Modified Gravity with Nonminimal Curvature–Matter Couplings: A Framework for Gravitationally Induced Particle Creation
Abstract
1. Introduction
2. Modified Gravity with a Nonminimal Curvature–Matter Coupling: Theory and Implications
2.1. Action and Field Equations
2.2. Equations of Motion and the Extra Force
2.3. Scalar–Tensor Representation
2.4. Applications and Outlook
3. Irreversible Thermodynamics of Open Systems and Particle Creation
3.1. Thermodynamic Framework in an Expanding Universe
3.2. Entropy Evolution
3.3. Entropy Flux Four-Vector and Irreversible Thermodynamics
3.4. Temperature Evolution in Nonminimal Curvature–Matter Coupled Cosmologies
3.5. Validity of the Second Law of Thermodynamics in Cosmology
3.5.1. Thermodynamic Criteria
- The entropy associated with the apparent horizon, ;
- The entropy of the matter (and radiation) content inside the horizon, .
3.5.2. de Sitter Limit and Entropy Constraints
3.6. Final Considerations
4. The Boltzmann Equation-Based Approach to Particle Creation
4.1. The Boltzmann Equation
4.2. The Boltzmann Equation in the Presence of Particle Creation
4.3. Macroscopic Quantities
4.4. Temperature Evolution
4.5. Alternative Approaches: Boltzmann Equation in the Presence of an Extra Force
5. Quantum Aspects of Particle Creation
5.1. The Klein–Gordon Equation in the Presence of Particle Creation
5.2. Particle Creation: The Quantum Perspective
5.2.1. The Free Scalar Field in the Expanding Universe
5.2.2. The Parker–Toms Model
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riess, A.G. et al. [Supernova Search Team]. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S. et al. [Supernova Cosmology Project]. Measurements of Ω and Λ from 42 High Redshift Supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Aghanim, N. et al. [Planck]. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar] [CrossRef]
- Eisenstein, D.J. et al. [SDSS]. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies. Astrophys. J. 2005, 633, 560–574. [Google Scholar] [CrossRef]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Rel. 2024, 17, 4. [Google Scholar] [CrossRef]
- Lobo, F.S.N. The Dark side of gravity: Modified theories of gravity. arXiv 2008, arXiv:0807.1640. [Google Scholar] [CrossRef]
- Avelino, P.; Barreiro, T.; Carvalho, C.S.; da Silva, A.; Lobo, F.S.N.; Martin-Moruno, P.; Mimoso, J.P.; Nunes, N.J.; Rubiera-Garcia, D.; Saez-Gomez, D.; et al. Unveiling the Dynamics of the Universe. Symmetry 2016, 8, 70. [Google Scholar] [CrossRef]
- Saridakis, E.N. et al. [CANTATA]. Modified Gravity and Cosmology. In An Update by the CANTATA Network; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 978-3-030-83714-3/978-3-030-83717-4/978-3-030-83715-0. [Google Scholar] [CrossRef]
- Di Valentino, E. et al. [CosmoVerse]. The CosmoVerse White Paper: Addressing observational tensions in cosmology with systematics and fundamental physics. Phys. Dark Universe 2025, 49, 101965. [Google Scholar] [CrossRef]
- Stelle, K.S. Renormalization of Higher Derivative Quantum Gravity. Phys. Rev. D 1977, 16, 953–969. [Google Scholar] [CrossRef]
- Birrell, N.D.; Davies, P.C.W. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1982; ISBN 10.1017/CBO9780511622632; ISBN 978-0-511-62263-2/978-0-521-27858-4. [Google Scholar]
