From Be X-Ray Binaries to Double Neutron Stars: Exploring the Spin and Orbital Evolution
Abstract
:1. Introduction
2. Samples of BeXBs and DNSs
3. P and Porb Distributions
3.1. Diagram
3.2. P Distribution
3.3. Distribution
4. Spin and Orbital Evolution from BeXBs to DNSs
4.1. Diagram
4.2. P Distribution
4.3. Distribution
5. Discussions and Conclusions
- Both Galactic BeXBs and Galactic field DNSs show the positive correlation trends in relation (see Figure 1), which may relate to the influence of accretion evolution, i.e., the shorter binary orbit may result in the more efficient angular momentum transfer as NS accretes the companion matter [15]. Moreover, the two types of sources also show similar bi-modal classifications in P or distributions (see Figure 2), which has also been noticed by Zhou et al. [50]. In theory, BeXBs are the young populations of NS-HMXBs with orbits which have not obviously evolved, and it is suggested that DNSs are the evolutionary products of NS-HMXBs [8,20,24,25]. Therefore, the similar relations and bi-modal classifications of the two types of sources support the evolution scenario from BeXBs to DNS. In fact, Zhou et al. [50] suggested the possibility that Galactic BeXBs may transfer the bi-modal classifications to DNSs during the accretion evolution process. Moreover, Zhou et al. [50] also indicated that, as the accretion effects can cause the spin-up of NS and the contraction of binary orbit [82,83,84,85], then BeXBs with shorter orbital periods will preferentially evolve into DNSs with faster spin periods and shorter orbits than those with longer orbits.
- It is noticed that the similar bi-modal P/ distributions in BeXBs and DNSs may not only arise from an evolutionary relationship, but may also be affected by the influence from other processes, such as variations in initial conditions or differences in supernova mechanisms. For example, the supernova explosion of the donor stars may significantly affect the evolution from NS-HMXBs to DNSs [31]. First, a binary like NS-HMXBs remains bound only if less than half of the total mass of the system is explosively ejected in the supernova [27]. Secondly, a NS-HMXB will disrupt its orbit if the critical angle— during the supernova satisfies [29]. Thirdly, the high-velocity kick of the donor star supernova in a NS-HMXB can lengthen the binary orbit and cause high eccentricity, or even disrupt the system [28]. However, it is noticed that a considerable fraction of DNSs is detected with quite low orbital eccentricities, implying that the second-born NSs seem to receive on average smaller kicks at birth [20]. In fact, it is theoretically suggested that these low-velocity kick NSs may either have been formed by electron-capture collapse, or by the collapse of ultra-stripped iron cores with a small kick formed though the Case BB Roche-lobe overflow process [20,30]. Therefore, compared to the accretion evolution process, these low-energy supernova with low-velocity kicks of the progenitors of the second-born NSs may be not the dominated factors for the formation of the bi-modal DNSs.
- The common envelope phase is another process that may significantly affect the evolution from BeXBs to DNSs [86]. Theoretically, in the latter evolution of a NS-HMXB, the unstable Roche lobe overflow of the companion can engulf NS and form a common envelope, and it is suggested that the formation of DNSs may have experienced at least one common envelope episode during their progenitor evolution [5,9,34]. The models of a common envelope usually consider the interaction between the binary and envelope, and predict several possible phases, e.g., the plunge-in, based on the multiple physical processes on various of timescales [35,36]. However, the predicted common envelope phase has not been observed until now, which may be due to the short duration time of the envelope phase (∼ y, see, e.g., Meurs and van den Heuvel (1989) [87]) compared to the lifetime of a massive star (∼ y, see, e.g., Chaty (2013) [5]). Moreover, the current simulations of the common envelope phase cannot give the consensus on a thorough understanding of this evolution on all the relevant spatial and timescales [26,34,35,36]. As for the evolution from NS-HMXBs to DNSs, Taam (1996) [88] and Taam and Sandquist (2000) [32] suggested that only a NS-HMXB starting out with the long orbit can survive the common envelope evolution and may then form a DNS. On the contrary, a NS-HMXB with the short initial orbit will finally lead to the merge of the binary into a single Thorne–Zytkow star [32]. However, the predicted Thorne–Zytkow star has not been observed until now [8]. Meanwhile, it is indicated by Taam and Sandquist (2000) [32] that, if the envelope matter is ejected out from the system during the common envelope stage due to the binary interaction, the system can also form a DNS with a short binary orbit. Therefore, both NS-HMXBs with short or long orbits have the opportunity to survive and form a DNS if the envelope matter is effectively ejected out from the system.
