ΛCDM Tensions: Localising Missing Physics through Consistency Checks
Abstract
:“Will you walk into my parlour?” said a spider to a fly;“Tis the prettiest little parlour that ever you did spy.The way into my parlour is up a winding stair,And I have many pretty things to show when you are there.”“Oh no, no!" said the little fly, “to ask me is in vain,For who goes up your winding stair can ne’er come down again.”—The Spider and the Fly, Mary Howitt (1829)
1. Introduction
2. Hierarchy of Assumptions
2.1. Cosmological Bedrock: GR + FLRW
2.2. Matter, Radiation, and
3. Testable CDM Subsectors
A valid, self-consistent model is a model that returns the same fitting parameters in a given time domain or epoch. If the model does not, and the fitting parameters evolve outside of the errors, then the model is not predictive and is meaningless in a physics context.
3.1. Tension Subsector
In the limit , and in the absence of a theoretical reason and framework,15 the ΛCDM model becomes a set of measure zero in the space of all possible Hubble parameters .
3.2. Tension Subsector
4. Localising CDM Tensions
We stress that, since redshift is defined at the background level but scale is defined at the level of perturbations, one needs to study the redshift evolution of fitting parameters before their scale evolution. Moreover, redshift evolution implies a scale problem, but the converse is not true.
4.1. Localising Tension
One can now define tension as a putative problem in the redshift range .
4.2. Localising Tension
If the tension is physical and the ΛCDM model has broken down, it is reasonable to expect the inferences at the cosmological scale to be biased if they assume ΛCDM. Not allowing for this possibility runs the risk of circular logic.
5. Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | |
2 | Combining supernovae (SNe) and BAO constraints, one may be able to whittle this down to . |
3 | In cosmology, redshift is more fundamental than scale, so one must eliminate redshift first before turning one’s attention to scale. For this reason, we focus largely on redshift. |
4 | The consistency condition of (1) is that both sides of this equation are divergence-free, i.e., by virtue of Bianchi identity, and as long as is a constant, implying that . Note overall consistency of (1) only implies the total stress-energy tensor to be divergence-free. Requiring individual components of the cosmic fluid, i.e., DE, pressureless matter, and radiation, to have divergence-free stress tensors is an additional assumption. |
5 | The slogan here is simple: theoretical yes, observational no! |
6 | |
7 | Recently, the ACT collaboration analysing the CMB lensing data resolved the so-called lensing anomaly of the Planck collaboration, providing further support for flat cosmology [63]. See also [64] for a recent investigation of the anomaly that unearths a connection to ecliptic latitude. This is curious because coincidences involving the ecliptic also appear in CMB anomalies [65], but the origin could easily be a systematic effect in Planck data. |
8 | It is well-known that, in the simplest extensions of FLRW setting that allow for anisotropic expansion, the cosmic shear contributes as in the Friedmann equations, and hence expansion anisotropies are expected to be theoretically more relevant in the early universe, thereby delocalising physics and demanding a complete rewrite for the universe’s evolution [67,68]. However, one should note that, besides the shear, an anisotropy in the metric, an anisotropy can enter in the part of cosmological models through the notion of the tilt [69]. A minimalistic, maximally Copernican beyond-FLRW model within the titled cosmology setting has been formulated as “dipole cosmology”, which, as the name suggests, accommodates cosmic dipoles in various matter sectors even in the late universe [70,71,72]. |
9 | One can argue that resolutions to Hubble tension are strongly constrained by FLRW, the age of the universe, and the assumption of constant matter density [73]. |
10 | Note that the breakdown of cosmological principle (isotropy) can happen due to topology of constant time (spatial) slices while the metric is still FLRW, i.e., while the universe is locally described by FLRW metric; e.g., see [90,91,92]. In particular, isotropy may be broken due to violation of parity, as reported in [89]. Topology effects induce various relations among 2-point function correlations on the sky, which are in principle detectable in the CMB or distributions of other large structures over the sky. |
