Multi-Messenger Connection in High-Energy Neutrino Astronomy
Abstract
:1. Introduction
2. The Basics
3. Real-Time Alert Programs
4. Experimental Hints
5. Future Outlook
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AGN | Active Galactic Nucleus |
AI | Artificial Intelligence |
AMEGO-X | All-sky Medium-Energy Gamma-ray Observatory eXplorer |
AMON | Astrophysical Multi-messenger Observatory Network |
AMPEL | Alert Management, Photometry, and Evaluation of Light curves |
ANTARES | Astronomy with a Neutrino Telescope and Abyss Environmental RESearch |
ARA | Askaryan Radio Array |
ARCA | Astroparticle Research with Cosmics in the Abyss |
ASAS-SN | All-Sky Automated Survey for SuperNovae |
Baikal-GVD | Baikal Gigaton Volume Detector |
BBH | Binary Black Hole |
BH | Black Hole |
BL Lac | BL Lacertae Object |
CMB-S4 | Cosmic Microwave Background Stage 4 |
CRs | Cosmic Rays |
CTA | Cherenkov Telescope Array |
DOAJ | Directory of open access journals |
e-ASTROGAM | Enhanced ATROGAM |
EBL | Extragalactic Background Light |
EeVs | Etta electron volts ( electron volts) |
EHE | Extremely High-energy Events |
EM | Electromagnetic |
eROSITA | Extended ROentgen Survey with an Imaging Telescope Array |
Fermi-LAT | Fermi Large-Area Telescope |
FoV | Field of View |
FRA | Fast Response Analysis |
FSRQ | Flat Spectrum Radio Quasar |
GCN | General (Gamma-Ray) Coordinates Network |
GeV | Giga electron volts ( electron volts) |
GFU | Gamma-ray Follow-up |
GNN | Global Neutrino Network |
GRAND | Giant Radio Array for Neutrino Detection |
GRB | Gamma-Ray Burst |
GW | Gravitational Wave |
HAWC | High-Altitude Water Cherenkov Observatory |
HESE | High-Energy Starting Events |
HESS | High-Energy Stereoscopic System |
IGMF | Inter Galactic Magnetic Field |
INTEGRAL | INTErnational Gamma-Ray Astrophysics Laboratory |
KM3NeT | KiloMeter3 Neutrino Telescope |
LHAASO | Large High-Altitude Air Shower Observatory |
LIGO | Laser Interferometer Gravitational-wave Observatory |
LLM | Large Language Models |
LOFAR | LOw Frequency Array |
LSST | Large Synoptic Survey Telescope |
MAGIC | Major Atmospheric Gamma Imaging Cherenkov Telescopes |
MASTER | Mobile Astronomical System of Telescope Robots |
MAXI | Monitor of All-sky X-ray Image |
MDPI | Multidisciplinary Digital Publishing Institute |
MeerKAT | Karoo Array Telescope |
MeV | Mega electron volts ( electron volts) |
MOJAVE | Monitoring Of Jets in Active galactic nuclei with VLBA Experiments |
NGC | New General Catalogue |
ngEHT | Next-Generation Event Horizon Telescope |
ngVLA | Next-Generation Very Large Array |
NuSTAR | The Nuclear Spectroscopic Telescope Array |
OFU | Optical and X-ray Follow-Up |
OVRO | Owens Valley Radio Observatory |
PanSTARRS | Panoramic Survey Telescope & Rapid Response System |
PeV | Peta electron volts ( electron volts) |
PMTs | Photo-Multiplier Tubes |
POEMMA | Probe of Extreme Multi-Messenger Astrophysics |
P-ONE | Pacific Ocean Neutrino Experiment |
PWN | Pulsar Wind Nebulae |
RNO-G | Radio Neutrino Observatory in Greenland |
ROSAT | Röntgen Satellite |
SciMMA | Scalable Cyberinfrastructure to Support Multi-Messenger Astrophysics |
SED | Spectral Energy Distribution |
SKA | Square Kilometer Array |
SN | SuperNova |
SNEWS | SuperNova Early Warning System |
SNRs | SuperNova Remnants |
SWGO | Southern Wide-field Gamma-ray Observatory |
TA | Telescope Array |
TACH | Time-Domain Astronomy Coordination Hub |
TDE | Tidal Disruption Event |
TeV | Tera electron volts ( electron volts) |
ToO | Target of Opportunity |
UHE | Ultra-High Energy |
UHECRs | Ultra-High-Energy Cosmic Rays |
VERITAS | The Very Energetic Radiation Imaging Telescope Array System |
VHE | Very High Energy |
VLA | Very Large Array |
XMM-Newton | X-ray Multi-mirror Mission-Newton |
ZTF | Zwicky Transient Facility |
1 | This satellite stopped taking data at the start of the Ukraine–Russia war in February 2022, although its first all-sky survey data was recently released. |
References
- Hirata, K.; Kajita, T.; Koshiba, M.; Nakahata, M.; Oyama, Y.; Sato, N.; Suzuki, A.; Takita, M.; Totsuka, Y.; Kifune, T.; et al. Observation of a neutrino burst from the supernova SN1987A. Phys. Rev. Lett. 1987, 58, 1490–1493. [Google Scholar] [CrossRef]
- Alekseev, E.N.; Alekseeva, L.N.; Volchenko, V.I.; Krivosheina, I.V. Possible detection of a neutrino signal on February 23, 1987 with the Baksan underground scintillation telescope of the Nuclear Research Institute of the Soviet Academy of Sciences. Pisma V Zhurnal Eksperimentalnoi I Teor. Fiz. 1987, 45, 461–464. [Google Scholar]
- Bahcall, J.N. Solar Neutrinos. I. Theoretical. Phys. Rev. Lett. 1964, 12, 300–302. [Google Scholar] [CrossRef]
- Kuzmin, V.A. Detection of solar neutrinos by means of the 71Ga(nu, e-)71Ge reaction. Zh. Eksp. Teor. Fiz. 1965, 49, 1532–1534. [Google Scholar]
- Davis, R., Jr.; Harmer, D.S.; Hoffman, K.C. Search for neutrinos from the sun. Phys. Rev. Lett. 1968, 20, 1205–1209. [Google Scholar] [CrossRef]
- Cleveland, B.T.; Daily, T.; Davis, R., Jr.; Distel, J.R.; Lande, K.; Lee, C.K.; Wildenhain, P.S.; Ullman, J. Measurement of the solar electron neutrino flux with the Homestake chlorine detector. Astrophys. J. 1998, 496, 505–526. [Google Scholar] [CrossRef]
- Abbott, B.; Abbott, R.; Abbott, T.; Abernathy, M.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Aartsen, M.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. ApJL 2017, 848, L12. [Google Scholar] [CrossRef]