- It should be noted that potential uncertainties introduced from the sample selections may affect our conclusions. First, we only analyze BeXBs in the Milky Way, and do not consider the sources in the large Magellanic cloud or small Magellanic cloud, which are based on the following considerations: (I). Knigge et al. [16] and Zhou et al. [50] indicated that all three BeXB groups, i.e., those detected in the Milky Way, large Magellanic clouds, and small Magellanic clouds, exhibit positive correlations in the relation, as well as the similar bi-modal classifications in P and distributions. (II). The detected DNSs at present are all discovered in the Milky Way, and then the evolution analysis between BeXBs and DNSs should be constrained in the same host galaxy to maintain consistency. Secondly, as for DNSs, we only retain the sources in the Galactic field of the Milky Way, and discard those in the global clusters. The reason is that cluster DNSs constitute most candidates, and are suggested to have experienced more complicated formation and evolution processes than those in the Galactic field. Finally, it is also noticed that there are selection biases in the detections of binary orbital periods of BeXBs, since, for the longer orbit sources, the X-ray outbursts are less frequent, and the pulse timing is not easy to implement [89].
- In order to explore the evolutionary link between BeXBs and DNSs, we assume that Galactic BeXBs transfer the bi-modal P/ classifications to Galactic field DNSs through the accretion process. Moreover, we also assume that the Galactic BeXB group that corresponds to the short orbit sources ( days) of bi-modal classifications will preferentially evolve into the Galactic field DNS group that corresponds to the sources with a fast spin ( ms) and short orbit ( day) in the bi-modal classifications. Furthermore, we infer the spin (P values are scaled by ) and orbital ( values are scaled by ) contraction factors, which are inferred by the gaps ( s and days for Galactic BeXBs, and ms and day for Galactic field DNSs, as can be seen in Figure 2) showing the bi-modal classifications of the two types of sources. It can be seen from Figure 3 that the scaled P and values of Galactic BeXBs and Galactic field DNSs show similar positive correlation trends in the relation. In addition, it can be also noticed from Figure 4 and Table 2 that the scaled P and values of Galactic BeXBs share the similar bi-modal distributions to those of Galactic field DNSs. It is noticed that these contraction factors of P/ values are derived in a statistical way, which may cause uncertainties due to the limit of the sample numbers. In fact, it can be seen from Figure 4a,b and Table 2 that the two peaks of bi-modal P distributions of scaled Galactic BeXBs and Galactic field DNSs are not quite symmetric, which may be due to influence of the binary accretion-induced spin-up evolution. Moreover, the contraction of NS spin and binary orbit from Galactic BeXBs to Galactic field DNSs may be also affected by other physical factors. In fact, it is indicated by Zhou et al. [50] that BeXBs with short orbits of days on average share faster NS spin periods, lower NS magnetic field strengths [18], lower binary orbital eccentricities, and more high energy outbursts (Type II outbursts) with higher average peak X-ray luminosities than those sources with longer orbits of days. Moreover, Zhou et al. [50] also indicated that DNSs with short orbits of day on average share faster NS spin periods, higher spin-down powers, and higher binary accretion rates than those sources with longer orbits of day. Therefore, the potential evolution relation and channels from BeXBs to DNSs may need further observation confirmation and theoretical analysis, e.g., the larger samples, and the detailed modeling of binary evolution. However, the inferred contraction factors of P and can offer a reference for the binary evolution from BeXBs and DNSs, which can also offer a tool to trace the classification of the two types of sources.