- Sotiriou, T.P.; Faraoni, V. f (R) Theories Of Gravity. Rev. Mod. Phys. 2010, 82, 451–497. [Google Scholar] [CrossRef]
- De Felice, A.; Tsujikawa, S. f (R) theories. Living Rev. Rel. 2010, 13, 3. [Google Scholar] [CrossRef]
- Buchdahl, H.A. Non-linear Lagrangians and cosmological theory. Mon. Not. Roy. Astron. Soc. 1970, 150, 1. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Liberati, S. Metric-affine f (R) theories of gravity. Annals Phys. 2007, 322, 935–966. [Google Scholar] [CrossRef]
- Capozziello, S. Curvature quintessence. Int. J. Mod. Phys. D 2002, 11, 483–492. [Google Scholar] [CrossRef]
- Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is Cosmic Speed-Up Due to New Gravitational Physics? Phys. Rev. D 2004, 70, 043528. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D. Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration. Phys. Rev. D 2003, 68, 123512. [Google Scholar] [CrossRef]
- Khoury, J.; Weltman, A. Chameleon cosmology. Phys. Rev. D 2004, 69, 044026. [Google Scholar] [CrossRef]
- Khoury, J.; Weltman, A. Chameleon fields: Awaiting surprises for tests of gravity in space. Phys. Rev. Lett. 2004, 93, 171104. [Google Scholar] [CrossRef] [PubMed]
- Olmo, G.J. Palatini Approach to Modified Gravity: f (R) Theories and Beyond. Int. J. Mod. Phys. D 2011, 20, 413–462. [Google Scholar] [CrossRef]
- Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration. Phys. Rev. D 2012, 85, 084016. [Google Scholar] [CrossRef]
- Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Hybrid metric-Palatini gravity. Universe 2015, 1, 199–238. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N. Beyond Einstein’s General Relativity: Hybrid metric-Palatini gravity and curvature-matter couplings. Int. J. Mod. Phys. D 2020, 29, 2030008. [Google Scholar] [CrossRef]
- Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. Cosmology of hybrid metric-Palatini f(X)-gravity. JCAP 2013, 2013, 11. [Google Scholar] [CrossRef]
- Capozziello, S.; Harko, T.; Koivisto, T.S.; Lobo, F.S.N.; Olmo, G.J. The virial theorem and the dark matter problem in hybrid metric-Palatini gravity. JCAP 2013, 2013, 24. [Google Scholar] [CrossRef]
- Capozziello, S.; Harko, T.; Lobo, F.S.N.; Olmo, G.J. Hybrid modified gravity unifying local tests, galactic dynamics and late-time cosmic acceleration. Int. J. Mod. Phys. D 2013, 22, 1342006. [Google Scholar] [CrossRef]
- Gonner, H. A Metric Theory of Gravitation Without Minimal Coupling of Matter and Gravitational Field. Z. Naturforsch. A 1976, 31, 1451–1456. [Google Scholar] [CrossRef]
- Gonner, H.F.M. Theories of Gravitation with Nonminimal Coupling of Matter and the Gravitational Field. Found. Phys. 1984, 14, 865–881. [Google Scholar] [CrossRef]
- Bertolami, O.; Boehmer, C.G.; Harko, T.; Lobo, F.S.N. Extra force in f (R) modified theories of gravity. Phys. Rev. D 2007, 75, 104016. [Google Scholar] [CrossRef]
- Harko, T.; Pinto, M.A.S.; Shahidi, S. Matter really does matter, or Why f(R,Matter) type theories are significant for gravitational physics and cosmology. Phys. Dark Univ. 2025, 48, 101863. [Google Scholar] [CrossRef]
- Harko, T. Modified gravity with arbitrary coupling between matter and geometry. Phys. Lett. B 2008, 669, 376–379. [Google Scholar] [CrossRef]
- Bertolami, O.; Paramos, J. Do f (R) theories matter? Phys. Rev. D 2008, 77, 084018. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N. f (R, Lm) gravity. Eur. Phys. J. C 2010, 70, 373–379. [Google Scholar] [CrossRef]