- de Gouveia Dal Pino, E.M.; Kowal, G.; Lazarian, A. Cosmic Ray Acceleration in Magnetic Reconnection Sites. ASP Conf. Ser. 2014, 488, 8. [Google Scholar]
- Baring, M.G. Diffusive Shock Acceleration: The Fermi Mechanism. arXiv 1997, arXiv:astro-ph/9711177. [Google Scholar]
- Hümmer, S.; Rüger, M.; Spanier, F.; Winter, W. Simplified models for photohadronic interactions in cosmic accelerators. Astrophys. J. 2010, 721, 630. [Google Scholar] [CrossRef]
- Alfaro, R.; Alvarez, C.; Arteaga-Velázquez, J.C.; Rojas, D.A.; Solares, H.A.A.; Babu, R.; Belmont-Moreno, E.; Caballero-Mora, K.S.; Capistrán, T.; Carramiñana, A.; et al. Search for joint multimessenger signals from potential Galactic PeVatrons with HAWC and IceCube. arXiv 2024, arXiv:2405.03817. [Google Scholar]
- Malone, K.; González, J.A.G.; Harding, P. The HAWC ultra-high-energy gamma-ray map with more than 5 years of data. arXiv 2023, arXiv:2311.00861. [Google Scholar]
- Abe, H.; Abe, S.; Acciari, V.A.; Agudo, I.; Aniello, T.; Ansoldi, S.; Antonelli, L.A.; Arbet Engels, A.; Arcaro, C.; Artero, M.; et al. MAGIC observations provide compelling evidence of hadronic multi-TeV emission from the putative PeVatron SNR G106.3+2.7. Astron. Astrophys. 2023, 671, A12. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Baring, M.G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. Detection of the Characteristic Pion-Decay Signature in Supernova Remnants. Science 2013, 339, 807–811. [Google Scholar] [CrossRef]
- Giuliani, A.; Cardillo, M.; Tavani, M.; Fukui, Y.; Yoshiike, S.; Torii, K.; Dubner, G.; Castelletti, G.; Barbiellini, G.; Bulgarelli, A.; et al. Neutral pion emission from accelerated protons in the supernova remnant W44. Astrophys. J. Lett. 2011, 742, L30. [Google Scholar] [CrossRef]
- Jogler, T.; Funk, S. Revealing W51C as a Cosmic-Ray source using Fermi-LAT data. Astrophys. J. 2016, 816, 100. [Google Scholar] [CrossRef]
- Mannheim, K. The proton blazar. Astron. Astrophys. 1993, 269, 67–76. [Google Scholar] [CrossRef]
- Waxman, E.; Bahcall, J.N. High-energy neutrinos from cosmological gamma-ray burst fireballs. Phys. Rev. Lett. 1997, 78, 2292–2295. [Google Scholar] [CrossRef]
- Plavin, A.V.; Kovalev, Y.Y.; Kovalev, Y.A.; Troitsky, S.V. Directional Association of TeV to PeV Astrophysical Neutrinos with Radio Blazars. Astrophys. J. 2021, 908, 157. [Google Scholar] [CrossRef]
- Franceschini, A.; Rodighiero, G.; Vaccari, M. Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity. Astron. Astrophys. 2008, 487, 837–852. [Google Scholar] [CrossRef]
- Finke, J.D.; Razzaque, S.; Dermer, C.D. Modeling the Extragalactic Background Light from Stars and Dust. Astrophys. J. 2010, 712, 238–249. [Google Scholar] [CrossRef]
- Dominguez, A.D. Extragalactic Background Light and Its Implications for Galaxy Evolution and γ-ray Astronomy. Ph.D. Thesis, Universidad de Sevilla, Sevilla, Spain, 2011. [Google Scholar]
- Singh, K.K.; Meintjes, P.J. Extragalactic background light models and GeV-TeV observation of blazars. NRIAG J. Astron. Geophys. 2020, 9, 309–320. [Google Scholar] [CrossRef]
- Adrián-Martínez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E.; Andre, M.; Androulakis, G.; Anghinolfi, M.; et al. Letter of intent for KM3NeT 2.0. J. Phys. G Nucl. Part. Phys. 2016, 43, 084001. [Google Scholar] [CrossRef]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C.; Alves, A.; Amin, N.; An, R.; et al. A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors. J. Instrum. 2021, 16, P08034. [Google Scholar] [CrossRef]
- Aartsen, M.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. The IceCube realtime alert system. Astropart. Phys. 2017, 92, 30–41. [Google Scholar] [CrossRef]
- Celli, S.; Demin, P.; Dornic, D.; Filippini, F.; Giorgio, E.; Le Guirriec, E.; de Favereau de Jeneret, J.; Lamoureux, M.; Mastrodicasa, M.; Palacios Gonzalez, J.; et al. The Real-time Analysis Platform of KM3NeT and its first results. In Proceedings of the 38th International Cosmic Ray Conference (ICRC2023), Nagoya, Japan, 26 July–3 August 2023; Volume 1125. [Google Scholar] [CrossRef]
- Dvornicky, R. Large neutrino telescope Baikal-GVD: Recent status. In Proceedings of the 38th International Cosmic Ray Conference—PoS(ICRC2023), Nagoya, Japan, 26 July–3 August 2023. [Google Scholar] [CrossRef]
- Dik, V.Y. Baikal-GVD real-time data processing and follow-up analysis of GCN notices. In Proceedings of the 38th International Cosmic Ray Conference—PoS(ICRC2023), Nagoya, Japan, 26 July–3 August 2023. [Google Scholar] [CrossRef]
- Allakhverdyan, V.A.; Avrorin, A.D.; Avrorin, A.V.; Aynutdinov, V.M.; Bannasch, R.; Bardačová, Z.; Belolaptikov, I.A.; Borina, I.V.; Brudanin, V.B.; Budnev, N.M.; et al. Multi-messenger and real-time astrophysics with the Baikal-GVD telescope. arXiv 2021, arXiv:2107.14472. [Google Scholar]
- ANTARES Collaboration. A Deep Sea Telescope for High Energy Neutrinos. arXiv 1999, arXiv:astro-ph/9907432.
- Albert, A.; Alves, S.; André, M.; Ardid, M.; Ardid, S.; Aubert, J.J.; Aublin, J.; Baret, B.; Basa, S.; Becherini, Y.; et al. Results of the follow-up of ANTARES neutrino alerts. arXiv 2024, arXiv:2402.16498. [Google Scholar]
- NASA. General Coordinates Network. 1997. Available online: https://gcn.nasa.gov/docs (accessed on 12 August 2024).