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maraschi, L.; Treves, A.; van den Heuvel, E.P.J. B-emission Stars and X-ray sources. Nature 1976, 259, 292. [Google Scholar] [CrossRef]
- Rappaport, S.; van den Heuvel, E.P.J. X-ray observations of Be stars. Symp.-Int. Astron. Union 1982, 98, 327–344. [Google Scholar] [CrossRef]
- Reig, P. Be/X-ray binaries. Astrophys. Space Sci. 2011, 332, 1–29. [Google Scholar] [CrossRef]
- Chaty, S. Nature, Formation, and Evolution of High Mass X-Ray Binaries. In Evolution of Compact Binaries; Schmidtobreick, L., Schreiber, M.R., Tappert, C., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2011; Volume 447, p. 29. [Google Scholar] [CrossRef]
- Chaty, S. Optical/infrared observations unveiling the formation, nature and evolution of High-Mass X-ray Binaries. Adv. Space Res. 2013, 52, 2132–2142. [Google Scholar] [CrossRef]
- Liu, Q.Z.; van Paradijs, J.; van den Heuvel, E.P.J. Catalogue of high-mass X-ray binaries in the Galaxy (4th edition). Astron. Astrophys. 2006, 455, 1165–1168. [Google Scholar] [CrossRef]
- Chaty, S. High mass X-ray binaries: Progenitors of double neutron star systems. In Proceedings of the Fourteenth Marcel Grossmann Meeting—MG14, Rome, Italy, 12–18 July 2015; Bianchi, M., Jansen, R.T., Ruffini, R., Eds.; World Scientific Publishing: Singapore, 2018; pp. 1883–1888. [Google Scholar] [CrossRef]
- Van den Heuvel, E.P.J. High-Mass X-ray Binaries: Progenitors of double compact objects. In High-Mass X-Ray Binaries: Illuminating the Passage from Massive Binaries to Merging Compact Objects; Oskinova, L.M., Bozzo, E., Bulik, T., Gies, D.R., Eds.; Cambridge University Press: Cambridge, UK, 2019; Volume 346, pp. 1–13. [Google Scholar] [CrossRef]
- Chaty, S. Accreting Binaries; Nature, Formation, and Evolution; IOP Publishing: Bristol, UK, 2022. [Google Scholar] [CrossRef]
- Fortin, F.; García, F.; Simaz Bunzel, A.; Chaty, S. A catalogue of high-mass X-ray binaries in the Galaxy: From the INTEGRAL to the Gaia era. Astron. Astrophys. 2023, 671, A149. [Google Scholar] [CrossRef]
- Stella, L.; White, N.E.; Rosner, R. Intermittent Stellar Wind Acceleration and the Long-Term Activity of Population I Binary Systems Containing an X-Ray Pulsar. Astrophys. J. 1986, 308, 669. [Google Scholar] [CrossRef]
- Rivinius, T.; Carciofi, A.C.; Martayan, C. Classical Be stars. Rapidly rotating B stars with viscous Keplerian decretion disks. Astron. Astrophys. Rev. 2013, 21, 69. [Google Scholar] [CrossRef]
- Corbet, R.H.D. Be/neutron star binaries: A relationship between orbital period and neutron star spin period. Astron. Astrophys. 1984, 141, 91–93. [Google Scholar]
- Corbet, R.H.D. The three types of high-mass X-ray pulsator. Mon. Not. R. Astron. Soc. 1986, 220, 1047–1056. [Google Scholar] [CrossRef]
- Waters, L.B.F.M.; van Kerkwijk, M.H. The relation between orbital and spin periods in massive X-ray binaries. Astron. Astrophys. 1989, 223, 196–206. [Google Scholar]
- Knigge, C.; Coe, M.J.; Podsiadlowski, P. Two populations of X-ray pulsars produced by two types of supernova. Nature 2011, 479, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.Q.; Shao, Y.; Li, X.D. On the Spin Period Distribution in Be/X-Ray Binaries. Astrophys. J. 2014, 786, 128. [Google Scholar] [CrossRef]
