Non-Keplerian Charged Accretion Disk Orbiting a Black Hole Pulsar
Abstract
:1. Introduction
2. The Charged Accretion Disk Model
2.1. General Equations
2.1.1. Angular Momentum Distribution
2.1.2. Magnetic Field and Charge Density
2.2. Mass Density, Pressure and Energy Density
2.3. Interplay of and B
3. Innermost Stable Circular Orbit and Cusp and Center of the Disk
3.1. Innermost Stable Circular Orbit
- Schwarzschild Case (): The ISCO radius decreases monotonically with decreasing , showing no qualitative change in behaviour.
- Kerr Case: While decreases with decreasing for small to moderate negative values of , a reversal occurs at high negative , where begins to increase. This change appears for highly rotating black holes with . This non-monotonic behaviour suggests that for large negative , the electromagnetic coupling introduces competing effects that counteract the inward pull on the ISCO radius. Moreover tapering behaviour for large negative appears and might indicate that the magnetic or charge interaction reaches a limiting effect, where further changes in no longer significantly affect the ISCO.
3.2. Inner Edge
3.3. Center of the Disk
4. Equipotential Surfaces, Aspect Ratio, and Radial Extension of the Disk
- : , and a is varying in the range .
- : , and is varying in the range .
- : , and is varying in the range .
- : , and varying in the range .
- : , and varying in the range .
5. Density Distribution and Amplitude
6. Discussion
6.1. The Spin a of the Black Hole
6.2. The Charge/Magnetic Parameter
- Negative : Negatively charged disks, when combined with a positively aligned external magnetic field (or vice versa), become thicker and more extended if is highly negative. The disk is closer to the compact object, with a denser matter distribution concentrated near the inner edge and produces a stronger induced magnetic field.
- Positive : Positively charged disks, when combined with a positively aligned external magnetic field (or both negative), are thinner, located further from the central source, and less extended if is near neutral. If is highly positive, the disks become more extended, with matter concentrated in its outer regions.
6.3. Angular Momentum Parameters and
6.4. Combined Parameters Analysis
6.5. Comparison with Results from [16]
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Note that Q only appears squared in the Kerr–Newman metric, in contrast to a. In SI units, . For Sgr A*, an observational bound is [24]. |
References
- Padovani, P.; Alexander, D.M.; Assef, R.J.; De Marco, B.; Giommi, P.; Hickox, R.C.; Richards, G.T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; et al. Active galactic nuclei: What’s in a name? Astron. Astrophys. Rev. 2017, 25, 2. [Google Scholar] [CrossRef]
- Miller-Jones, J.C.A.; Bahramian, A.; Orosz, J.A.; Mandel, I.; Gou, L.; Maccarone, T.J.; Neijssel, C.J.; Zhao, X.; Ziółkowski, J.; Reid, M.J.; et al. Cygnus X-1 contains a 21–solar mass black hole—Implications for massive star winds. Science 2021, 371, 1046–1049. [Google Scholar] [CrossRef] [PubMed]
- Gillessen, S.; Plewa, P.M.; Eisenhauer, F.; Sari, R.; Waisberg, I.; Habibi, M.; Pfuhl, O.; George, E.; Dexter, J.; Fellenberg, S.v.; et al. An Update on Monitoring Stellar Orbits in the Galactic Center. Astrophys. J. 2017, 837, 30. [Google Scholar] [CrossRef]
- Reid, M.J.; Brunthaler, A. The Proper Motion of Sagittarius A*. III. The Case for a Supermassive Black Hole. Astrophys. J. 2020, 892, 39. [Google Scholar] [CrossRef]
- Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; Baloković, M.; Barrett, J.; Bintley, D.; et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar] [CrossRef]
- Collaboration, E.H.T.; Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; et al. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophys. J. Lett. 2022, 930, L12. [Google Scholar] [CrossRef]
- Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef] [PubMed]
- Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences. Astrophys. J. Lett. 2021, 915, L5. [Google Scholar] [CrossRef]