- Ayala Solares, H.A.; Coutu, S.; Cowen, D.; DeLaunay, J.J.; Fox, D.B.; Keivani, A.; Mostafá, M.; Murase, K.; Oikonomou, F.; Seglar-Arroyo, M.; et al. The Astrophysical Multimessenger Observatory Network (AMON): Performance and science program. Astropart. Phys. 2020, 114, 68–76. [Google Scholar] [CrossRef]
- Goodman, J.; Huentemeyer, P. The High-Altitude Water Cherenkov Detector Array: HAWC. In Handbook of X-ray and Gamma-ray Astrophysics; Bambi, C., Santangelo, A., Eds.; Springer: Singapore, 2024; pp. 2607–2632. [Google Scholar] [CrossRef]
- Mangano, S. Recent results from MAGIC. arXiv 2024, arXiv:2405.10165. [Google Scholar]
- McGrath, C.; for the VERITAS Collaboration. VERITAS Highlights 2022. J. Phys. Conf. Ser. 2023, 2429, 012015. [Google Scholar] [CrossRef]
- Giebels, B.; Collaboration, H.E.S.S. Status and recent results from H.E.S.S. arXiv 2013, arXiv:1303.2850. [Google Scholar]
- Atwood, W.B.; Abdo, A.A.; Ackermann, M.; Althouse, W.; Anderson, B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D.L.; Barbiellini, G.; et al. The Large Area Telescope on the Fermi Gamma-Ray Space Telescope Mission. Astrophys. J. 2009, 697, 1071–1102. [Google Scholar] [CrossRef]
- Gehrels, N.; Chincarini, G.; Giommi, P.; Mason, K.O.; Nousek, J.A.; Wells, A.A.; White, N.E.; Barthelmy, S.D.; Burrows, D.N.; Cominsky, L.R.; et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 2004, 611, 1005–1020. [Google Scholar] [CrossRef]
- Kornilov, V.G.; Lipunov, V.M.; Gorbovskoy, E.S.; Belinski, A.A.; Kuvshinov, D.A.; Tyurina, N.V.; Shatsky, N.I.; Sankovich, A.V.; Krylov, A.V.; Balanutsa, P.V.; et al. Robotic optical telescopes global network MASTER II. Equipment, structure, algorithms. Exp. Astron. 2011, 33, 173–196. [Google Scholar] [CrossRef]
- Bellm, E.C.; Kulkarni, S.R.; Graham, M.J.; Dekany, R.; Smith, R.M.; Riddle, R.; Masci, F.J.; Helou, G.; Prince, T.A.; Adams, S.M.; et al. The Zwicky Transient Facility: System Overview, Performance, and First Results. Publ. Astron. Soc. Pac. 2019, 131, 018002. [Google Scholar] [CrossRef]
- Hermsen, W.; Winkler, C. The INTEGRAL Mission. In Proceedings of the 22nd Moriond Astrophysics Meeting: The Gamma Ray Universe, Hanoi, Vietnam, 9–16 March 2002; pp. 393–400. [Google Scholar]
- Stein, R.; Velzen, S.v.; Kowalski, M.; Franckowiak, A.; Gezari, S.; Miller-Jones, J.C.A.; Frederick, S.; Sfaradi, I.; Bietenholz, M.F.; Horesh, A.; et al. A tidal disruption event coincident with a high-energy neutrino. Nat. Astron. 2021, 5, 510–518. [Google Scholar] [CrossRef]
- Reusch, S.; Stein, R.; Franckowiak, A.; Gezari, S.; Zwicky Transient Facility (Ztf) Collaboration; Global Relay Of Observatories Watching Transients Happen (GROWTH) Collaboration. IceCube-200530A: Candidate Counterparts from the Zwicky Transient Facility. GRB Coord. Netw. 2020, 27872, 1. [Google Scholar]
- Oikonomou, F.; Petropoulou, M.; Murase, K.; Tohuvavohu, A.; Vasilopoulos, G.; Buson, S.; Santander, M. Multi-messenger emission from the parsec-scale jet of the flat-spectrum radio quasar PKS 1502+106 coincident with high-energy neutrino IceCube-190730A. J. Cosmol. Astropart. Phys. 2021, 2021, 082. [Google Scholar] [CrossRef]
- Liao, N.H.; Sheng, Z.F.; Jiang, N.; Chang, Y.L.; Wang, Y.B.; Xu, D.L.; Shu, X.W.; Fan, Y.Z.; Wang, T.G. GB6 J2113+1121: A Multiwavelength Flaring γ-Ray Blazar Temporally and Spatially Coincident with the Neutrino Event IceCube-191001A. Astrophys. J. Lett. 2022, 932, L25. [Google Scholar] [CrossRef]
- Jiang, X.; Liao, N.H.; Wang, Y.B.; Xue, R.; Jiang, N.; Wang, T.G. Awakening of A Blazar at Redshift 2.7 Temporally Coincident with Arrival of Cospatial Neutrino Event IceCube-201221A. arXiv 2024, arXiv:2401.12122. [Google Scholar] [CrossRef]
- Perley, R.; Napier, P.; Jackson, J.; Butler, B.; Carlson, B.; Fort, D.; Dewdney, P.; Clark, B.; Hayward, R.; Durand, S.; et al. The Expanded Very Large Array. Proc. IEEE 2009, 97, 1448–1462. [Google Scholar] [CrossRef]
- Best, P.N. LOFAR-UK White Paper: A Science case for UK involvement in LOFAR. arXiv 2008, arXiv:0802.1186. [Google Scholar]
- Shappee, B.; Prieto, J.; Stanek, K.Z.; Kochanek, C.S.; Holoien, T.; Jencson, J.; Basu, U.; Beacom, J.F.; Szczygiel, D.; Pojmanski, G.; et al. All Sky Automated Survey for SuperNovae (ASAS-SN or “Assassin”). In American Astronomical Society Meeting Abstracts #223; American Astronomical Society: Washington, DC, USA, 2014; Volume 223, p. 236.03. Available online: https://baas.aas.org/abstracts (accessed on 30 July 2024).
- Jansen, F.; Lumb, D.; Altieri, B.; Clavel, J.; Ehle, M.; Erd, C.; Gabriel, C.; Guainazzi, M.; Gondoin, P.; Much, R.; et al. XMM-Newton observatory. I. The spacecraft and operations. Astron. Astrophys. 2001, 365, L1–L6. [Google Scholar] [CrossRef]
- Harrison, F.A.; Craig, W.W.; Christensen, F.E.; Hailey, C.J.; Zhang, W.W.; Boggs, S.E.; Stern, D.; Cook, W.R.; Forster, K.; Giommi, P.; et al. The Nuclear Spectroscopic Telescope Array (NuSTAR) High-energy X-Ray Mission. Astrophys. J. 2013, 770, 103. [Google Scholar] [CrossRef]
- O’Dell, S.L.; Pareschi, G. Optics for EUV, X-ray, and Gamma-Ray Astronomy III; SPIE: Bellingham, WA, USA, 2007; Volume 6688, Available online: https://www.spiedigitallibrary.org/conference-proceedings-of-SPIE/6688.toc#_=_ (accessed on 30 July 2024).