- Ye, C.Q.; Wang, D.H.; Zhang, C.M.; Zhang, J.W. Exploring the accretion-induced evolution of the spin period and magnetic field strength of Be/X-ray Pulsars. Astrophys. Space Sci. 2020, 365, 126. [Google Scholar] [CrossRef]
- Lorimer, D.R.; Kramer, M. Handbook of Pulsar Astronomy; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Tauris, T.M.; Kramer, M.; Freire, P.C.C.; Wex, N.; Janka, H.T.; Langer, N.; Podsiadlowski, P.; Bozzo, E.; Chaty, S.; Kruckow, M.U.; et al. Formation of Double Neutron Star Systems. Astrophys. J. 2017, 846, 170. [Google Scholar] [CrossRef]
- Hulse, R.A.; Taylor, J.H. Discovery of a pulsar in a binary system. Astrophys. J. Lett. 1975, 195, L51–L53. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Zhang, C.M.; Li, D.; Chen, L.; Zhang, J.W.; Wang, D.H.; Jiang, L.Y.; Cui, X.H. Investigating the distribution of double neutron stars and unconventional component mass. Mon. Not. R. Astron. Soc. 2023, 521, 4669–4678. [Google Scholar] [CrossRef]
- Podsiadlowski, P.; Langer, N.; Poelarends, A.J.T.; Rappaport, S.; Heger, A.; Pfahl, E. The Effects of Binary Evolution on the Dynamics of Core Collapse and Neutron Star Kicks. Astrophys. J. 2004, 612, 1044–1051. [Google Scholar] [CrossRef]
- Stairs, I.H. Pulsars in Binary Systems: Probing Binary Stellar Evolution and General Relativity. Science 2004, 304, 547–552. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, E.P.J. Formation of Double Neutron Stars, Millisecond Pulsars and Double Black Holes. J. Astrophys. Astron. 2017, 38, 45. [Google Scholar] [CrossRef]
- Vigna-Gómez, A.; Neijssel, C.J.; Stevenson, S.; Barrett, J.W.; Belczynski, K.; Justham, S.; de Mink, S.E.; Müller, B.; Podsiadlowski, P.; Renzo, M.; et al. On the formation history of Galactic double neutron stars. Mon. Not. R. Astron. Soc. 2018, 481, 4009–4029. [Google Scholar] [CrossRef]
- Blaauw, A. On the origin of the O- and B-type stars with high velocities (the “run-away” stars), and some related problems. Bull. Astron. Institutes Neth. 1961, 15, 265. [Google Scholar]
- Flannery, B.P.; van den Heuvel, E.P.J. On the origin of the binary pulsar PSR 1913+16. Astron. Astrophys. 1975, 39, 61–67. [Google Scholar]
- Tauris, T.M.; van den Heuvel, E.P.J. Formation and evolution of compact stellar X-ray sources. In Compact Stellar X-ray Sources; Lewin, W.H.G., van der Klis, M., Eds.; Cambridge University Press: Cambridge, UK, 2006; Volume 39, pp. 623–665. [Google Scholar] [CrossRef]
- Tauris, T.M.; Langer, N.; Podsiadlowski, P. Ultra-stripped supernovae: Progenitors and fate. Mon. Not. R. Astron. Soc. 2015, 451, 2123–2144. [Google Scholar] [CrossRef]
- Alsabti, A.W.; Murdin, P. Handbook of Supernovae; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Taam, R.E.; Sandquist, E.L. Common Envelope Evolution of Massive Binary Stars. Annu. Rev. Astron. Astrophys. 2000, 38, 113–141. [Google Scholar] [CrossRef]
- Taam, R.E.; Ricker, P.M. Common envelope evolution. New Astron. Rev. 2010, 54, 65–71. [Google Scholar] [CrossRef]
- Vigna-Gómez, A.; MacLeod, M.; Neijssel, C.J.; Broekgaarden, F.S.; Justham, S.; Howitt, G.; de Mink, S.E.; Vinciguerra, S.; Mandel, I. Common envelope episodes that lead to double neutron star formation. Publ. Astron. Soc. Aust. 2020, 37, e038. [Google Scholar] [CrossRef]
- Ivanova, N.; Justham, S.; Chen, X.; De Marco, O.; Fryer, C.L.; Gaburov, E.; Ge, H.; Glebbeek, E.; Han, Z.; Li, X.D.; et al. Common envelope evolution: Where we stand and how we can move forward. Astron. Astrophys. Rev. 2013, 21, 59. [Google Scholar] [CrossRef]
- Ivanova, N.; Justham, S.; Ricker, P. Common Envelope Evolution; IOP Publishing: Bristol, UK, 2020. [Google Scholar] [CrossRef]