11 | There is an independent anomaly in the late-time integrated Sachs–Wolfe (ISW) effect from supervoids [123,124]. In particular, an excess ISW effect is reported at lower redshifts [123], whereby , and a deficit at higher redshifts [124] with . varies with redshift, and one encounters the expected CDM value at intermediate redshifts. Translated into the growth parameter f [124], this implies weaker and stronger growth of structures than Planck expectations at lower and higher redshifts, respectively. Given the overlap with constraints from RSD, it is plausible that the ISW anomaly and evolution in RSD [122] are symptoms of the Planck-CDM cosmology being simply an approximation that underestimates or overestimates quantities when one performs a tomographic analysis but on average obtains the right result. |
12 | |
13 | Interestingly, extrapolations of reconstructions based on cosmic chronometer data [156], a cosmological model that is agnostically observable, have favoured lower values [157,158,159]. However, if systematics are properly propagated, the errors are too large to exclude local determinations [160], so they do not currently arbitrate on tension. |
14 | This becomes a little more puzzling in the context of tension, an apparent serious discrepancy. In order to compare model A, i.e., CDM, to model B, a potential replacement that resolves/alleviates tension, one has to combine data sets that are inconsistent when confronted with model A. |
15 | Unlike the firm theoretical guiding principle for particle physics, such as Wilsonian effective field theory, the notions of relevant, marginal, and irrelevant operators, decoupling of scales, and cluster decomposition, cosmology lacks such guiding principles. These guiding principles make it possible to effectively verify the theoretically important notion of “stability of description”. That is, only a small number of deformations yield relevant perturbations around a given model, which is a point in the space of all possible models. In the absence of such principles, there is no systematical way to classify deformations relevant to certain features and argue for or verify stability of description in cosmology. |
16 | For example, consider the wCDM model as a 1-parameter extension of the CDM model, with a constant DE equation of state w that can be viewed as a deformation of CDM. In keeping with the general thrust of the paper, there is of course no guarantee that w is a constant at different redshifts, e.g., [180]. However, even in the same redshift ranges, one may find contradictory results. For example, Union3 and DES SNe have a preference for [175,176], whereas SPT Clusters with DES/HST weak lensing prefer [181]. Systematics aside, this says that w is not a good deformation parameter around CDM. Obviously, if the fitting parameters evolve, none of these models are good physical models. |
17 | In recent years, RSD has been extended to non-linear scales in order to extract better constraints from the data. This leads to lower values of , as is evident from Figure 7 [189], so scale certainly impacts RSD constraints. |
18 | As demonstrated [125], scale cuts inflate errors but have little bearing on the central values. One can of course trivially resolve the tension by throwing information away. |
19 | |
20 | Ref. [210] originally pointed to larger systematic errors, but the errors have since been revised downwards. One eventually expects to reach a precision where hemisphere decompositions, or equivalent, of distance indicators lead to differences in values on the sky that exceed the errors [95,96], which is expected if the universe at lower redshifts is not FLRW. |
21 | A real concern here is that, if there is a large spread in values from strong lensing with constrained errors assuming the CDM model, one arrives at the conclusion that strong lensing cannot consistently determine . Ultimately, it is plausible that lens degeneracies, most notably the mass sheet transformation [222], make it difficult to determine uniquely [223,224]. Nevertheless, if one succeeds in precluding systematics, such an outcome could rule out the CDM model [225]. |
22 | |
23 | Observational Hubble data constrain best fits to the curve , whereas angular diameter/luminosity distance constraints confine best fit parameters to the curve , where are data-dependent constants. may also evolve with effective redshift and its constancy assuming the CDM model needs to be observationally checked. |