- Abbasi, R.; Ackermann, M.; Adams, J.; Agarwalla, S.K.; Aguilar, J.A.; Ahlers, M.; Alameddine, J.M.; Amin, N.M.; Andeen, K.; Anton, G.; et al. IceCat-1: The IceCube Event Catalog of Alert Tracks. Astrophys. J. Suppl. Ser. 2023, 269, 25. [Google Scholar] [CrossRef]
- IceCube Collaboration. IceCube High-Energy Neutrino Cascade Alerts. Available online: https://gcn.gsfc.nasa.gov/doc/High_Energy_Neutrino_Cascade_Alerts.pdf (accessed on 31 July 2020).
- Antonioli, P.; Fienberg, R.T.; Fleurot, F.; Fukuda, Y.; Fulgione, W.; Habig, A.; Heise, J.; McDonald, A.B.; Mills, C.; Namba, T.; et al. SNEWS: The SuperNova Early Warning System. New J. Phys. 2004, 6, 114. [Google Scholar] [CrossRef]
- Al Kharusi, S.; BenZvi, S.Y.; Bobowski, J.S.; Bonivento, W.; Brdar, V.; Brunner, T.; Caden, E.; Clark, M.; Coleiro, A.; Colomer-Molla, M.; et al. SNEWS 2.0: A next-generation supernova early warning system for multi-messenger astronomy. New J. Phys. 2021, 23, 031201. [Google Scholar] [CrossRef]
- Pizzuto, A.; Desai, A.; Hussain, R. Realtime Follow-up of Astrophysical Transients with the IceCube Neutrino Observatory. arXiv 2021, arXiv:2107.09551. [Google Scholar]
- Ivezić, Ž.; Kahn, S.M.; Tyson, J.A.; Abel, B.; Acosta, E.; Allsman, R.; Alonso, D.; AlSayyad, Y.; Anderson, S.F.; Andrew, J.; et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products. Astrophys. J. 2019, 873, 111. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Allison, P.; Amin, N.M.; et al. IceCube-Gen2: The window to the extreme Universe. J. Phys. G Nucl. Part. Phys. 2021, 48, 060501. [Google Scholar] [CrossRef]
- Schüssler, F.; de Bony de Lavergne, M.; Kaan Alkan, A.; Mourier, J.; Reichherzer, P. Astro-COLIBRI: An Advanced Platform for Real-Time Multi-Messenger Astrophysics. In Proceedings of the 38th International Cosmic Ray Conference—PoS(ICRC2023), Nagoya, Japan, 26 July–3 August 2023. [Google Scholar] [CrossRef]
- Smale, A.; Racusin, J.; Barthelmy, S.; McGlynn, T.; Cenko, B.; Schnittman, J.; Perkins, J.; Baker, J.; Singer, L.; Sheets, T.; et al. Time-domain Astronomy Coordination Hub (TACH). In American Astronomical Society Meeting Abstracts #235; American Astronomical Society: Washington, DC, USA, 2020; Volume 235, p. 107.15. Available online: https://baas.aas.org/abstracts (accessed on 30 July 2024).
- Brazier, A.; Cousins, B.; Hanna, C.; Howell, A.; Lindstrom, L.; Manning, T.A.; McCully, C.; Narayan, G.; Nation, J.; Petravick, D.; et al. SCiMMA: Real-time Orchestration of Multi-Messenger Astrophysical Observations. In American Astronomical Society Meeting Abstracts; American Astronomical Society: Washington, DC, USA, 2024; Volume 243, p. 456.20. Available online: https://baas.aas.org/abstracts (accessed on 30 July 2024).
- Abbasi, R.; Ackermann, M.; Adams, J.; Agarwalla, S.K.; Aguilar, J.A.; Ahlers, M.; Alameddine, J.M.; Amin, N.M.; Andeen, K.; Anton, G.; et al. Characterization of the Astrophysical Diffuse Neutrino Flux using Starting Track Events in IceCube. arXiv 2024, arXiv:2402.18026. [Google Scholar]
- Abreu, P.; Aglietta, M.; Albury, J.M.; Allekotte, I.; Almeida Cheminant, K.; Almela, A.; Alvarez-Muñiz, J.; Alves Batista, R.; Ammerman Yebra, J.; Anastasi, G.A.; et al. Arrival Directions of Cosmic Rays above 32 EeV from Phase One of the Pierre Auger Observatory. Astrophys. J. 2022, 935, 170. [Google Scholar] [CrossRef]
- Aab, A.; Abreu, P.; Aglietta, M.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G.A.; et al. Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8 × 1018 eV. Science 2017, 357, 1266–1270. [Google Scholar] [CrossRef]
- Ahlers, M.; Halzen, F. Opening a new window onto the universe with IceCube. Prog. Part. Nucl. Phys. 2018, 102, 73–88. [Google Scholar] [CrossRef]
- Murase, K.; Fukugita, M. Energetics of high-energy cosmic radiations. Phys. Rev. D 2019, 99, 063012. [Google Scholar] [CrossRef]
- Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV. Astrophys. J. 2015, 799, 86. [Google Scholar] [CrossRef]
- Collaboration, T.P.A.; Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E.J.; Samarai, I.A.; Albuquerque, I.F.M.; Allekotte, I.; Allison, P.; Almela, A.; et al. The Pierre Auger Observatory: Contributions to the 34th International Cosmic Ray Conference (ICRC 2015). arXiv 2015, arXiv:1509.03732. [Google Scholar]
- Murase, K.; Ahlers, M.; Lacki, B.C. Testing the hadronuclear origin of PeV neutrinos observed with IceCube. Phys. Rev. D 2013, 88, 121301. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Characteristics of the Diffuse Astrophysical Electron and Tau Neutrino Flux with Six Years of IceCube High Energy Cascade Data. Phys. Rev. Lett. 2020, 125, 121104. [Google Scholar] [CrossRef] [PubMed]
- Murase, K.; Guetta, D.; Ahlers, M. Hidden Cosmic-Ray Accelerators as an Origin of TeV-PeV Cosmic Neutrinos. Phys. Rev. Lett. 2016, 116, 071101. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Murase, K.; Mészáros, P. Complementarity of Stacking and Multiplet Constraints on the Blazar Contribution to the Cumulative High-energy Neutrino Intensity. Astrophys. J. 2020, 890, 25. [Google Scholar] [CrossRef]
- Neronov, A.; Semikoz, D.V.; Ptitsyna, K. Strong constraints on hadronic models of blazar activity from Fermi and IceCube stacking analysis. Astron. Astrophys. 2017, 603, A135. [Google Scholar] [CrossRef]
- Sharma, A.; O’Sullivan, E. A model-independent analysis of neutrino flares detected in IceCube from X-ray selected blazars. arXiv 2021, arXiv:2107.08159. [Google Scholar]