- Zhang, C.M.; Kojima, Y. The bottom magnetic field and magnetosphere evolution of neutron star in low-mass X-ray binary. Mon. Not. R. Astron. Soc. 2006, 366, 137–143. [Google Scholar] [CrossRef]
- Kramer, M. The Double Pulsar: A Unique Lab for Relativistic Plasma Physics and Tests of General Relativity. In Neutron Stars and Pulsars; Becker, W., Ed.; Astrophysics and Space Science Library; Springer: Berlin/Heidelberg, Germany, 2009; Volume 357, p. 73. [Google Scholar] [CrossRef]
- Miller, M.C.; Miller, J.M. The masses and spins of neutron stars and stellar-mass black holes. Phys. Rep. 2015, 548, 1–34. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef]
- Wex, N. Neutron Stars as Probes for General Relativity and Gravitational Waves. In Handbook of Supernovae; Alsabti, A.W., Murdin, P., Eds.; Springer: Cham, Switzerland, 2017; p. 1447. [Google Scholar] [CrossRef]
- Becker, W.; Kramer, M.; Sesana, A. Pulsar Timing and Its Application for Navigation and Gravitational Wave Detection. Space Sci. Rev. 2018, 214, 30. [Google Scholar] [CrossRef]
- Kramer, M.; Stairs, I.H.; Manchester, R.N.; Wex, N.; Deller, A.T.; Coles, W.A.; Ali, M.; Burgay, M.; Camilo, F.; Cognard, I.; et al. Strong-Field Gravity Tests with the Double Pulsar. Phys. Rev. X 2021, 11, 041050. [Google Scholar] [CrossRef]
- Burgay, M.; Perrodin, D.; Possenti, A. General Relativity Measurements from Pulsars. In Timing Neutron Stars: Pulsations, Oscillations and Explosions; Belloni, T.M., Méndez, M., Zhang, C., Eds.; Astrophysics and Space Science Library; Springer: Berlin/Heidelberg, Germany, 2021; Volume 461, pp. 53–95. [Google Scholar] [CrossRef]
- Özel, F.; Freire, P. Masses, Radii, and the Equation of State of Neutron Stars. Annu. Rev. Astron. Astrophys. 2016, 54, 401–440. [Google Scholar] [CrossRef]
- Andrews, J.J.; Zezas, A. Double neutron star formation: Merger times, systemic velocities, and travel distances. Mon. Not. R. Astron. Soc. 2019, 486, 3213–3227. [Google Scholar] [CrossRef]
- Andrews, J.J.; Mandel, I. Double Neutron Star Populations and Formation Channels. Astrophys. J. Lett. 2019, 880, L8. [Google Scholar] [CrossRef]
- Farrow, N.; Zhu, X.J.; Thrane, E. The Mass Distribution of Galactic Double Neutron Stars. Astrophys. J. 2019, 876, 18. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Y. The masses of 18 pairs of double neutron stars and implications for their origin. In High-Mass X-ray Binaries: Illuminating the Passage from Massive Binaries to Merging Compact Objects; Oskinova, L.M., Bozzo, E., Bulik, T., Gies, D.R., Eds.; Cambridge University Press: Cambridge, UK, 2019; Volume 346, pp. 474–477. [Google Scholar] [CrossRef]
- Zhou, Y.G.; Wang, D.H.; Zhang, C.M. Be X-ray Binaries as Progenitors of Double Neutron Stars: Evidence of Similar bi-modal Classifications. Publ. Astron. Soc. Pac. 2024, 136, 114202. [Google Scholar] [CrossRef]
- Raguzova, N.V.; Popov, S.B. Be X-ray binaries and candidates. Astron. Astrophys. Trans. 2005, 24, 151–185. [Google Scholar] [CrossRef]
- Walter, R.; Lutovinov, A.A.; Bozzo, E.; Tsygankov, S.S. High-mass X-ray binaries in the Milky Way. A closer look with INTEGRAL. Astron. Astrophys. Rev. 2015, 23, 2. [Google Scholar] [CrossRef]
- Reig, P.; Zezas, A. Discovery of X-ray pulsations in the Be/X-ray binary IGR J06074+2205. Astron. Astrophys. 2018, 613, A52. [Google Scholar] [CrossRef]
- Lyne, A.G.; Burgay, M.; Kramer, M.; Possenti, A.; Manchester, R.N.; Camilo, F.; McLaughlin, M.A.; Lorimer, D.R.; D’Amico, N.; Joshi, B.C.; et al. A Double-Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics. Science 2004, 303, 1153–1157. [Google Scholar] [CrossRef] [PubMed]