- Barroso Varela, M.; Bertolami, O. Hubble tension in a nonminimally coupled curvature-matter gravity model. JCAP 2024, 6, 25. [Google Scholar] [CrossRef]
- Barroso Varela, M.; Bertolami, O. Is cosmological data suggesting a nonminimal coupling between matter and gravity? Phys. Dark Univ. 2025, 48, 101861. [Google Scholar] [CrossRef]
- Varela, M.B.; Bertolami, O. Gravitational wave polarizations in nonminimally coupled gravity. Phys. Rev. D 2025, 111, 024014. [Google Scholar] [CrossRef]
- Barroso Varela, M.; Bertolami, O. Density perturbations in nonminimally coupled gravity: Symptoms of Lagrangian density ambiguity. arXiv 2025, arXiv:2505.10291. [Google Scholar] [CrossRef]
- Barroso Varela, M.; Bertolami, O.; Mantziris, A. Inflationary dynamics of non-minimally coupled f (R) matter-curvature theories. arXiv 2025, arXiv:2509.01532. [Google Scholar]
- Prigogine, I.; Geheniau, J.; Gunzig, E.; Nardone, P. Thermodynamics of cosmological matter creation. Proc. Nat. Acad. Sci. USA 1988, 85, 7428. [Google Scholar] [CrossRef]
- Prigogine, I.; Geheniau, J.; Gunzig, E.; Nardone, P. Thermodynamics and cosmology. Gen. Rel. Gravity 1989, 21, 767–776. [Google Scholar] [CrossRef]
- Harko, T. Thermodynamic interpretation of the generalized gravity models with geometry—Matter coupling. Phys. Rev. D 2014, 90, 044067. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Mimoso, J.P.; Pavón, D. Gravitational induced particle production through a nonminimal curvature–matter coupling. Eur. Phys. J. C 2015, 75, 386. [Google Scholar] [CrossRef]
- Pinto, M.A.S.; Harko, T.; Lobo, F.S.N. Gravitationally induced particle production in scalar-tensor f(R,T) gravity. Phys. Rev. D 2022, 106, 044043. [Google Scholar] [CrossRef]
- Cipriano, R.A.C.; Harko, T.; Lobo, F.S.N.; Pinto, M.A.S.; Rosa, J.L. Gravitationally induced matter creation in scalar–tensor f(R,TμνTμν) gravity. Phys. Dark Univ. 2024, 44, 101463. [Google Scholar] [CrossRef]
- Faraoni, V. Cosmology in Scalar Tensor Gravity; Kluwer Academic: Dordrecht, The Netherlands, 2004. [Google Scholar] [CrossRef]
- Maeda, K.I. Towards the Einstein-Hilbert Action via Conformal Transformation. Phys. Rev. D 1989, 39, 3159. [Google Scholar] [CrossRef]
- Harko, T.; Koivisto, T.S.; Lobo, F.S.N. Palatini formulation of modified gravity with a nonminimal curvature-matter coupling. Mod. Phys. Lett. A 2011, 26, 1467–1480. [Google Scholar] [CrossRef]
- Bertolami, O.; Lobo, F.S.N.; Paramos, J. Non-minimum coupling of perfect fluids to curvature. Phys. Rev. D 2008, 78, 064036. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Faraoni, V. Modified gravity with R-matter couplings and (non-)geodesic motion. Class. Quant. Gravity 2008, 25, 205002. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N.; Nojiri, S.; Odintsov, S.D. f (R, T) gravity. Phys. Rev. D 2011, 84, 024020. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N. Generalized curvature-matter couplings in modified gravity. Galaxies 2014, 2, 410–465. [Google Scholar] [CrossRef]
- Harko, T.; Lobo, F.S.N. Extensions of f(R) Gravity: Curvature-Matter Couplings and Hybrid Metric-Palatini Theory; Cambridge University Press: Cambridge, UK, 2018; ISBN 978-1-108-42874-3/978-1-108-58457-9. [Google Scholar]
