024, arXiv:2407.10913. [Google Scholar]
- Aguillard, D.P. et al. [The Muon g - 2 Collaboration] Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm. Phys. Rev. Lett. 2023, 131, 161802. [Google Scholar] [CrossRef]
- Hunt-Smith, N.T.; Melnitchouk, W.; Sato, N.; Thomas, A.W.; Wang, X.G.; White, M.J. Global QCD analysis and dark photons. J. High Energy Phys. 2023, 9, 96. [Google Scholar] [CrossRef]
- Li, S.; Xiao, Y.; Yang, J.M. Constraining CP-phases in SUSY: An interplay of muon/electron g − 2 and electron EDM. Nucl. Phys. B 2022, 974, 115629. [Google Scholar] [CrossRef]
- Li, Z.; Liu, G.L.; Wang, F.; Yang, J.M.; Zhang, Y. Gluino-SUGRA scenarios in light of FNAL muon g − 2 anomaly. J. High Energy Phys. 2021, 12, 219. [Google Scholar] [CrossRef]
- Du, X.; Wang, F. NMSSM from Alternative Deflection in Generalized Deflected Anomaly Mediated SUSY Breaking. Eur. Phys. J. C 2018, 78, 431. [Google Scholar] [CrossRef]
- Wang, K.; Wang, F.; Zhu, J.; Jie, Q. The semi-constrained NMSSM in light of muon g − 2, LHC, and dark matter constraints. Chin. Phys. C 2018, 42, 103109. [Google Scholar] [CrossRef]
- Cox, P.; Han, C.; Yanagida, T.T. Muon g − 2 and dark matter in the minimal supersymmetric standard model. Phys. Rev. D 2018, 98, 055015. [Google Scholar] [CrossRef]
- Yang, J.L.; Feng, T.F.; Yan, Y.L.; Li, W.; Zhao, S.M.; Zhang, H.B. Lepton-flavor violation and two loop electroweak corrections to (g − 2)μ in the B-L symmetric SSM. Phys. Rev. D 2019, 99, 015002. [Google Scholar] [CrossRef]
- Li, S.; Xiao, Y.; Yang, J.M. Can electron and muon g − 2 anomalies be jointly explained in SUSY? Eur. Phys. J. C 2022, 82, 276. [Google Scholar] [CrossRef]
- Wang, F.; Wu, L.; Xiao, Y.; Yang, J.M.; Zhang, Y. GUT-scale constrained SUSY in light of new muon g − 2 measurement. Nucl. Phys. B 2021, 970, 115486. [Google Scholar] [CrossRef]
- Aboubrahim, A.; Klasen, M.; Nath, P.; Syed, R.M. Tests of gluino-driven radiative breaking of the electroweak symmetry at the LHC. Phys. Scr. 2022, 97, 054002. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, J. Smuon in the NMSSM confronted with the muon g–2 anomaly and SUSY searches. Chin. Phys. C 2023, 47, 013107. [Google Scholar] [CrossRef]
- Zheng, M.D.; Zhang, H.H. Studying the anomalies and in R-parity violating MSSM framework with the inverse seesaw mechanism. Phys. Rev. D 2021, 104, 115023. [Google Scholar] [CrossRef]
- Domingo, F.; Ellwanger, U. Constraints from the Muon g − 2 on the Parameter Space of the NMSSM. J. High Energy Phys. 2008, 7, 79. [Google Scholar] [CrossRef]
- Athron, P.; Bach, M.; Fargnoli, H.G.; Gnendiger, C.; Greifenhagen, R.; Park, J.H.; Paßehr, S.; Stöckinger, D.; Stöckinger-Kim, H.; Voigt, A. GM2Calc: Precise MSSM prediction for (g − 2) of the muon. Eur. Phys. J. C 2016, 76, 62. [Google Scholar] [CrossRef]
- Endo, M.; Hamaguchi, K.; Iwamoto, S.; Kitahara, T. Supersymmetric interpretation of the muon g − 2 anomaly. J. High Energy Phys. 2021, 7, 75. [Google Scholar] [CrossRef]
- Almarashi, M.M.; Alhazmi, F.; Abdulhafidh, R.; Basir, S.A. Dark matter in NMSSM with small and . Results Phys. 2023, 49, 106531. [Google Scholar] [CrossRef]
- Wang, L.; Yang, J.M.; Zhang, Y.; Zhu, P.; Zhu, R. A Concise Review on Some Higgs-Related New Physics Models in Light of Current Experiments. Universe 2023, 9, 178. [Google Scholar] [CrossRef]
- Badziak, M.; Olechowski, M.; Szczerbiak, P. Blind spots for neutralino dark matter in the NMSSM. J. High Energy Phys. 2016, 3, 179. [Google Scholar] [CrossRef]