- Abbasi, R.; Ackermann, M.; Adams, J.; Agarwalla, S.K.; Aguilar, J.A.; Ahlers, M.; Alameddine, J.M.; Amin, N.M.; Andeen, K.; Anton, G.; et al. All-sky Search for Transient Astrophysical Neutrino Emission with 10 Years of IceCube Cascade Events. Astrophys. J. 2024, 967, 48. [Google Scholar] [CrossRef]
- Oikonomou, F.; Murase, K.; Padovani, P.; Resconi, E.; Mészáros, P. High-energy neutrino flux from individual blazar flares. Mon. Not. R. Astron. Soc. 2019, 489, 4347–4366. [Google Scholar] [CrossRef]
- Yoshida, K.; Petropoulou, M.; Murase, K.; Oikonomou, F. Flare Duty Cycle of Gamma-Ray Blazars and Implications for High-energy Neutrino Emission. Astrophys. J. 2023, 954, 194. [Google Scholar] [CrossRef]
- Kun, E.; Bartos, I.; Tjus, J.B.; Biermann, P.L.; Halzen, F.; Mező, G. Cosmic Neutrinos from Temporarily Gamma-suppressed Blazars. Astrophys. J. Lett. 2021, 911, L18. [Google Scholar] [CrossRef]
- Kun, E.; Bartos, I.; Becker Tjus, J.; Biermann, P.L.; Franckowiak, A.; Halzen, F.; Mező, G. Searching for temporary gamma-ray dark blazars associated with IceCube neutrinos. Astron. Astrophys. 2023, 679, A46. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data. Phys. Rev. D 2018, 98, 062003. [Google Scholar] [CrossRef]
- Gaisser, T.; Karle, A. Neutrino Astronomy, Current Status, Future Prospects; World Scientific: Singapore, 2017. [Google Scholar] [CrossRef]
- Ansoldi, S.; Antonelli, L.A.; Arcaro, C.; Baack, D.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; González, J.B.; et al. The Blazar TXS 0506+056 Associated with a High-energy Neutrino: Insights into Extragalactic Jets and Cosmic-Ray Acceleration. Astrophys. J. Lett. 2018, 863, L10. [Google Scholar] [CrossRef]
- Aartsen, M.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147–151. [Google Scholar] [CrossRef]
- Padovani, P.; Oikonomou, F.; Petropoulou, M.; Giommi, P.; Resconi, E. TXS 0506+056, the first cosmic neutrino source, is not a BL Lac. Mon. Not. R. Astron. Soc. Lett. 2019, 484, L104–L108. [Google Scholar] [CrossRef]
- Keivani, A.; Murase, K.; Petropoulou, M.; Fox, D.B.; Cenko, S.B.; Chaty, S.; Coleiro, A.; DeLaunay, J.J.; Dimitrakoudis, S.; Evans, P.A.; et al. A Multimessenger Picture of the Flaring Blazar TXS 0506+056: Implications for High-energy Neutrino Emission and Cosmic-Ray Acceleration. Astrophys. J. 2018, 864, 84. [Google Scholar] [CrossRef]
- Murase, K.; Oikonomou, F.; Petropoulou, M. Blazar Flares as an Origin of High-energy Cosmic Neutrinos? Astrophys. J. 2018, 865, 124. [Google Scholar] [CrossRef]
- Rodrigues, X.; Gao, S.; Fedynitch, A.; Palladino, A.; Winter, W. Leptohadronic Blazar Models Applied to the 2014–2015 Flare of TXS 0506+056. Astrophys. J. 2019, 874, L29. [Google Scholar] [CrossRef]
- Reimer, A.; Boettcher, M.; Buson, S. Cascading Constraints from Neutrino-emitting Blazars: The Case of TXS 0506+056. Astrophys. J. 2018, 881, 46. [Google Scholar] [CrossRef]
- Petropoulou, M.; Murase, K.; Santander, M.; Buson, S.; Tohuvavohu, A.; Kawamuro, T.; Vasilopoulos, G.; Negoro, H.; Ueda, Y.; Siegel, M.H.; et al. Multi-epoch Modeling of TXS 0506+056 and Implications for Long-term High-energy Neutrino Emission. Astrophys. J. 2020, 891, 115. [Google Scholar] [CrossRef]
- Zhang, B.T.; Petropoulou, M.; Murase, K.; Oikonomou, F. A Neutral Beam Model for High-energy Neutrino Emission from the Blazar TXS 0506+056. Astrophys. J. 2020, 889, 118. [Google Scholar] [CrossRef]
- Xue, R.; Liu, R.Y.; Petropoulou, M.; Oikonomou, F.; Wang, Z.R.; Wang, K.; Wang, X.Y. A Two-zone Model for Blazar Emission: Implications for TXS 0506+056 and the Neutrino Event IceCube-170922A. Astrophys. J. 2019, 886, 23. [Google Scholar] [CrossRef]
- Rodrigues, X.; Garrappa, S.; Gao, S.; Paliya, V.S.; Franckowiak, A.; Winter, W. Multiwavelength and Neutrino Emission from Blazar PKS 1502 + 106. Astrophys. J. 2021, 912, 54. [Google Scholar] [CrossRef]
- Max-Moerbeck, W.; Richards, J.L.; Pavlidou, V.; Pearson, T.J.; Readhead, A.C.S.; Hovatta, T.; King, O.G.; Reeves, R. OVRO 40 m Blazar Monitoring Program: Location of the gamma-ray emission region in blazars by the study of correlated variability at radio and gamma-rays. arXiv 2013, arXiv:1303.2131. [Google Scholar]
- Plavin, A.; Kovalev, Y.Y.; Kovalev, Y.A.; Troitsky, S. Observational Evidence for the Origin of High-energy Neutrinos in Parsec-scale Nuclei of Radio-bright Active Galaxies. Astrophys. J. 2020, 894, 101. [Google Scholar] [CrossRef]
- Desai, A.; Vandenbroucke, J.; Pizzuto, A. Testing the AGN Radio and Neutrino correlation using the MOJAVE catalog and 10 years of IceCube Data. arXiv 2021, arXiv:2107.08115. [Google Scholar]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alameddine, J.M.; Alispach, C.; Alves, A.A.; Amin, N.M.; et al. Evidence for neutrino emission from the nearby active galaxy NGC 1068. Science 2022, 378, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Padovani, P.; Resconi, E.; Ajello, M.; Bellenghi, C.; Bianchi, S.; Blasi, P.; Huang, K.Y.; Gabici, S.; Rosas, V.G.; Niederhausen, H.; et al. Supermassive black holes and very high-energy neutrinos: The case of NGC 1068. arXiv 2024, arXiv:2405.20146. [Google Scholar]
- Ajello, M.; Murase, K.; McDaniel, A. Disentangling the Hadronic Components in NGC 1068. Astrophys. J. Lett. 2023, 954, L49. [Google Scholar] [CrossRef]