- Lobato, R.; Lourenço, O.; Moraes, P.H.R.S.; Lenzi, C.H.; de Avellar, M.; de Paula, W.; Dutra, M.; Malheiro, M. Neutron stars in f (R, T)) gravity using realistic equations of state in the light of massive pulsars and GW170817. JCAP 2020, 12, 39. [Google Scholar] [CrossRef]
- Pretel, J.M.Z.; Jorás, S.E.; Reis, R.R.R.; Arbañil, J.D.V. Neutron stars in f (R, T) gravity with conserved energy-momentum tensor: Hydrostatic equilibrium and asteroseismology. JCAP 2021, 8, 55. [Google Scholar] [CrossRef]
- Lobato, R.V.; Carvalho, G.A.; Bertulani, C.A. Neutron stars in f (R, Lm) gravity with realistic equations of state: Joint-constrains with GW170817, massive pulsars, and the PSR J0030+0451 mass-radius from NICER data. Eur. Phys. J. C 2021, 81, 1013. [Google Scholar] [CrossRef]
- Montelongo Garcia, N.; Lobo, F.S.N. Nonminimal curvature-matter coupled wormholes with matter satisfying the null energy condition. Class. Quant. Gravity 2011, 28, 085018. [Google Scholar] [CrossRef]
- Garcia, N.M.; Lobo, F.S.N. Wormhole geometries supported by a nonminimal curvature-matter coupling. Phys. Rev. D 2010, 82, 104018. [Google Scholar] [CrossRef]
- Lima, J.A.S.; Germano, A.S.M. On the Equivalence of matter creation in cosmology. Phys. Lett. A 1992, 170, 373–378. [Google Scholar] [CrossRef]
- Calvao, M.O.; Lima, J.A.S.; Waga, I. On the thermodynamics of matter creation in cosmology. Phys. Lett. A 1992, 162, 223–226. [Google Scholar] [CrossRef]
- Eckart, C. The Thermodynamics of Irreversible Processes. 1. The Simple Fluid. Phys. Rev. 1940, 58, 267–269. [Google Scholar] [CrossRef]
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; John Wiley and Sons: Hoboken, NJ, USA, 1972; ISBN 978-0-471-92567-5/978-0-471-92567-5. [Google Scholar]
- Lima, J.A.S.; Basilakos, S.; Solà, J. Nonsingular Decaying Vacuum Cosmology and Entropy Production. Gen. Rel. Gravity 2015, 47, 40. [Google Scholar] [CrossRef]
- Padmanabhan, T. Thermodynamical Aspects of Gravity: New insights. Rep. Prog. Phys. 2010, 73, 046901. [Google Scholar] [CrossRef]
- Jacobson, T. Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett. 1995, 75, 1260–1263. [Google Scholar] [CrossRef]
- Easther, R.; Lowe, D.A. Holography, cosmology and the second law of thermodynamics. Phys. Rev. Lett. 1999, 82, 4967–4970. [Google Scholar] [CrossRef]
- Triginer, J.; Zimdahl, W.; Pavón, D. Kinetic theory for particle production. Class. Quantum Gravity 1996, 13, 403–416. [Google Scholar] [CrossRef]
- Lima, J.A.S.; Baranov, I. Gravitationally induced particle production: Thermodynamics and kinetic theory. Phys. Rev. D 2014, 90, 043515. [Google Scholar] [CrossRef]
- Bertolami, O.; Gomes, C. Nonminimally coupled Boltzmann equation: Foundations. Phys. Rev. D 2020, 102, 084051. [Google Scholar] [CrossRef]
- Trevisani, S.R.G.; Lima, J.A.S. Gravitational matter creation, multi-fluid cosmology and kinetic theory. Eur. Phys. J. C 2023, 83, 244. [Google Scholar] [CrossRef]
- Vereshchagin, G.V.; Aksenov, A.G. Relativistic Kinetic Theory, with Applications in Astrophysics and Cosmology; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Enomoto, S.; Su, Y.-H.; Zheng, M.-Z.; Zhang, H.-H. Boltzmann Equation and Its Cosmological Applications. Symmetry 2025, 17, 921. [Google Scholar] [CrossRef]