- Gibbons, G.W. Vacuum Polarization and the Spontaneous Loss of Charge by Black Holes. Commun. Math. Phys. 1975, 44, 245–264. [Google Scholar] [CrossRef]
- Eardley, D.M.; Press, W.H. Astrophysical processes near black holes. Annu. Rev. Astron. Astrophys. 1975, 13, 381–422. [Google Scholar] [CrossRef]
- Wald, R.M. Black hole in a uniform magnetic field. Phys. Rev. D 1974, 10, 1680–1685. [Google Scholar] [CrossRef]
- Komissarov, S.S. Electrically charged black holes and the Blandford-Znajek mechanism. Mon. Not. R. Astron. Soc. 2022, 512, 2798–2805. [Google Scholar] [CrossRef]
- Levin, J.; D’Orazio, D.J.; Garcia-Saenz, S. Black hole pulsar. Phys. Rev. D 2018, 98, 123002. [Google Scholar] [CrossRef]
- Prasanna, A.R.; Vishveshwara, C.V. Charged Particle Motion in an Electromagnetic Field on Kerr Background Geometry. Pramana 1978, 11, 359–377. [Google Scholar] [CrossRef]
- Kovář, J.; Slaný, P.; Cremaschini, C.; Stuchlík, Z.; Karas, V.; Trova, A. Charged perfect fluid tori in strong central gravitational and dipolar magnetic fields. Phys. Rev. D 2016, 93, 124055. [Google Scholar] [CrossRef]
- Schroven, K.; Trova, A.; Hackmann, E.; Lämmerzahl, C. Charged fluid structures around a rotating compact object with a magnetic dipole field. Phys. Rev. D 2018, 98, 023017. [Google Scholar] [CrossRef]
- Pariev, V.I.; Blackman, E.G.; Boldyrev, S.A. Extending the Shakura-Sunyaev approach to a strongly magnetized accretion disc model. Astron. Astrophys. 2003, 407, 403–421. [Google Scholar] [CrossRef]
- Sądowski, A. Thin accretion discs are stabilized by a strong magnetic field. Mon. Not. R. Astron. Soc. 2016, 459, 4397–4407. [Google Scholar] [CrossRef]
- Kozlowski, M.; Jaroszynski, M.; Abramowicz, M.A. The analytic theory of fluid disks orbiting the Kerr black hole. Astron. Astrophys. 1978, 63, 209–220. [Google Scholar]
- Abramowicz, M.A.; Fragile, P.C. Foundations of Black Hole Accretion Disk Theory. Living Rev. Rel. 2013, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Abramowicz, M.A.; Fragile, P.C.; Horák, J.; Machida, M.; Straub, O. The Polish doughnuts revisited. I. The angular momentum distribution and equipressure surfaces. Astron. Astrophys. 2009, 498, 471–477. [Google Scholar] [CrossRef]
- Vincent, F.H.; Yan, W.; Straub, O.; Zdziarski, A.A.; Abramowicz, M.A. A magnetized torus for modeling Sagittarius A* millimeter images and spectra. Astron. Astrophys. 2015, 574, A48. [Google Scholar] [CrossRef]
- Frolov, V.P.; Shoom, A.A. Motion of charged particles near a weakly magnetized Schwarzschild black hole. Phys. Rev. D 2010, 82, 084034. [Google Scholar] [CrossRef]
- Zajaček, M.; Tursunov, A.; Eckart, A.; Britzen, S.; Hackmann, E.; Karas, V.; Stuchlík, Z.; Czerny, B.; Zensus, J.A. Constraining the charge of the Galactic centre black hole. Proc. J. Phys. Conf. Ser. 2019, 1258, 012031. [Google Scholar] [CrossRef]
- Fishbone, L.G.; Moncrief, V. Relativistic fluid disks in orbit around Kerr black holes. Astrophys. J. 1976, 207, 962–976. [Google Scholar] [CrossRef]
- Abramowicz, M.; Jaroszynski, M.; Sikora, M. Relativistic, accreting disks. Astron. Astrophys. 1978, 63, 221–224. [Google Scholar]
- Komissarov, S.S. Magnetized tori around Kerr black holes: Analytic solutions with a toroidal magnetic field. Mon. Not. R. Astron. Soc. 2006, 368, 993–1000. [Google Scholar] [CrossRef]
- Kovář, J.; Slaný, P.; Cremaschini, C.; Stuchlík, Z.; Karas, V.; Trova, A. Electrically charged matter in rigid rotation around magnetized black hole. Phys. Rev. D 2014, 90, 044029. [Google Scholar] [CrossRef]
- Trova, A.; Hackmann, E.; Karas, V.; Schroven, K.; Kovář, J.; Slaný, P. Influence of test charge and uniform magnetic field on charged fluid equilibrium structures. Phys. Rev. D 2020, 101, 083027. [Google Scholar] [CrossRef]
- Trova, A. Equilibrium of charged fluid around a Kerr black hole immersed in a magnetic field: Variation of angular momentum. Int. J. Mod. Phys. D 2024, 33, 2350112. [Google Scholar] [CrossRef]
- Kovář, J.; Slaný, P.; Stuchlík, Z.; Karas, V.; Cremaschini, C.; Miller, J.C. Role of electric charge in shaping equilibrium configurations of fluid tori encircling black holes. Phys. Rev. D 2011, 84, 084002. [Google Scholar] [CrossRef]
- Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 1993, 31, 473–521. [Google Scholar] [CrossRef]
- Marin, F. A compendium of AGN inclinations with corresponding UV/optical continuum polarization measurements. Mon. Not. R. Astron. Soc. 2014, 441, 551–564. [Google Scholar] [CrossRef]
- Kovář, J.; Stuchlík, Z.; Karas, V. Off-equatorial orbits in strong gravitational fields near compact objects. Class. Quantum Gravity 2008, 25, 095011. [Google Scholar] [CrossRef]
- Ripperda, B.; Bacchini, F.; Porth, O.; Most, E.R.; Olivares, H.; Nathanail, A.; Rezzolla, L.; Teunissen, J.; Keppens, R. General-relativistic Resistive Magnetohydrodynamics with Robust Primitive-variable Recovery for Accretion Disk Simulations. Astrophys. J. Suppl. Ser. 2019, 244, 10. [Google Scholar] [CrossRef]
- Qian, Q.; Fendt, C.; Noble, S.; Bugli, M. rHARM: Accretion and Ejection in Resistive GR-MHD. Astrophys. J. 2017, 834, 29. [Google Scholar] [CrossRef]
- Trova, A.; Schroven, K.; Hackmann, E.; Karas, V.; Kovář, J.; Slaný, P. Equilibrium configurations of a charged fluid around a Kerr black hole. Phys. Rev. D 2018, 97, 104019. [Google Scholar] [CrossRef]
- Misner, C.; Thorne, K.; Wheeler, J. Gravitation; Number Teil 3 in Gravitation; W. H. Freeman: New York, NY, USA, 1973. [Google Scholar]
- Bonazzola, S.; Gourgoulhon, E.; Salgado, M.; Marck, J.A. Axisymmetric rotating relativistic bodies: A new numerical approach for ‘exact’ solutions. Astron. Astrophys. 1993, 278, 421–443. [Google Scholar]
- Henriksen, R.N.; Rayburn, D.R. Hot pulsar magnetospheres. Mon. Not. R. Astron. Soc. 1974, 166, 409–424. [Google Scholar] [CrossRef]
- Jaroszynski, M.; Abramowicz, M.A.; Paczynski, B. Supercritical accretion disks around black holes. Acta Astron. 1980, 30, 1–34. [Google Scholar]
- Fragile, P.C.; Blaes, O.M.; Anninos, P.; Salmonson, J.D. Global General Relativistic Magnetohydrodynamic Simulation of a Tilted Black Hole Accretion Disk. Astrophys. J. 2007, 668, 417. [Google Scholar] [CrossRef]
- Fragile, P.C.; Lindner, C.C.; Anninos, P.; Salmonson, J.D. Application of the Cubed-Sphere Grid to Tilted Black Hole Accretion Disks. Astrophys. J. 2009, 691, 482–494. [Google Scholar] [CrossRef]
- Sadowski, A.; Belczynski, K.; Bulik, T.; Ivanova, N.; Rasio, F.A.; O’Shaughnessy, R. The Total Merger Rate of Compact Object Binaries in the Local Universe. Astrophys. J. 2008, 676, 1162. [Google Scholar] [CrossRef]
- Machida, M.N.; Kokubo, E.; Inutsuka, S.I.; Matsumoto, T. Angular Momentum Accretion onto a Gas Giant Planet. Astrophys. J. 2008, 685, 1220. [Google Scholar] [CrossRef]
- Proga, D.; Begelman, M.C. Accretion of Low Angular Momentum Material onto Black Holes: Two-dimensional Hydrodynamical Inviscid Case. Astrophys. J. 2003, 582, 69. [Google Scholar] [CrossRef]
- Proga, D.; Begelman, M.C. Accretion of Low Angular Momentum Material onto Black Holes: Two-dimensional Magnetohydrodynamic Case. Astrophys. J. 2003, 592, 767. [Google Scholar] [CrossRef]
- Petterson, J.A. Stationary axisymmetric electromagnetic fields around a rotating black hole. Phys. Rev. D 1975, 12, 2218–2225. [Google Scholar] [CrossRef]
- Gimeno-Soler, S.; Font, J.A. Magnetised Polish doughnuts revisited. Astron. Astrophys. 2017, 607, A68. [Google Scholar] [CrossRef]
+ | ||||
---|---|---|---|---|
( ) | 1.1–343 | 9–44 | 10 1 | 348–2 |
(1016 ) | 0.01–25 | 0.2–1.6 | 0.2 1 | 26–0.27 |
() | 0.7–46,400 | 8–4551 | 7–950 | 218,700–750 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trova, A.; Hackmann, E. Non-Keplerian Charged Accretion Disk Orbiting a Black Hole Pulsar. Universe 2025, 11, 45. https://doi.org/10.3390/universe11020045
Trova A, Hackmann E. Non-Keplerian Charged Accretion Disk Orbiting a Black Hole Pulsar. Universe. 2025; 11(2):45. https://doi.org/10.3390/universe11020045
Chicago/Turabian StyleTrova, Audrey, and Eva Hackmann. 2025. "Non-Keplerian Charged Accretion Disk Orbiting a Black Hole Pulsar" Universe 11, no. 2: 45. https://doi.org/10.3390/universe11020045
APA StyleTrova, A., & Hackmann, E. (2025). Non-Keplerian Charged Accretion Disk Orbiting a Black Hole Pulsar. Universe, 11(2), 45. https://doi.org/10.3390/universe11020045