On the Euler–Type Gravitomagnetic Orbital Effects in the Field of a Precessing Body
Abstract
:1. Introduction
2. The Averaged Rates of Change of the Keplerian Orbital Elements
3. Numerical Evaluations for the Juno–Jupiter and the Double Pulsar PSR J0737–3039 A/B Systems
3.1. Juno and Jupiter
3.2. The Double Pulsar
3.3. A Supermassive Black Hole–Star Scenario
4. Summary and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
1 | In the sense that its extension is assumed to be small enough to neglect residual tidal effects due to any external fields. |
2 | |
3 | |
4 | The penultimate step of Equation (16) is explained by the uniformity hypothesis of . |
5 | The case of a linearly time–dependent , with the primary’s spin unit vector aligned with the reference z axis, was treated in [19]. |
6 | |
7 | |
8 | The Schwarzschild radius of a black hole of mass is . |
References
- Marsden, J.E.; Ratiu, T.S. Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 117, Texts in Applied Mathematics. [Google Scholar]
- Morin, D. Introduction to Classical Mechanics: With Problems and Solutions; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Fowles, G.R.; Cassiday, G.L. Analytical Mechanics, 6th ed.; Harcourt: Boston, MA, USA, 1999. [Google Scholar]
- Battin, R.H. An Introduction to the Mathematics and Methods of Astrodynamics; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1999. [Google Scholar]
- Lense, J.; Thirring, H. Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z 1918, 19, 156–163. [Google Scholar]
- Mashhoon, B.; Hehl, F.W.; Theiss, D.S. On the gravitational effects of rotating masses: The Thirring–Lense papers. Gen. Relativ. Gravit. 1984, 16, 711–750. [Google Scholar] [CrossRef]
- Souchay, J.; Capitaine, N. Precession and Nutation of the Earth. In Tides in Astronomy and Astrophysics; Souchay, J., Mathis, S., Tokieda, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 861, pp. 115–166, Lecture Notes in Physics. [Google Scholar]
- Damour, T.; Ruffini, R. Sur certaines vérifications nouvelles de la Relativité générale rendues possibles par la découverte d’un pulsar membre d’un système binaire. C. R. Acad. Sc. Paris Série A 1974, 279, 971–973. [Google Scholar]
- Barker, B.M.; O’Connell, R.F. Gravitational two–body problem with arbitrary masses, spins, and quadrupole moments. Phys. Rev. D 1975, 12, 329–335. [Google Scholar] [CrossRef]
- Brumberg, V.A. Essential Relativistic Celestial Mechanics; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Mashhoon, B. Gravitoelectromagnetism. In Reference Frames and Gravitomagnetism; Pascual-Sánchez, J.F., Floría, L., San Miguel, A., Vicente, F., Eds.; World Scientific: Singapore, 2001. [Google Scholar]
- Mashhoon, B. Gravitoelectromagnetism: A Brief Review. In The Measurement of Gravitomagnetism: A Challenging Enterprise; Iorio, L., Ed.; Nova Science: Hauppauge, NY, USA, 2007; pp. 29–39. [Google Scholar]
- Rindler, W. Relativity: Special, General, and Cosmological; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Ruggiero, M.L.; Tartaglia, A. Gravitomagnetic effects. Nuovo Cim. B 2002, 117, 743. [Google Scholar]
- Poisson, E.; Will, C.M. Gravity. Newtonian, Post–Newtonian, Relativistic; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Mashhoon, B. On the gravitational analogue of Larmor’s theorem. Phys. Lett. A 1993, 173, 347–354. [Google Scholar] [CrossRef]
- Petit, G.; Luzum, B. (Eds.) IERS Conventions (2010); Volume 36 of IERS Technical Note; Verlag des Bundesamts für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2010. [Google Scholar]
- Iorio, L. A Gravitomagnetic Effect on the Orbit of a Test Body Due to the Earth’s Variable Angular Momentum. Int. J. Mod. Phys. D 2002, 11, 781–787. [Google Scholar] [CrossRef]
- Ruggiero, M.L.; Iorio, L. Gravitomagnetic time-varying effects on the motion of a test particle. Gen. Relativ. Gravit. 2010, 42, 2393–2402. [Google Scholar] [CrossRef]