- Lorimer, D.R.; Stairs, I.H.; Freire, P.C.; Cordes, J.M.; Camilo, F.; Faulkner, A.J.; Lyne, A.G.; Nice, D.J.; Ransom, S.M.; Arzoumanian, Z.; et al. Arecibo Pulsar Survey Using ALFA. II. The Young, Highly Relativistic Binary Pulsar J1906+0746. Astrophys. J. 2006, 640, 428–434. [Google Scholar] [CrossRef]
- van Leeuwen, J.; Kasian, L.; Stairs, I.H.; Lorimer, D.R.; Camilo, F.; Chatterjee, S.; Cognard, I.; Desvignes, G.; Freire, P.C.C.; Janssen, G.H.; et al. The Binary Companion of Young, Relativistic Pulsar J1906+0746. Astrophys. J. 2015, 798, 118. [Google Scholar] [CrossRef]
- Ng, C.; Champion, D.J.; Bailes, M.; Barr, E.D.; Bates, S.D.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Flynn, C.M.L.; Jameson, A.; et al. The High Time Resolution Universe Pulsar Survey - XII. Galactic plane acceleration search and the discovery of 60 pulsars. Mon. Not. R. Astron. Soc. 2015, 450, 2922–2947. [Google Scholar] [CrossRef]
- Ng, C.; Kruckow, M.U.; Tauris, T.M.; Lyne, A.G.; Freire, P.C.C.; Ridolfi, A.; Caiazzo, I.; Heyl, J.; Kramer, M.; Cameron, A.D.; et al. PSR J1755-2550: A young radio pulsar with a massive, compact companion. Mon. Not. R. Astron. Soc. 2018, 476, 4315–4326. [Google Scholar] [CrossRef]
- Stovall, K.; Freire, P.C.C.; Chatterjee, S.; Demorest, P.B.; Lorimer, D.R.; McLaughlin, M.A.; Pol, N.; van Leeuwen, J.; Wharton, R.S.; Allen, B.; et al. PALFA Discovery of a Highly Relativistic Double Neutron Star Binary. Astrophys. J. Lett. 2018, 854, L22. [Google Scholar] [CrossRef]
- Cameron, A.D.; Champion, D.J.; Kramer, M.; Bailes, M.; Barr, E.D.; Bassa, C.G.; Bhandari, S.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; et al. The High Time Resolution Universe Pulsar Survey - XIII. PSR J1757-1854, the most accelerated binary pulsar. Mon. Not. R. Astron. Soc. 2018, 475, L57–L61. [Google Scholar] [CrossRef]
- Lazarus, P.; Freire, P.C.C.; Allen, B.; Aulbert, C.; Bock, O.; Bogdanov, S.; Brazier, A.; Camilo, F.; Cardoso, F.; Chatterjee, S.; et al. Einstein@Home Discovery of a Double Neutron Star Binary in the PALFA Survey. Astrophys. J. 2016, 831, 150. [Google Scholar] [CrossRef]
- Ferdman, R.D.; Freire, P.C.C.; Perera, B.B.P.; Pol, N.; Camilo, F.; Chatterjee, S.; Cordes, J.M.; Crawford, F.; Hessels, J.W.T.; Kaspi, V.M.; et al. Asymmetric mass ratios for bright double neutron-star mergers. Nature 2020, 583, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.G.; Stovall, K.; Freire, P.C.C.; Deneva, J.S.; Jenet, F.A.; McLaughlin, M.A.; Bagchi, M.; Bates, S.D.; Ridolfi, A. Pulsar J0453+1559: A Double Neutron Star System with a Large Mass Asymmetry. Astrophys. J. 2015, 812, 143. [Google Scholar] [CrossRef]
- Weisberg, J.M.; Nice, D.J.; Taylor, J.H. Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16. Astrophys. J. 2010, 722, 1030–1034. [Google Scholar] [CrossRef]
- Weisberg, J.M.; Huang, Y. Relativistic Measurements from Timing the Binary Pulsar PSR B1913+16. Astrophys. J. 2016, 829, 55. [Google Scholar] [CrossRef]
- Lynch, R.S.; Swiggum, J.K.; Kondratiev, V.I.; Kaplan, D.L.; Stovall, K.; Fonseca, E.; Roberts, M.S.E.; Levin, L.; DeCesar, M.E.; Cui, B.; et al. The Green Bank North Celestial Cap Pulsar Survey. III. 45 New Pulsar Timing Solutions. Astrophys. J. 2018, 859, 93. [Google Scholar] [CrossRef]
- Fonseca, E.; Stairs, I.H.; Thorsett, S.E. A Comprehensive Study of Relativistic Gravity Using PSR B1534+12. Astrophys. J. 2014, 787, 82. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, N.; Yuan, J.P.; Li, D.; Wang, P.; Xue, M.Y.; Zhu, W.W.; Miao, C.C.; Yan, W.M.; Wang, J.B.; et al. A Relativistic Double Neutron Star Binary PSR J1846-0513. Astrophys. J. Lett. 2024, 964, L7. [Google Scholar] [CrossRef]
