Modeling the TESS Light Curve of Ap Si Star MX TrA
Abstract
:1. Introduction
2. Observational Data
3. Modeling of Light Curve
- Construction of a surface intensity map. For this purpose, the specific intensities in the elements of the surface grid are calculated with the individual abundances from the Doppler maps.
- Disk integration of specific intensities for all rotational phases. Convolution of the integrated flux at each phase with the bandpass of the chosen filter allows us to compare the calculated synthetic light curve with the observed one.
3.1. Construction of Intensity Map
3.2. Synthetic Magnitudes and Light Curve
4. Results and Discussion
4.1. Synthetic Light Curve
4.2. Estimation of Impact of Abundance Stratification
4.3. UV Variations
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GALEX | GALaxy evolution EXplorer-NASA orbiting space telescope |
DI | Doppler imaging |
LTE | Local thermodynamic equilibrium |
NLTE | Non local thermodynamic equilibrium |
SED | Spectral energy distribution |
TESS | Transiting Exoplanet Survey Satellite |
UV | Ultraviolet |
1 | https://mast.stsci.edu/portal/Mashup/Clients/Mast/Portal.html (accessed on 1 August 2024). |
2 | https://tess.mit.edu/public/tesstransients/pages/readme.html#flux-calibration (accessed on 1 August 2024). |
3 | https://asd.gsfc.nasa.gov/archive/galex/tools/Resolution_Response/index.html (accessed on 1 August 2024). |
References
- Michaud, G. Diffusion Processes in Peculiar a Stars. Astrophys. J. 1970, 160, 641. [Google Scholar] [CrossRef]
- Stibbs, D.W.N. A study of the spectrum and magnetic variable star HD 125248. Mon. Not. R. Astron. Soc. 1950, 110, 395. [Google Scholar] [CrossRef]
- Shulyak, D.; Tsymbal, V.; Ryabchikova, T.; Stütz, C.; Weiss, W.W. Line-by-line opacity stellar model atmospheres. Astron. Astrophys. 2004, 428, 993–1000. [Google Scholar] [CrossRef]
- Piskunov, N.E.; Rice, J.B. Techniques for Surface Imaging of Stars. Publ. Astron. Soc. Pac. 1993, 105, 1415. [Google Scholar] [CrossRef]
- Kochukhov, O. Doppler and Zeeman Doppler Imaging of Stars; Lecture Notes in Physics; Rozelot, J.P., Neiner, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 914, p. 177. [Google Scholar] [CrossRef]
- Khan, S.A.; Shulyak, D.V. Theoretical analysis of the atmospheres of CP stars. Effects of the individual abundance patterns. Astron. Astrophys. 2007, 469, 1083–1100. [Google Scholar] [CrossRef]
- Artru, M.C.; Lanz, T. Silicon absorption in UV spectra of AP SI stars. Astron. Astrophys. 1987, 182, 273–284. [Google Scholar]
- Krtička, J.; Mikulášek, Z.; Zverko, J.; Žižńovský, J. The light variability of the helium strong star HD 37776 as a result of its inhomogeneous elemental surface distribution. Astron. Astrophys. 2007, 470, 1089–1098. [Google Scholar] [CrossRef]
- Krtička, J.; Mikulášek, Z.; Henry, G.W.; Zverko, J.; Žižovský, J.; Skalický, J.; Zvěřina, P. The nature of the light variability of the silicon star HR 7224. Astron. Astrophys. 2009, 499, 567–577. [Google Scholar] [CrossRef]
- Shulyak, D.; Krtička, J.; Mikulášek, Z.; Kochukhov, O.; Lüftinger, T. modeling the light variability of the Ap star ϵ Ursae Majoris. Astron. Astrophys. 2010, 524, A66. [Google Scholar] [CrossRef]
- Krtička, J.; Mikulášek, Z.; Lüftinger, T.; Shulyak, D.; Zverko, J.; Žižňovský, J.; Sokolov, N.A. modeling of the ultraviolet and visual SED variability in the hot magnetic Ap star CU Virginis. Astron. Astrophys. 2012, 537, A14. [Google Scholar] [CrossRef]
- Borucki, W.J.; Koch, D.; Basri, G.; Batalha, N.; Brown, T.; Caldwell, D.; Caldwell, J.; Christensen-Dalsgaard, J.; Cochran, W.D.; DeVore, E.; et al. Kepler Planet-Detection Mission: Introduction and First Results. Science 2010, 327, 977. [Google Scholar] [CrossRef]
- Weiss, W.W.; Rucinski, S.M.; Moffat, A.F.J.; Schwarzenberg-Czerny, A.; Koudelka, O.F.; Grant, C.C.; Zee, R.E.; Kuschnig, R.; Mochnacki, S.; Matthews, J.M.; et al. BRITE-Constellation: Nanosatellites for Precision Photometry of Bright Stars. Publ. Astron. Soc. Pac. 2014, 126, 573. [Google Scholar] [CrossRef]