- Badziak, M.; Olechowski, M.; Szczerbiak, P. Spin-dependent constraints on blind spots for thermal singlino-higgsino dark matter with(out) light singlets. J. High Energy Phys. 2017, 7, 50. [Google Scholar] [CrossRef]
- Badziak, M.; Olechowski, M.; Szczerbiak, P. Blind spots for neutralinos in NMSSM with light singlet scalar. PoS 2015, PLANCK2015, 130. [Google Scholar]
- Pierce, A.; Shah, N.R.; Freese, K. Neutralino Dark Matter with Light Staus. arXiv 2013, arXiv:1309.7351. [Google Scholar]
- Shang, L.; Zhang, Y. EasyScan_HEP: A tool for connecting programs to scan the parameter space of physics models. arXiv 2023, arXiv:2304.03636. [Google Scholar]
- Staub, F. SARAH. arXiv 2008, arXiv:0806.0538. [Google Scholar]
- Staub, F. SARAH 3.2: Dirac Gauginos, UFO output, and more. Comput. Phys. Commun. 2013, 184, 1792–1809. [Google Scholar] [CrossRef]
- Staub, F. SARAH 4: A tool for (not only SUSY) model builders. Comput. Phys. Commun. 2014, 185, 1773–1790. [Google Scholar] [CrossRef]
- Staub, F. Exploring new models in all detail with SARAH. Adv. High Energy Phys. 2015, 2015, 840780. [Google Scholar] [CrossRef]
- Porod, W. SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+ e- colliders. Comput. Phys. Commun. 2003, 153, 275–315. [Google Scholar] [CrossRef]
- Porod, W.; Staub, F. SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM. Comput. Phys. Commun. 2012, 183, 2458–2469. [Google Scholar] [CrossRef]
- Bélanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A. micrOMEGAs4.1: Two dark matter candidates. Comput. Phys. Commun. 2015, 192, 322–329. [Google Scholar] [CrossRef]
- Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A. MicrOMEGAs: A Program for calculating the relic density in the MSSM. Comput. Phys. Commun. 2002, 149, 103–120. [Google Scholar] [CrossRef]
- Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A. micrOMEGAs_3: A program for calculating dark matter observables. Comput. Phys. Commun. 2014, 185, 960–985. [Google Scholar] [CrossRef]
- Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A. micrOMEGAs: A Tool for dark matter studies. Nuovo Cim. C 2010, 033N2, 111–116. [Google Scholar] [CrossRef]
- Belanger, G.; Boudjema, F.; Brun, P.; Pukhov, A.; Rosier-Lees, S.; Salati, P.; Semenov, A. Indirect search for dark matter with micrOMEGAs2.4. Comput. Phys. Commun. 2011, 182, 842–856. [Google Scholar] [CrossRef]
- Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A. Dark matter direct detection rate in a generic model with micrOMEGAs 2.2. Comput. Phys. Commun. 2009, 180, 747–767. [Google Scholar] [CrossRef]
- Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A. micrOMEGAs 2.0.7: A program to calculate the relic density of dark matter in a generic model. Comput. Phys. Commun. 2007, 177, 894–895. [Google Scholar] [CrossRef]
- Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A. MicrOMEGAs 2.0: A Program to calculate the relic density of dark matter in a generic model. Comput. Phys. Commun. 2007, 176, 367–382. [Google Scholar] [CrossRef]
- Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A. micrOMEGAs: Version 1.3. Comput. Phys. Commun. 2006, 174, 577–604. [Google Scholar] [CrossRef]
- Belanger, G.; Boudjema, F.; Pukhov, A.; Semenov, A. micrOMEGAs: Recent developments. In Proceedings of the 4th International Workshop on the Identification of Dark Matter, York, UK, 2–6 September 2002; pp. 262–267. [Google Scholar] [CrossRef]