- Kadler, M.; Krauß, F.; Mannheim, K.; Ojha, R.; Müller, C.; Schulz, R.; Anton, G.; Baumgartner, W.; Beuchert, T.; Buson, S.; et al. Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event. Nat. Phys. 2016, 12, 807–814. [Google Scholar] [CrossRef]
- Giommi, P.; Padovani, P.; Oikonomou, F.; Glauch, T.; Paiano, S.; Resconi, E. 3HSP J095507.9+355101: A flaring extreme blazar coincident in space and time with IceCube-200107A. Astron. Astrophys. 2020, 640, L4. [Google Scholar] [CrossRef]
- Petropoulou, M.; Oikonomou, F.; Mastichiadis, A.; Murase, K.; Padovani, P.; Vasilopoulos, G.; Giommi, P. Comprehensive Multimessenger Modeling of the Extreme Blazar 3HSP J095507.9+355101 and Predictions for IceCube. Astrophys. J. 2020, 899, 113. [Google Scholar] [CrossRef]
- Kruiswijk, K.; Lamoureux, M.; de Wasseige, G. First results of low-energy neutrino follow-ups of Run O4 compact binary mergers with the IceCube Neutrino Observatory. arXiv 2023, arXiv:2307.15902. [Google Scholar]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aggarwal, N.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alameddine, J.M.; Alves, A.A.; Amin, N.M.; et al. IceCube Search for Neutrinos Coincident with Gravitational Wave Events from LIGO/Virgo Run O3. Astrophys. J. 2023, 944, 80. [Google Scholar] [CrossRef]
- Albert, A.; Alves, S.; André, M.; Ardid, M.; Ardid, S.; Aubert, J.J.; Aublin, J.; Baret, B.; Basa, S.; Becherini, Y.; et al. Search for neutrino counterparts to the gravitational wave sources from LIGO/Virgo O3 run with the ANTARES detector. J. Cosmol. Astropart. Phys. 2023, 2023, 004. [Google Scholar] [CrossRef]
- Aiello, S.; Albert, A.; Alves Garre, S.; Aly, Z.; Ambrosone, A.; Ameli, F.; Andre, M.; Androutsou, E.; Anguita, M.; Aphecetche, L.; et al. Searches for neutrino counterparts of gravitational waves from the LIGO/Virgo third observing run with KM3NeT. J. Cosmol. Astropart. Phys. 2024, 2024, 026. [Google Scholar] [CrossRef]
- Albert, A.; André, M.; Anghinolfi, M.; Ardid, M.; Aubert, J.J.; Aublin, J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; et al. Search for High-energy Neutrinos from Binary Neutron Star Merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory. Astrophys. J. 2017, 850, L35. [Google Scholar] [CrossRef]
- Dado, S.; Dar, A. On The Missing Counterparts Of LIGO-Virgo Binary Merger Events. arXiv 2019, arXiv:1910.06163. [Google Scholar]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Alves, A.A., Jr.; Amin, N.M.; An, R.; et al. Probing neutrino emission at GeV energies from compact binary mergers with the IceCube Neutrino Observatory. arXiv 2021, arXiv:2105.13160. [Google Scholar]
- Albert, A.; Alves, S.; André, M.; Anghinolfi, M.; Ardid, S.; Aubert, J.J.; Aublin, J.; Baret, B.; Basa, S.; Belhorma, B.; et al. Search for Spatial Correlations of Neutrinos with Ultra-high-energy Cosmic Rays. Astrophys. J. 2022, 934, 164. [Google Scholar] [CrossRef]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alameddine, J.M.; Alves, A.A.; Amin, N.M.; Andeen, K.; et al. Observation of high-energy neutrinos from the Galactic plane. Science 2023, 380, 1338–1343. [Google Scholar] [CrossRef] [PubMed]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Archinger, M.; et al. A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube. Astrophys. J. 2015, 809, 98. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data. Astrophys. J. 2016, 833, 3. [Google Scholar] [CrossRef]
- van Vliet, A.; Batista, R.A.; Hörandel, J.R. Determining the fraction of cosmic-ray protons at ultrahigh energies with cosmogenic neutrinos. Phys. Rev. D 2019, 100, 021302. [Google Scholar] [CrossRef]
- Schulz, A. Measurement of the Cosmic Ray Spectrum Above 3x1017 eV with the Pierre Auger Observatory. In Proceedings of the International Cosmic Ray Conference, Rio de Janeiro, Brazil, 2–9 July 2013; Volume 33, p. 380. [Google Scholar]
- Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R.; et al. The Cosmic Ray Energy Spectrum Observed with the Surface Detector of the Telescope Array Experiment. Astrophys. J. 2013, 768, L1. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Neutrino astronomy with the next generation IceCube Neutrino Observatory. arXiv 2019, arXiv:1911.02561. [Google Scholar]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C.; Alves, A.; Amin, N.; An, R.; et al. A convolutional neural network based cascade reconstruction for the IceCube Neutrino Observatory. J. Instrum. 2021, 16, P07041. [Google Scholar] [CrossRef]
- García-Méndez, J.; Geißelbrecht, N.; Eberl, T.; Ardid, M.; Ardid, S. Deep learning reconstruction in ANTARES. J. Instrum. 2021, 16, C09018. [Google Scholar] [CrossRef]
- Reck, S.; Guderian, D.; Vermariën, G.; Domi, A. Graph neural networks for reconstruction and classification in KM3NeT. J. Instrum. 2021, 16, C10011. [Google Scholar] [CrossRef]
- Minh, M.H. Reconstruction of Neutrino Events in IceCube using Graph Neural Networks. arXiv 2021, arXiv:2107.12187. [Google Scholar]
- Choma, N.; Monti, F.; Gerhardt, L.; Palczewski, T.; Ronaghi, Z.; Prabhat; Bhimji, W.; Bronstein, M.M.; Klein, S.R.; Bruna, J. Graph Neural Networks for IceCube Signal Classification. arXiv 2018, arXiv:1809.06166. [Google Scholar]
- Sommani, G.; Lagunas Gualda, C.; Niederhausen, H.; Abbasi, R.; Ackermann, M.; Adams, J.; Agarwalla, S.K.; Aguilar, J.; Ahlers, M.; Alameddine, J.M.; et al. Towards a more robust reconstruction method for IceCube’s real-time program. In Proceedings of the 38th International Cosmic Ray Conference—PoS(ICRC2023), Nagoya, Japan, 26 July–3 August 2023. [Google Scholar] [CrossRef]