- Colom i Bernadich, M.; Balakrishnan, V.; Barr, E.; Berezina, M.; Burgay, M.; Buchner, S.; Champion, D.J.; Chen, W.; Desvignes, G.; Freire, P.C.C.; et al. The MPIfR-MeerKAT Galactic Plane Survey. II. The eccentric double neutron star system PSR J1208-5936 and a neutron star merger rate update. Astron. Astrophys. 2023, 678, A187. [Google Scholar] [CrossRef]
- Haniewicz, H.T.; Ferdman, R.D.; Freire, P.C.C.; Champion, D.J.; Bunting, K.A.; Lorimer, D.R.; McLaughlin, M.A. Precise mass measurements for the double neutron star system J1829+2456. Mon. Not. R. Astron. Soc. 2021, 500, 4620–4627. [Google Scholar] [CrossRef]
- Sengar, R.; Balakrishnan, V.; Stevenson, S.; Bailes, M.; Barr, E.D.; Bhat, N.D.R.; Burgay, M.; Bernadich, M.C.i.; Cameron, A.D.; Champion, D.J.; et al. The High Time Resolution Universe Pulsar Survey - XVII. PSR J1325-6253, a low eccentricity double neutron star system from an ultra-stripped supernova. Mon. Not. R. Astron. Soc. 2022, 512, 5782–5792. [Google Scholar] [CrossRef]
- Agazie, G.Y.; Mingyar, M.G.; McLaughlin, M.A.; Swiggum, J.K.; Kaplan, D.L.; Blumer, H.; Chawla, P.; DeCesar, M.; Demorest, P.B.; Fiore, W.; et al. The Green Bank Northern Celestial Cap Pulsar Survey. VI. Discovery and Timing of PSR J1759+5036: A Double Neutron Star Binary Pulsar. Astrophys. J. 2021, 922, 35. [Google Scholar] [CrossRef]
- Martinez, J.G.; Stovall, K.; Freire, P.C.C.; Deneva, J.S.; Tauris, T.M.; Ridolfi, A.; Wex, N.; Jenet, F.A.; McLaughlin, M.A.; Bagchi, M. Pulsar J1411+2551: A Low-mass Double Neutron Star System. Astrophys. J. Lett. 2017, 851, L29. [Google Scholar] [CrossRef]
- Padmanabh, P.V.; Barr, E.D.; Sridhar, S.S.; Rugel, M.R.; Damas-Segovia, A.; Jacob, A.M.; Balakrishnan, V.; Berezina, M.; Bernadich, M.C.; Brunthaler, A.; et al. The MPIfR-MeerKAT Galactic Plane Survey—I. System set-up and early results. Mon. Not. R. Astron. Soc. 2023, 524, 1291–1315. [Google Scholar] [CrossRef]
- Janssen, G.H.; Stappers, B.W.; Kramer, M.; Nice, D.J.; Jessner, A.; Cognard, I.; Purver, M.B. Multi-telescope timing of PSR J1518+4904. Astron. Astrophys. 2008, 490, 753–761. [Google Scholar] [CrossRef]
- Swiggum, J.K.; Pleunis, Z.; Parent, E.; Kaplan, D.L.; McLaughlin, M.A.; Stairs, I.H.; Spiewak, R.; Agazie, G.Y.; Chawla, P.; DeCesar, M.E.; et al. The Green Bank North Celestial Cap Survey. VII. 12 New Pulsar Timing Solutions. Astrophys. J. 2023, 944, 154. [Google Scholar] [CrossRef]
- Wu, Q.D.; Wang, N.; Yuan, J.P.; Li, D.; Wang, P.; Xue, M.Y.; Zhu, W.W.; Miao, C.C.; Yan, W.M.; Wang, J.B.; et al. PSR J2150+3427: A Possible Double Neutron Star System. Astrophys. J. Lett. 2023, 958, L17. [Google Scholar] [CrossRef]
- Keith, M.J.; Kramer, M.; Lyne, A.G.; Eatough, R.P.; Stairs, I.H.; Possenti, A.; Camilo, F.; Manchester, R.N. PSR J1753-2240: A mildly recycled pulsar in an eccentric binary system. Mon. Not. R. Astron. Soc. 2009, 393, 623–627. [Google Scholar] [CrossRef]
- Su, W.Q.; Han, J.L.; Yang, Z.L.; Wang, P.F.; Yuan, J.P.; Wang, C.; Zhou, D.J.; Wang, T.; Yan, Y.; Jing, W.C.; et al. The FAST Galactic Plane Pulsar Snapshot Survey - V. PSR J1901+0658 in a double neutron star system. Mon. Not. R. Astron. Soc. 2024, 530, 1506–1511. [Google Scholar] [CrossRef]
- Ferdman, R.D.; Stairs, I.H.; Kramer, M.; Janssen, G.H.; Bassa, C.G.; Stappers, B.W.; Demorest, P.B.; Cognard, I.; Desvignes, G.; Theureau, G.; et al. PSR J1756-2251: A pulsar with a low-mass neutron star companion. Mon. Not. R. Astron. Soc. 2014, 443, 2183–2196. [Google Scholar] [CrossRef]
- Swiggum, J.K.; Rosen, R.; McLaughlin, M.A.; Lorimer, D.R.; Heatherly, S.; Lynch, R.; Scoles, S.; Hockett, T.; Filik, E.; Marlowe, J.A.; et al. PSR J1930-1852: A Pulsar in the Widest Known Orbit around Another Neutron Star. Astrophys. J. 2015, 805, 156. [Google Scholar] [CrossRef]
