On the Perturbed Friedmann Equations in Newtonian Gauge
Abstract
1. Introduction
2. Historical Note on Friedmann’s Equations
3. Friedmann Equations from Newtonian Mechanics
4. Perturbations
Conservation and Euler’s Equations
5. The Final Equations
- First Friedmann equation:
- Second Friedmann equation:
- Conservation equation, or the first law of thermodynamics:
- Euler’s equation:
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Newtonian Gauge and the Principle of Equivalence
References
- Friedman, A. On the Curvature of space. Z. Phys. 1922, 10, 377–386. [Google Scholar] [CrossRef]
- Friedmann, A. On the Possibility of a world with constant negative curvature of space. Z. Phys. 1924, 21, 326–332. [Google Scholar] [CrossRef]
- Klimchitskaya, G.L.; Mostepanenko, V.M. Centenary of Alexander Friedmann’s Prediction of the Universe Expansion and the Quantum Vacuum. Physics 2022, 4, 981–994. [Google Scholar] [CrossRef]
- McCrea, W.H.; Milne, E.A. Newtonian Universes and the curvature of space. Q. J. Math. 1934, 5, 73–80. [Google Scholar] [CrossRef]
- Callan, C.; Dicke, R.H.; Peebles, P.J.E. Cosmology and Newtonian Mechanics. Am. J. Phys. 1965, 33, 105–108. [Google Scholar] [CrossRef]
- Elizalde, E. The True Story of Modern Cosmology: Origins, Main Actors and Breakthroughs; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Elizalde, E. Some Issues on the Foundations of Modern Cosmology, Gravitation and Quantum Physics. Universe 2020, 6, 189. [Google Scholar] [CrossRef]
- Elizalde, E. Reasons in Favor of a Hubble-Lemaître-Slipher’s (HLS) Law. Symmetry 2019, 11, 35. [Google Scholar] [CrossRef]
- de Haro, J. Relations between Newtonian and Relativistic Cosmology. Universe 2024, 10, 263. [Google Scholar] [CrossRef]
- Minazzoli, O.; Harko, T. New derivation of the Lagrangian of a perfect fluid with a barotropic equation of state. Phys. Rev. D 2012, 86, 087502. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifschits, E.M. The Classical Theory of Fields. In Course of Theoretical Physics; Pergamon Press: Oxford, UK, 1975; Volume 2. [Google Scholar]
- Einstein, A. The Meaning of Relativity; Princeton University Press: Princeton, NJ, USA, 1953. [Google Scholar]
- Nordstrom, G. The Principle of Relativity and Gravitation. Phys. Zeit 1912, 13, 1126. [Google Scholar]
- Nordstrom, G. About the theory of gravitation from the point of view of the principle of relativity. Ann. Der Phys. 1913, 42, 533. [Google Scholar]
- Abraham, M. On the New theory of Gravitation. Phys. Z 1912, 13, 1. [Google Scholar]
- Abraham, M. New theories of gravitation. Jahr. Radio. Elek. 1915, 470–520. [Google Scholar]
- Mukhanov, V. Physical Foundations of Cosmology; Cambridge University Press: Oxford, UK, 2005. [Google Scholar] [CrossRef]
- Girbau, J. Geometria Diferencial i Relativitat, 1st ed.; Manuals de la Universitat Autonoma de Barcelona; Universitat Autonoma de Barcelona: Bellaterra, Spain, 1993; Volume 10. [Google Scholar]
- Arnowitt, R.L.; Deser, S.; Misner, C.W. The Dynamics of general relativity. Gen. Rel. Grav. 2008, 40, 1997–2027. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; John Wiley and Sons: New York, NY, USA, 1972. [Google Scholar]
- Pauli, W. Theory of Relativity; Dover Books on Physics; Pergamon Press: Oxford, UK, 1981. [Google Scholar]
- Einstein, A. How I Created the Theory of Relativity, Lecture Given in Kyoto on 14 December 1922. Available online: https://pubs.aip.org/physicstoday/article/35/8/45/434065/How-I-created-the-theory-of-relativity (accessed on 10 October 2024).
- Norton, J. What was Einstein’s principle of equivalence? Stud. Hist. Philos. Sci. A 1985, 16, 203–246. [Google Scholar] [CrossRef]
- Wilczek, F. Total Relativity: Mach 2004. Phys. Today 2004, 57, 10–11. [Google Scholar] [CrossRef]
- Elizalde, E. Einstein, Barcelona, Symmetry & Cosmology: The Birth of an Equation for the Universe. Symmetry 2023, 15, 1470. [Google Scholar] [CrossRef]
- de Haro, J. On the Hole Argument and the Physical Interpretation of General Relativity. Universe 2024, 10, 91. [Google Scholar] [CrossRef]
- Stachel, J. The Hole Argument and Some Physical and Philosophical Implication. Living Rev. Rel. 2014, 17, 1. [Google Scholar] [CrossRef] [PubMed]
- Earman, J.; Norton, J. What Price Spacetime Substantivalism? The Hole Story. Br. J. Philos. Sci. 1987, 38, 515–525. [Google Scholar] [CrossRef]
- Pooley, O. The Hole Argument. arXiv 2020, arXiv:2009.09982. [Google Scholar]
- Pooley, O.; Read, J. On the mathematics and metaphysics of the hole argument. arXiv 2021, arXiv:2110.04036. [Google Scholar] [CrossRef]
- Friedman, Y.; Scarr, T. Relativity from the geometrization of Newtonian dynamics. EPL (Europhys. Lett.) 2019, 125, 49001. [Google Scholar] [CrossRef]
- Hilbert, D. The Foundations of Physics. Nachr. Ges. Wiss. GöTtingen 1917, 53–76. Available online: https://eudml.org/doc/5897 (accessed on 10 October 2024).
- Droste, J. The field of a single centre in Einstein’s theory of gravitation, and the motion of a particle in that field. Proc. K. Ned. Akad. Wet. Ser. A 1917, 19, 197–215. [Google Scholar] [CrossRef]
- Schwarzschild, K. On the gravitational field of a mass point according to Einstein’s theory. Sitzungsber. Preuss. Akad. Wiss. Berl. (Math. Phys.) 1916, 1916, 189–196. [Google Scholar]
- Magnan, C. Complete calculations of the perihelion precession of Mercury and the deflection of light by the Sun in general relativity. arXiv 2007, arXiv:0712.3709. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Haro, J.; Elizalde, E.; Pan, S. On the Perturbed Friedmann Equations in Newtonian Gauge. Universe 2025, 11, 64. https://doi.org/10.3390/universe11020064
de Haro J, Elizalde E, Pan S. On the Perturbed Friedmann Equations in Newtonian Gauge. Universe. 2025; 11(2):64. https://doi.org/10.3390/universe11020064
Chicago/Turabian Stylede Haro, Jaume, Emilio Elizalde, and Supriya Pan. 2025. "On the Perturbed Friedmann Equations in Newtonian Gauge" Universe 11, no. 2: 64. https://doi.org/10.3390/universe11020064
APA Stylede Haro, J., Elizalde, E., & Pan, S. (2025). On the Perturbed Friedmann Equations in Newtonian Gauge. Universe, 11(2), 64. https://doi.org/10.3390/universe11020064