- Stewart, J.M. Non-Equilibrium Relativistic Kinetic Theory; Springer: New York, NY, USA, 1971. [Google Scholar]
- Bernstein, J. Kinetic Theory in the Expanding Universe; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Cercignani, C.; Kremer, G.M. The Relativistic Boltzmann Equation: Theory and Applications; Birkhäuser Verlag: Basel, Switzerland, 2002. [Google Scholar]
- Avelino, P.P.; Azevedo, R.P.L. Boltzmann’s H-theorem, entropy and the strength of gravity in theories with a nonminimal coupling between matter and geometry. Phys. Lett. B 2020, 808, 135641. [Google Scholar] [CrossRef]
- Schrödinger, E. The Proper Vibrations of the Expanding Universe. Physica 1939, 6, 899–912. [Google Scholar] [CrossRef]
- Parker, L. Particle creation in expanding universes. Phys. Rev. Lett. 1968, 21, 562–564. [Google Scholar] [CrossRef]
- Parker, L. Quantized fields and particle creation in expanding universes. I. Phys. Rev. 1969, 183, 1057–1068. [Google Scholar] [CrossRef]
- Parker, L.; Toms, D.J. Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Wang, L.; Yang, J.M.; Zhang, Y.; Zhu, P.; Zhu, R. A Concise Review on Some Higgs-Related New Physics Models inLight of Current Experiments. Universe 2023, 9, 178. [Google Scholar] [CrossRef]
- Wald, R.M. General Relativity; Chicago University Press: Chicago, IL, USA, 1984. [Google Scholar]
- Bunch, T.S.; Panangaden, P.; Parker, L. On Renormalization of λφ4 field theory in curved space-time I. J. Phys. A Math. Gen. 1980, 13, 901. [Google Scholar] [CrossRef]
- Amendola, L.; Litterio, M.; Occhionero, F. The Phase space view of inflation. 1: The nonminimally coupled scalar field. Int. J. Mod. Phys. A 1990, 5, 3861. [Google Scholar] [CrossRef]
- Rossi, M.; Ballardini, M.; Braglia, M.; Finelli, F.; Paoletti, D.; Starobinsky, A.A.; Umiltá, C. Cosmological constraints on post-Newtonian parameters in effectively massless scalar-tensor theories of gravity. Phys. Rev. D 2019, 100, 103524. [Google Scholar] [CrossRef]
- Ford, L.H. Cosmological particle production: A review. Rep. Prog. Phys. 2021, 84, 116901. [Google Scholar] [CrossRef] [PubMed]
- Parker, L. Particle creation and particle number in an expanding universe. J. Phys. A Math. Theor. 2012, 45, 374023. [Google Scholar] [CrossRef]
- Parker, L. Thermal radiation produced by the expansion of the Universe. Nature 1976, 261, 20–23. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobo, F.S.N.; Harko, T.; Pinto, M.A.S. Modified Gravity with Nonminimal Curvature–Matter Couplings: A Framework for Gravitationally Induced Particle Creation. Universe 2025, 11, 356. https://doi.org/10.3390/universe11110356
Lobo FSN, Harko T, Pinto MAS. Modified Gravity with Nonminimal Curvature–Matter Couplings: A Framework for Gravitationally Induced Particle Creation. Universe. 2025; 11(11):356. https://doi.org/10.3390/universe11110356
Chicago/Turabian StyleLobo, Francisco S. N., Tiberiu Harko, and Miguel A. S. Pinto. 2025. "Modified Gravity with Nonminimal Curvature–Matter Couplings: A Framework for Gravitationally Induced Particle Creation" Universe 11, no. 11: 356. https://doi.org/10.3390/universe11110356
APA StyleLobo, F. S. N., Harko, T., & Pinto, M. A. S. (2025). Modified Gravity with Nonminimal Curvature–Matter Couplings: A Framework for Gravitationally Induced Particle Creation. Universe, 11(11), 356. https://doi.org/10.3390/universe11110356