- Melatos, A. Spin-down of an oblique rotator with a current-starved outer magnetosphere. Mon. Not. R. Astron. Soc. 1997, 288, 1049–1059. [Google Scholar] [CrossRef]
- Bisnovatyi-Kogan, G.S. PHYSICS OF OUR DAYS: Binary and recycled pulsars: 30 years after observational discovery. Phys. Uspekhi 2006, 49, 53–67. [Google Scholar] [CrossRef]
- Bisnovatyi-Kogan, G. Binary recycled pulsars: A powerful physical laboratory. Mem. Soc. Astron. Ital. 2010, 81, 258. [Google Scholar]
- Di Salvo, T.; Sanna, A. Accretion Powered X-ray Millisecond Pulsars. In Millisecond Pulsars; Bhattacharyya, S., Papitto, A., Bhattacharya, D., Eds.; Astrophysics and Space Science Library; Springer: Cham, Switzerland, 2022; Volume 465, pp. 87–124. [Google Scholar] [CrossRef]
- Paczynski, B. Common Envelope Binaries. Symp.-Int. Astron. Union 1976, 73, 75. [Google Scholar] [CrossRef]
- Meurs, E.J.A.; van den Heuvel, E.P.J. The number of evolved early-type close binaries in the galaxy. Astron. Astrophys. 1989, 226, 88–107. [Google Scholar]
- Taam, R.E. Common-Envelope Evolution, the Formation of CVs, LMXBs, and the Fate of HMXBs. Symp.-Int. Astron. Union 1996, 165, 3. [Google Scholar] [CrossRef]
- Vinciguerra, S.; Neijssel, C.J.; Vigna-Gómez, A.; Mandel, I.; Podsiadlowski, P.; Maccarone, T.J.; Nicholl, M.; Kingdon, S.; Perry, A.; Salemi, F. Be X-ray binaries in the SMC as indicators of mass-transfer efficiency. Mon. Not. R. Astron. Soc. 2020, 498, 4705–4720. [Google Scholar] [CrossRef]
DNS (25) | b | Refs | |
---|---|---|---|
(s) | (day) | ||
day (10) | |||
J1946+2052 | 0.0170 | 0.079 | [59] |
J0737-3039A c | 0.0227 | 0.102 | [54] |
J1757-1854 | 0.0215 | 0.184 | [60] |
J1913+1102 | 0.0273 | 0.206 | [61,62] |
J1756-2251 | 0.0285 | 0.320 | [63] |
B1913+16 | 0.0590 | 0.323 | [64,65] |
J0509+3801 | 0.0765 | 0.380 | [66] |
B1534+12 | 0.0379 | 0.421 | [67] |
J1846-0513 | 0.0234 | 0.613 | [68] |
J1208-5936 | 0.0287 | 0.632 | [69] |
day (13) | |||
J1829+2456 | 0.0410 | 1.176 | [70] |
J1325-6253 | 0.0290 | 1.816 | [71] |
J1759+5036 | 0.1760 | 2.043 | [72] |
J1411+2551 | 0.0625 | 2.616 | [73] |
J1155-6529 | 0.0789 | 3.670 | [74] |
J0453+1559 | 0.0458 | 4.072 | [63] |
J1518+4904 | 0.0410 | 8.634 | [75] |
J1018-1523 | 0.0832 | 8.839 | [76] |
J2150+3427 | 0.0653 | 10.592 | [77] |
J1753-2240 | 0.0951 | 13.638 | [78] |
J1901+0658 | 0.0757 | 14.455 | [79] |
J1811-1736 | 0.1042 | 18.779 | [80] |
J1930-1852 | 0.1855 | 45.060 | [81] |
Non-recycled pulsar detected in DNS (2) | |||
J1906+0746 | 0.1441 | 0.166 | [55,56] |
J1755-2550 | 0.3152 | 9.696 | [57,58] |
BeXB a | P < 40 s | P > 40 s | Porb < 60 day | Porb > 60 day |
s | s | day | day | |
DNS b | ms | ms | day | day |
ms | ms | day | day | |
Scaled BeXB c | ms | ms | day | day |
ms | ms | day | day |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Wang, D.; Zhang, C. From Be X-Ray Binaries to Double Neutron Stars: Exploring the Spin and Orbital Evolution. Universe 2025, 11, 51. https://doi.org/10.3390/universe11020051
Zhou Y, Wang D, Zhang C. From Be X-Ray Binaries to Double Neutron Stars: Exploring the Spin and Orbital Evolution. Universe. 2025; 11(2):51. https://doi.org/10.3390/universe11020051
Chicago/Turabian StyleZhou, Yungang, Dehua Wang, and Chengmin Zhang. 2025. "From Be X-Ray Binaries to Double Neutron Stars: Exploring the Spin and Orbital Evolution" Universe 11, no. 2: 51. https://doi.org/10.3390/universe11020051
APA StyleZhou, Y., Wang, D., & Zhang, C. (2025). From Be X-Ray Binaries to Double Neutron Stars: Exploring the Spin and Orbital Evolution. Universe, 11(2), 51. https://doi.org/10.3390/universe11020051