24 | This is a necessity in cosmology as it would be foolhardy to trust any single observable. To put this in context, one only trusts the existence of DE because we see it in multiple observables. |
References
- Trotta, R. Applications of Bayesian model selection to cosmological parameters. Mon. Not. Roy. Astron. Soc. 2007, 378, 72–82. [Google Scholar] [CrossRef]
- Hobson, M.P.; Liddle, A.H.J.A.H.A.R.; Mukherjee, P.; Parkinson, D. Bayesian Methods in Cosmology; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Trotta, R. Bayesian Methods in Cosmology. arXiv 2017, arXiv:1701.01467. [Google Scholar]
- Amendola, L.; Patel, V.; Sakr, Z.; Sellentin, E.; Wolz, K. The distribution of Bayes’ ratio. arXiv 2024, arXiv:2404.00744. [Google Scholar]
- Patel, V.; Amendola, L. Comments on the prior dependence of the DESI results. arXiv 2024, arXiv:2407.06586. [Google Scholar]
- Aghanim, N. et al. [Planck] Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6, Erratum in Astron. Astrophys. 2021, 652, C4. [Google Scholar] [CrossRef]
- Weinberg, S. The Cosmological Constant Problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Weinberg, S. The Cosmological constant problems. arXiv 2000, arXiv:astro-ph/0005265. [Google Scholar]
- Peebles, P.J.E.; Ratra, B. The Cosmological Constant and Dark Energy. Rev. Mod. Phys. 2003, 75, 559–606. [Google Scholar] [CrossRef]
- Valentino, E.D.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble tension—A review of solutions. Class. Quant. Grav. 2021, 38, 153001. [Google Scholar] [CrossRef]
- Perivolaropoulos, L.; Skara, F. Challenges for ΛCDM: An update. New Astron. Rev. 2022, 95, 101659. [Google Scholar] [CrossRef]
- Abdalla, E.; Abellán, G.F.; Aboubrahim, A.; Agnello, A.; Akarsu, O.; Akrami, Y.; Alestas, G.; Aloni, D.; Amendola, L.; Anchordoqui, L.A.; et al. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. J. High Energy Astrophys. 2022, 34, 49–211. [Google Scholar] [CrossRef]
- Schöneberg, N.; Abellán, G.F.; Sánchez, A.P.; Witte, S.J.; Poulin, V.; Lesgourgues, J. The H0 Olympics: A fair ranking of proposed models. Phys. Rept. 2022, 984, 1–55. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; Breuval, L.; Brink, T.G.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. arXiv 2021, arXiv:2112.04510. [Google Scholar] [CrossRef]
- Freedman, W.L. Measurements of the Hubble Constant: Tensions in Perspective. Astrophys. J. 2021, 919, 16. [Google Scholar] [CrossRef]
- Pesce, D.W.; Braatz, J.A.; Reid, M.J.; Riess, A.G.; Scolnic, D.; Condon, J.J.; Gao, F.; Henkel, C.; Impellizzeri, C.M.V.; Kuo, C.Y.; et al. The Megamaser Cosmology Project. XIII. Combined Hubble constant constraints. Astrophys. J. Lett. 2020, 891, L1. [Google Scholar] [CrossRef]
- Kourkchi, E.; Tully, R.B.; Anand, G.S.; Courtois, H.M.; Dupuy, A.; Neill, J.D.; Rizzi, L.; Seibert, M. Cosmicflows-4: The Calibration of Optical and Infrared Tully—Fisher Relations. Astrophys. J. 2020, 896, 3. [Google Scholar] [CrossRef]
- Blakeslee, J.P.; Jensen, J.B.; Ma, C.P.; Milne, P.A.; Greene, J.E. The Hubble Constant from Infrared Surface Brightness Fluctuation Distances. Astrophys. J. 2021, 911, 65. [Google Scholar] [CrossRef]
- Knox, L.; Millea, M. Hubble constant hunter’s guide. Phys. Rev. D 2020, 101, 043533. [Google Scholar] [CrossRef]
- Poulin, V.; Smith, T.L.; Karwal, T.; Kamionkowski, M. Early Dark Energy Can Resolve The Hubble Tension. Phys. Rev. Lett. 2019, 122, 221301. [Google Scholar] [CrossRef]
- Agrawal, P.; Cyr-Racine, F.Y.; Pinner, D.; Randall, L. Rock ‘n’ roll solutions to the Hubble tension. Phys. Dark Univ. 2023, 42, 101347. [Google Scholar] [CrossRef]
- Lin, M.X.; Benevento, G.; Hu, W.; Raveri, M. Acoustic Dark Energy: Potential Conversion of the Hubble Tension. Phys. Rev. D 2019, 100, 063542. [Google Scholar] [CrossRef]
- Niedermann, F.; Sloth, M.S. New early dark energy. Phys. Rev. D 2021, 103, L041303. [Google Scholar] [CrossRef]
- Ye, G.; Piao, Y.S. Is the Hubble tension a hint of AdS phase around recombination? Phys. Rev. D 2020, 101, 083507. [Google Scholar] [CrossRef]
- Poulin, V.; Smith, T.L.; Karwal, T. The Ups and Downs of Early Dark Energy solutions to the Hubble tension: A review of models, hints and constraints circa 2023. Phys. Dark Univ. 2023, 42, 101348. [Google Scholar] [CrossRef]