- Ricker, G.R.; Winn, J.N.; Vanderspek, R.; Latham, D.W.; Bakos, G.Á.; Bean, J.L.; Berta-Thompson, Z.K.; Brown, T.M.; Buchhave, L.; Butler, N.R.; et al. Transiting Exoplanet Survey Satellite (TESS). J. Astron. Telesc. Instruments Syst. 2015, 1, 014003. [Google Scholar] [CrossRef]
- Paunzen, E.; Maitzen, H.M. New variable chemically peculiar stars identified in the HIPPARCOS archive. Astron. Astrophys. Suppl. Ser. 1998, 133, 1–6. [Google Scholar] [CrossRef]
- Potravnov, I.; Ryabchikova, T.; Piskunov, N.; Pakhomov, Y.; Kniazev, A. Doppler imaging of a southern ApSi star HD 152564. Mon. Not. R. Astron. Soc. 2024, 527, 10376–10387. [Google Scholar] [CrossRef]
- Potravnov, I.; Ryabchikova, T. On the surface distribution of chromium in Ap star HD 152564. INASAN Sci. Rep. 2024, 9, 1–5. [Google Scholar]
- Jenkins, J.M.; Twicken, J.D.; McCauliff, S.; Campbell, J.; Sanderfer, D.; Lung, D.; Mansouri-Samani, M.; Girouard, F.; Tenenbaum, P.; Klaus, T.; et al. The TESS science processing operations center. In Proceedings of the Software and Cyberinfrastructure for Astronomy IV, Edinburgh, UK, 26–30 June 2016; Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Volume 9913, p. 99133E. [Google Scholar] [CrossRef]
- Levenberg, K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Vallenari, A.; Brown, A.G.A.; Prusti, T.; de Bruijne, J.H.J.; Arenou, F.; Babusiaux, C.; Biermann, M.; Creevey, O.L.; Ducourant, C.; Evans, D.W.; et al. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 2023, 674, A1. [Google Scholar] [CrossRef]
- Bailey, J.D.; Landstreet, J.D. Abundances determined using Si ii and Si iii in B-type stars: Evidence for stratification. Astron. Astrophys. 2013, 551, A30. [Google Scholar] [CrossRef]
- Romanovskaya, T.; Potravnov, I.; Piskunov, N. Abundance and stratification analysis of slowly-rotating Si-star BD+00°1659 as a benchmark for ApSi-stars studies. Galaxies, 2024; in preparation. [Google Scholar]
- Sokolov, N.A. Ultraviolet variability of the magnetic chemically peculiar star 56 Arietis. Mon. Not. R. Astron. Soc. 2006, 373, 666–676. [Google Scholar] [CrossRef]
- Sokolov, N.A. Ultraviolet variability of the helium-peculiar star a Centauri. Mon. Not. R. Astron. Soc. 2012, 426, 2819–2831. [Google Scholar] [CrossRef]
- Jamar, C. Ultraviolet variations of the Ap Si stars. Astron. Astrophys. 1978, 70, 379–388. [Google Scholar]
- Romanovskaya, A.M.; Shulyak, D.V.; Ryabchikova, T.A.; Sitnova, T.M. Fundamental parameters of the Ap-stars GO and, 84 UMa, and κ Psc. Astron. Astrophys. 2021, 655, A106. [Google Scholar] [CrossRef]
- Molnar, M.R. Ultraviolet photometry form the Orbiting Astronomical Observatory. VII. alpha2 Canum Venaticorum. Astrophys. J. 1973, 179, 527. [Google Scholar] [CrossRef]
- Shustov, B.M.; Sachkov, M.E.; Sichevsky, S.G.; Arkhangelsky, R.N.; Beitia-Antero, L.; Bisikalo, D.V.; Bogachev, S.A.; Buslaeva, A.I.; Vallejo, J.C.; Gomez de Castro, A.I.; et al. WSO-UV Project: New Touches. Sol. Syst. Res. 2021, 55, 677–687. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pakhomov, Y.; Potravnov, I.; Romanovskaya, A.; Ryabchikova, T. Modeling the TESS Light Curve of Ap Si Star MX TrA. Universe 2024, 10, 341. https://doi.org/10.3390/universe10090341
Pakhomov Y, Potravnov I, Romanovskaya A, Ryabchikova T. Modeling the TESS Light Curve of Ap Si Star MX TrA. Universe. 2024; 10(9):341. https://doi.org/10.3390/universe10090341
Chicago/Turabian StylePakhomov, Yury, Ilya Potravnov, Anna Romanovskaya, and Tatiana Ryabchikova. 2024. "Modeling the TESS Light Curve of Ap Si Star MX TrA" Universe 10, no. 9: 341. https://doi.org/10.3390/universe10090341
APA StylePakhomov, Y., Potravnov, I., Romanovskaya, A., & Ryabchikova, T. (2024). Modeling the TESS Light Curve of Ap Si Star MX TrA. Universe, 10(9), 341. https://doi.org/10.3390/universe10090341