- Bechtle, P.; Heinemeyer, S.; Stål, O.; Stefaniak, T.; Weiglein, G. Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC. J. High Energy Phys. 2014, 11, 39. [Google Scholar] [CrossRef]
- Bechtle, P.; Heinemeyer, S.; Stal, O.; Stefaniak, T.; Weiglein, G. Applying Exclusion Likelihoods from LHC Searches to Extended Higgs Sectors. Eur. Phys. J. C 2015, 75, 421. [Google Scholar] [CrossRef]
- Bagnaschi, E.; Sakurai, K.; Borsato, M.; Buchmueller, O.; Citron, M.; Costa, J.C.; De Roeck, A.; Dolan, M.J.; Ellis, J.R.; Flächer, H.; et al. Likelihood Analysis of the pMSSM11 in Light of LHC 13-TeV Data. Eur. Phys. J. C 2018, 78, 256. [Google Scholar] [CrossRef]
- Khosa, C.K.; Kraml, S.; Lessa, A.; Neuhuber, P.; Waltenberger, W. SModelS Database Update v1.2.3. J. High Energy Phys. 2020, 2020, 158. [Google Scholar] [CrossRef]
- Mahdi Altakach, M.; Kraml, S.; Lessa, A.; Narasimha, S.; Pascal, T.; Waltenberger, W. SModelS v2.3: Enabling global likelihood analyses. arXiv 2023, arXiv:2306.17676. [Google Scholar]
- Dutta, J.; Kraml, S.; Lessa, A.; Waltenberger, W. SModelS extension with the CMS supersymmetry search results from Run 2. J. High Energy Phys. 2018, 1, 5–12. [Google Scholar] [CrossRef]
- Ambrogi, F.; Dutta, J.; Heisig, J.; Kraml, S.; Kulkarni, S.; Laa, U.; Lessa, A.; Neuhuber, P.; Reyes-González, H.; Waltenberger, W.; et al. SModelS v1.2: Long-lived particles, combination of signal regions, and other novelties. Comput. Phys. Commun. 2020, 251, 106848. [Google Scholar] [CrossRef]
- Beenakker, W.; Hopker, R.; Spira, M. PROSPINO: A Program for the production of supersymmetric particles in next-to-leading order QCD. arXiv, 1996; arXiv:hep-ph/9611232. [Google Scholar]
- Aalbers, J. et al. [LUX-ZEPLIN Collaboration] First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment. Phys. Rev. Lett. 2023, 131, 041002. [Google Scholar] [CrossRef] [PubMed]
- Aberle, O.; Adorisio, C.; Adraktas, A.; Ady, M.; Albertone, J.; Alberty, L.; Alcaide Leon, M.; Alekou, A.; Alesini, D.; Almeida Ferreira, B.; et al. High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report; CERN: Geneva, Switzerland, 2020; Volume 10. [Google Scholar] [CrossRef]
- CEPC Study Group. CEPC Conceptual Design Report: Volume 1—Accelerator. arXiv 2018, arXiv:1809.00285. [Google Scholar]
- Abada, A. et al. [The FCC Collaboration] FCC-hh: The Hadron Collider: Future Circular Collider Conceptual Design Report Volume 3. Eur. Phys. J. Spec. Top. 2019, 228, 755–1107. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heng, Z.; Li, X.; Shang, L. Properties of Heavy Higgs Bosons and Dark Matter Under Current Experimental Limits in the μNMSSM. Universe 2025, 11, 103. https://doi.org/10.3390/universe11030103
Heng Z, Li X, Shang L. Properties of Heavy Higgs Bosons and Dark Matter Under Current Experimental Limits in the μNMSSM. Universe. 2025; 11(3):103. https://doi.org/10.3390/universe11030103
Chicago/Turabian StyleHeng, Zhaoxia, Xingjuan Li, and Liangliang Shang. 2025. "Properties of Heavy Higgs Bosons and Dark Matter Under Current Experimental Limits in the μNMSSM" Universe 11, no. 3: 103. https://doi.org/10.3390/universe11030103
APA StyleHeng, Z., Li, X., & Shang, L. (2025). Properties of Heavy Higgs Bosons and Dark Matter Under Current Experimental Limits in the μNMSSM. Universe, 11(3), 103. https://doi.org/10.3390/universe11030103