- Aiello, S.; Albert, A.; Alshamsi, M.; Garre, S.A.; Aly, Z.; Ambrosone, A.; Ameli, F.; Andre, M.; Androulakis, G.; Anghinolfi, M.; et al. The KM3NeT multi-PMT optical module. J. Instrum. 2022, 17, P07038. [Google Scholar] [CrossRef]
- Barwick, S.W.; Glaser, C. Radio Detection of High Energy Neutrinos in Ice. In The Encyclopedia of Cosmology; World Scientific: Singapore, 2023; pp. 237–302. [Google Scholar] [CrossRef]
- Hallmann, S.; Clark, B.; Glaser, C.; Smith, D. Sensitivity studies for the IceCube-Gen2 radio array. arXiv 2021, arXiv:2107.08910. [Google Scholar]
- Aguilar, J.; Allison, P.; Beatty, J.; Bernhoff, H.; Besson, D.; Bingefors, N.; Botner, O.; Buitink, S.; Carter, K.; Clark, B.; et al. Design and sensitivity of the Radio Neutrino Observatory in Greenland (RNO-G). J. Instrum. 2021, 16, P03025. [Google Scholar] [CrossRef]
- Álvarez Muñiz, J.; Alves Batista, R.; Balagopal V., A.; Bolmont, J.; Bustamante, M.; Carvalho, W.; Charrier, D.; Cognard, I.; Decoene, V.; Denton, P.B.; et al. The Giant Radio Array for Neutrino Detection (GRAND): Science and design. Sci. China Phys. Mech. Astron. 2019, 63, 219501. [Google Scholar] [CrossRef]
- Olinto, A.; Krizmanic, J.; Adams, J.; Aloisio, R.; Anchordoqui, L.; Anzalone, A.; Bagheri, M.; Barghini, D.; Battisti, M.; Bergman, D.; et al. The POEMMA (Probe of Extreme Multi-Messenger Astrophysics) observatory. J. Cosmol. Astropart. Phys. 2021, 2021, 007. [Google Scholar] [CrossRef]
- Padovani, P.; Petropoulou, M.; Giommi, P.; Resconi, E. A simplified view of blazars: The neutrino background. Mon. Not. R. Astron. Soc. 2015, 452, 1877–1887. [Google Scholar] [CrossRef]
- Rodrigues, X.; Heinze, J.; Palladino, A.; van Vliet, A.; Winter, W. Active Galactic Nuclei Jets as the Origin of Ultrahigh-Energy Cosmic Rays and Perspectives for the Detection of Astrophysical Source Neutrinos at EeV Energies. Phys. Rev. Lett. 2021, 126, 191101. [Google Scholar] [CrossRef] [PubMed]
- Heinze, J.; Fedynitch, A.; Boncioli, D.; Winter, W. A New View on Auger Data and Cosmogenic Neutrinos in Light of Different Nuclear Disintegration and Air-shower Models. Astrophys. J. 2019, 873, 88. [Google Scholar] [CrossRef]
- Guépin, C.; Kotera, K.; Oikonomou, F. High-energy neutrino transients and the future of multi-messenger astronomy. arXiv 2022, arXiv:2207.12205. [Google Scholar]
- Stettner, J. Measurement of the diffuse astrophysical muon-neutrino spectrum with ten years of IceCube data. In Proceedings of the 36th International Cosmic Ray Conference, Madison, WI, USA, 24 July–1 August 2019; Volume 1017. [Google Scholar] [CrossRef]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C.M.; Allison, P.; Alves Junior, A.A.; Amin, N.M.B.; et al. Sensitivity studies for the IceCube-Gen2 radio array. In Proceedings of the 37th International Cosmic Ray Conference (ICRC2021), Berlin, Germany, 15–22 July 2021; Volume 1183. [Google Scholar] [CrossRef]
- Aab, A.; Abreu, P.; Aglietta, M.; Albuquerque, I.; Albury, J.; Allekotte, I.; Almela, A.; Castillo, J.A.; Alvarez-Muñiz, J.; Anastasi, G.; et al. Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 2019, 2019, 022. [Google Scholar] [CrossRef]
- Valera, V.B.; Bustamante, M.; Glaser, C. Near-future discovery of the diffuse flux of ultra-high-energy cosmic neutrinos. arXiv 2023, arXiv:2210.03756. [Google Scholar]
- Lister, M.L.; Homan, D.C. MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. I. First-Epoch 15 GHz Linear Polarization Images. Astron. J. 2005, 130, 1389–1417. [Google Scholar] [CrossRef]
- Jonas, J.; MeerKAT Team. The MeerKAT Radio Telescope. In Proceedings of the MeerKAT Science: On the Pathway to the SKA, Stellenbosch, South Africa, 25–27 May 2016; p. 1. [Google Scholar] [CrossRef]
- Lobanov, A.P. Imaging Across the Spectrum: Synergies between SKA and Other Future Telescopes. In Exploring the Cosmic Frontier: Astrophysical Instruments for the 21st Century; Springer: Berlin/Heidelberg, Germany, 2007; pp. 39–40. [Google Scholar] [CrossRef]
- Heald, G.; Mao, S.A.; Vacca, V.; Akahori, T.; Damas-Segovia, A.; Gaensler, B.M.; Hoeft, M.; Agudo, I.; Basu, A.; Beck, R.; et al. Magnetism Science with the Square Kilometre Array. Galaxies 2020, 8, 53. [Google Scholar] [CrossRef]
- Blackburn, L.; Doeleman, S.; Dexter, J.; Gómez, J.L.; Johnson, M.D.; Palumbo, D.C.; Weintroub, J.; Bouman, K.L.; Chael, A.A.; Farah, J.R.; et al. Studying Black Holes on Horizon Scales with VLBI Ground Arrays. arXiv 2019, arXiv:1909.01411. [Google Scholar]
- Murphy, E.J.; Bolatto, A.; Chatterjee, S.; Casey, C.M.; Chomiuk, L.; Dale, D.; de Pater, I.; Dickinson, M.; Francesco, J.D.; Hallinan, G.; et al. Science with an ngVLA: The ngVLA Science Case and Associated Science Requirements. arXiv 2018, arXiv:1810.07524. [Google Scholar]
- Abazajian, K.; Addison, G.; Adshead, P.; Ahmed, Z.; Allen, S.W.; Alonso, D.; Alvarez, M.; Anderson, A.; Arnold, K.S.; Baccigalupi, C.; et al. CMB-S4 Science Case, Reference Design, and Project Plan. arXiv 2019, arXiv:1907.04473. [Google Scholar]
- Chambers, K.C.; Magnier, E.A.; Metcalfe, N.; Flewelling, H.A.; Huber, M.E.; Waters, C.Z.; Denneau, L.; Draper, P.W.; Farrow, D.; Finkbeiner, D.P.; et al. The Pan-STARRS1 Surveys. arXiv 2019, arXiv:1612.05560. [Google Scholar]