- Gibbs, J.W.; Wilson, E.B. Vector Analysis: A Text—Book for the Use of Students of Mathematics and Physics; Scribner: New York, NY, USA, 1901. [Google Scholar]
- Cohen, S.C.; Smith, D.E. LAGEOS Scientific results: Introduction. J. Geophys. Res. 1985, 90, 9217–9220. [Google Scholar] [CrossRef]
- Maistre, S.; Folkner, W.M.; Jacobson, R.A.; Serra, D. Jupiter spin–pole precession rate and moment of inertia from Juno radio–science observations. Planet. Space Sci. 2016, 126, 78–92. [Google Scholar] [CrossRef]
- Souami, D.; Souchay, J. The solar system’s invariable plane. Astron. Astrophys. 2012, 543, A133. [Google Scholar] [CrossRef]
- Bolton, S.J.; Lunine, J.; Stevenson, D.; Connerney, J.E.P.; Levin, S.; Owen, T.C.; Bagenal, F.; Gautier, D.; Ingersoll, A.P.; Orton, G.S.; et al. The Juno Mission. Space Sci. Rev. 2017, 213, 5–37. [Google Scholar] [CrossRef]
- Soffel, M.; Klioner, S.A.; Petit, G.; Wolf, P.; Kopeikin, S.M.; Bretagnon, P.; Brumberg, V.A.; Capitaine, N.; Damour, T.; Fukushima, T.; et al. The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement. Astron. J. 2003, 126, 2687–2706. [Google Scholar] [CrossRef]
- Burgay, M.; D’Amico, N.; Possenti, A.; Manchester, R.N.; Lyne, A.G.; Joshi, B.C.; McLaughlin, M.A.; Kramer, M.; Sarkissian, J.M.; Camilo, F.; et al. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature 2003, 426, 531–533. [Google Scholar] [CrossRef]
- Lyne, A.G.; Burgay, M.; Kramer, M.; Possenti, A.; Manchester, R.N.; Camilo, F.; McLaughlin, M.A.; Lorimer, D.R.; D’Amico, N.; Joshi, B.C.; et al. A Double–Pulsar System: A Rare Laboratory for Relativistic Gravity and Plasma Physics. Science 2004, 303, 1153–1157. [Google Scholar] [CrossRef] [PubMed]
- Breton, R.P.; Kaspi, V.M.; Kramer, M.; McLaughlin, M.A.; Lyutikov, M.; Ransom, S.M.; Stairs, I.H.; Ferdman, R.D.; Camilo, F.; Possenti, A. Relativistic Spin Precession in the Double Pulsar. Science 2008, 321, 104. [Google Scholar] [CrossRef]
- Kramer, M.; Stairs, I.H.; Manchester, R.N.; McLaughlin, M.A.; Lyne, A.G.; Ferdman, R.D.; Burgay, M.; Lorimer, D.R.; Possenti, A.; D’Amico, N.; et al. Tests of General Relativity from Timing the Double Pulsar. Science 2006, 314, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Lorimer, D.; Kramer, M. Handbook of Pulsar Astronomy. Cambridge Observing Handbooks for Research Astronomers; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Racine, É. Analysis of spin precession in binary black hole systems including quadrupole-monopole interaction. Phys. Rev. D 2008, 78, 044021. [Google Scholar] [CrossRef]
- Sayeb, M.; Blecha, L.; Kelley, L.Z.; Gerosa, D.; Kesden, M.; Thomas, J. Massive black hole binary inspiral and spin evolution in a cosmological framework. Mon. Not. Roy. Astron. Soc. 2021, 501, 2531–2546. [Google Scholar] [CrossRef]
- Kerr, R.P. Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics. Phys. Rev. Lett. 1963, 11, 237–238. [Google Scholar] [CrossRef]
- Teukolsky, S.A. The Kerr metric. Class. Quantum Gravit. 2015, 32, 124006. [Google Scholar] [CrossRef]
- Shapiro, S.L.; Teukolsky, S.A. Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects; Wiley: Hoboken, NJ, USA, 1986. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iorio, L. On the Euler–Type Gravitomagnetic Orbital Effects in the Field of a Precessing Body. Universe 2024, 10, 375. https://doi.org/10.3390/universe10090375
Iorio L. On the Euler–Type Gravitomagnetic Orbital Effects in the Field of a Precessing Body. Universe. 2024; 10(9):375. https://doi.org/10.3390/universe10090375
Chicago/Turabian StyleIorio, Lorenzo. 2024. "On the Euler–Type Gravitomagnetic Orbital Effects in the Field of a Precessing Body" Universe 10, no. 9: 375. https://doi.org/10.3390/universe10090375
APA StyleIorio, L. (2024). On the Euler–Type Gravitomagnetic Orbital Effects in the Field of a Precessing Body. Universe, 10(9), 375. https://doi.org/10.3390/universe10090375