- Laureijs, R.; Amiaux, J.; Arduini, S.; Auguères, J.L.; Brinchmann, J.; Cole, R.; Cropper, M.; Dabin, C.; Duvet, L.; Ealet, A.; et al. Euclid Definition Study Report. arXiv 2011, arXiv:1110.3193. [Google Scholar]
- Doré, O.; Hirata, C.; Wang, Y.; Weinberg, D.; Baronchelli, I.; Benson, A.; Capak, P.; Choi, A.; Eifler, T.; Hemmati, S.; et al. WFIRST Science Investigation Team “Cosmology with the High Latitude Survey” Annual Report 2017. arXiv 2018, arXiv:1804.03628. [Google Scholar]
- Predehl, P.; Andritschke, R.; Arefiev, V.; Babyshkin, V.; Batanov, O.; Becker, W.; Böhringer, H.; Bogomolov, A.; Boller, T.; Borm, K.; et al. The eROSITA X-ray telescope on SRG. Astron. Astrophys. 2021, 647, A1. [Google Scholar] [CrossRef]
- Merloni, A.; Lamer, G.; Liu, T.; Ramos-Ceja, M.E.; Brunner, H.; Bulbul, E.; Dennerl, K.; Doroshenko, V.; Freyberg, M.J.; Friedrich, S.; et al. The SRG/eROSITA all-sky survey: First X-ray catalogues and data release of the western Galactic hemisphere. Astron. Astrophys. 2024, 682, A34. [Google Scholar] [CrossRef]
- Caputo, R.; Ajello, M.; Kierans, C.A.; Perkins, J.S.; Racusin, J.L.; Baldini, L.; Baring, M.G.; Bissaldi, E.; Burns, E.; Cannady, N.; et al. All-sky Medium Energy Gamma-ray Observatory eXplorer mission concept. J. Astron. Telesc. Instruments Syst. 2022, 8, 044003. [Google Scholar] [CrossRef]
- De Angelis, A.; Tatischeff, V.; Grenier, I.; McEnery, J.; Mallamaci, M.; Tavani, M.; Oberlack, U.; Hanlon, L.; Walter, R.; Argan, A.; et al. Science with e-ASTROGAM. J. High Energy Astrophys. 2018, 19, 1–106. [Google Scholar] [CrossRef]
- Hofmann, W.; Zanin, R. The Cherenkov Telescope Array. arXiv 2023, arXiv:2305.12888. [Google Scholar]
- Cao, Z.; della Volpe, D.; Liu, S.; Bi, X.; Chen, Y.; Piazzoli, B.E.; Feng, L.; Jia, H.; Li, Z.; Ma, X.; et al. The Large High Altitude Air Shower Observatory (LHAASO) Science Book (2021 Edition). arXiv 2022, arXiv:1905.02773. [Google Scholar]
- Harding, P.; Albert, A.; Alfaro, R.J.; Alvarez, C.; Andres, A.; Arteaga Velazquez, J.C.; Avila Rojas, D.O.; Ayala Solares, H.A.; Babu, R.; Belmont-Moreno, E.; et al. The HAWC ultra-high-energy gamma-ray map with more than 5 years of data. In Proceedings of the 38th International Cosmic Ray Conference (ICRC2023), Nagoya, Japan, 26 July–3 August 2023; Volume 698. [Google Scholar] [CrossRef]
- Chiavassa, A. SWGO: A wide-field of view gamma-ray observatory in the southern hemisphere. JINST 2024, 19, C02065. [Google Scholar] [CrossRef]
- Cao, Z.; Aharonian, F.; An, Q.; Axikegu; Bai, Y.X.; Bao, Y.W.; Bastieri, D.; Bi, X.J.; Bi, Y.J.; Cai, J.T.; et al. The First LHAASO Catalog of Gamma-Ray Sources. Astrophys. J. Suppl. Ser. 2024, 271, 25. [Google Scholar] [CrossRef]
- LHAASO Collaboration. Evidence for particle acceleration approaching PeV energies in the W51 complex. arXiv 2024, arXiv:2407.00624. [Google Scholar]
- Mukhopadhyay, M.; Bhattacharya, M.; Murase, K. Multi-messenger signatures of delayed choked jets in tidal disruption events. arXiv 2023, arXiv:2309.02275. [Google Scholar]
- Wevers, T.; Ryu, T. Multi-messenger astronomy with black holes: Tidal disruption events. arXiv 2023, arXiv:2310.16879. [Google Scholar]
- Bhattacharya, M.; Carpio, J.A.; Murase, K.; Horiuchi, S. High-energy neutrino emission from magnetized jets of rapidly rotating protomagnetars. Mon. Not. R. Astron. Soc. 2023, 521, 2391–2407. [Google Scholar] [CrossRef]
- Rudolph, A.; Petropoulou, M.; Winter, W.; Bošnjak, Ž. Multi-messenger Model for the Prompt Emission from GRB 221009A. Astrophys. J. Lett. 2023, 944, L34. [Google Scholar] [CrossRef]
- Kruiswijk, K.; de Wasseige, G. Probing neutrino emission at GeV energies from astrophysical transient events with the IceCube Neutrino Observatory. arXiv 2023, arXiv:2307.16190. [Google Scholar]
- Kruiswijk, K.; de Wasseige, G. The classification and categorisation of gamma-ray bursts with machine learning techniques for neutrino detection. In Proceedings of the 38th International Cosmic Ray Conference—PoS(ICRC2023), Nagoya, Japan, 26 July–3 August 2023. [Google Scholar] [CrossRef]
- Janiuk, A.; Saji, J.; Urrutia, G. What we can learn about compact binary mergers from their kilonova signals? arXiv 2024, arXiv:2403.14996. [Google Scholar]
- Murase, K. Interacting supernovae as high-energy multimessenger transients. Phys. Rev. D 2024, 109, 103020. [Google Scholar] [CrossRef]
- Valtonen-Mattila, N.; Griswold, S.; BenZvi, S. Constraining MeV Neutrino Emission of Bright Transients with IceCube. arXiv 2023, arXiv:2310.01274. [Google Scholar]
- Nordin, J.; Brinnel, V.; van Santen, J.; Bulla, M.; Feindt, U.; Franckowiak, A.; Fremling, C.; Gal-Yam, A.; Giomi, M.; Kowalski, M.; et al. Transient processing and analysis using AMPEL: Alert management, photometry, and evaluation of light curves. Astron. Astrophys. 2019, 631, A147. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, A. Multi-Messenger Connection in High-Energy Neutrino Astronomy. Universe 2024, 10, 326. https://doi.org/10.3390/universe10080326
Sharma A. Multi-Messenger Connection in High-Energy Neutrino Astronomy. Universe. 2024; 10(8):326. https://doi.org/10.3390/universe10080326
Chicago/Turabian StyleSharma, Ankur. 2024. "Multi-Messenger Connection in High-Energy Neutrino Astronomy" Universe 10, no. 8: 326. https://doi.org/10.3390/universe10080326
APA StyleSharma, A. (2024). Multi-Messenger Connection in High-Energy Neutrino Astronomy. Universe, 10(8), 326. https://doi.org/10.3390/universe10080326