- Vagnozzi, S. Seven Hints That Early-Time New Physics Alone Is Not Sufficient to Solve the Hubble Tension. Universe 2023, 9, 393. [Google Scholar] [CrossRef]
- Heymans, C.; Grocutt, E.; Heavens, A.; Kilbinger, M.; Kitching, T.D.; Simpson, F.; Benjamin, J.; Erben, T.; Hildebrandt, H.; Hoekstra, H.; et al. CFHTLenS tomographic weak lensing cosmological parameter constraints: Mitigating the impact of intrinsic galaxy alignments. Mon. Not. Roy. Astron. Soc. 2013, 432, 2433. [Google Scholar] [CrossRef]
- Joudaki, S.; Blake, C.; Heymans, C.; Choi, A.; Harnois-Deraps, J.; Hildebrandt, H.; Joachimi, B.; Johnson, A.; Mead, A.; Parkinson, D.; et al. CFHTLenS revisited: Assessing concordance with Planck including astrophysical systematics. Mon. Not. Roy. Astron. Soc. 2017, 465, 2033–2052. [Google Scholar] [CrossRef]
- Troxel, M.A. et al. [DES] Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear. Phys. Rev. D 2018, 98, 043528. [Google Scholar] [CrossRef]
- Hikage, C. et al. [HSC] Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data. Publ. Astron. Soc. Jap. 2019, 71, 43. [Google Scholar] [CrossRef]
- Asgari, M. et al. [KiDS] KiDS-1000 Cosmology: Cosmic shear constraints and comparison between two point statistics. Astron. Astrophys. 2021, 645, A104. [Google Scholar] [CrossRef]
- Abbott, T.M.C. et al. [DES] Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 2022, 105, 023520. [Google Scholar] [CrossRef]
- Beenakker, W.; Venhoek, D. A structured analysis of Hubble tension. arXiv 2021, arXiv:2101.01372. [Google Scholar]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rept. 2012, 513, 1–189. [Google Scholar] [CrossRef]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef]
- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Rel. 2014, 17, 4. [Google Scholar] [CrossRef]
- Kapner, D.J.; Cook, T.S.; Adelberger, E.G.; Gundlach, J.H.; Heckel, B.R.; Hoyle, C.D.; Swanson, H.E. Tests of the gravitational inverse-square law below the dark-energy length scale. Phys. Rev. Lett. 2007, 98, 021101. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.G.; Adelberger, E.G.; Cook, T.S.; Fleischer, S.M.; Heckel, B.R. New Test of the Gravitational 1/r2 Law at Separations down to 52 μm. Phys. Rev. Lett. 2020, 124, 101101. [Google Scholar] [CrossRef]
- Bertotti, B.; Iess, L.; Tortora, P. A test of general relativity using radio links with the Cassini spacecraft. Nature 2003, 425, 374–376. [Google Scholar] [CrossRef]
- Abuter, R. et al. [GRAVITY] Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 2020, 636, L5. [Google Scholar] [CrossRef]
- Collett, T.E.; Oldham, L.J.; Smith, R.J.; Auger, M.W.; Westfall, K.B.; Bacon, D.; Nichol, R.C.; Masters, K.L.; Koyama, K.; Bosch, R.v. A precise extragalactic test of General Relativity. Science 2018, 360, 1342. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.H.; Fowler, L.A.; McCulloch, P.M. Measurements of general relativistic effects in the binary pulsar PSR 1913+16. Nature 1979, 277, 437–440. [Google Scholar] [CrossRef]
- Taylor, J.H.; Weisberg, J.M. A new test of general relativity: Gravitational radiation and the binary pulsar PS R 1913+16. Astrophys. J. 1982, 253, 908–920. [Google Scholar] [CrossRef]
- Kramer, M.; Stairs, I.H.; Manchester, R.N.; Wex, N.; Deller, A.T.; Coles, W.A.; Ali, M.; Burgay, M.; Camilo, F.; Cognard, I.; et al. Strong-Field Gravity Tests with the Double Pulsar. Phys. Rev. X 2021, 11, 041050. [Google Scholar] [CrossRef]
- Abbott, B.P. et al. [LIGO Scientific and Virgo] Tests of General Relativity with the Binary Black Hole Signals from the LIGO-Virgo Catalog GWTC-1. Phys. Rev. D 2019, 100, 104036. [Google Scholar] [CrossRef]
- Abbott, R. et al. [LIGO Scientific and Virgo] Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog. Phys. Rev. D 2021, 103, 122002. [Google Scholar] [CrossRef]
- Abbott, R. et al. [LIGO Scientific, VIRGO and KAGRA] Tests of General Relativity with GWTC-3. arXiv 2022, arXiv:2112.06861. [Google Scholar]
- Clifton, T.; Barrow, J.D. The Power of General Relativity. Phys. Rev. D 2005, 72, 103005, Erratum in Phys. Rev. D 2014, 90, 029902. [Google Scholar] [CrossRef]
- Rossi, M.; Ballardini, M.; Braglia, M.; Finelli, F.; Paoletti, D.; Starobinsky, A.A.; Umiltà, C. Cosmological constraints on post-Newtonian parameters in effectively massless scalar-tensor theories of gravity. Phys. Rev. D 2019, 100, 103524. [Google Scholar] [CrossRef]
- Braglia, M.; Ballardini, M.; Emond, W.T.; Finelli, F.; Gumrukcuoglu, A.E.; Koyama, K.; Paoletti, D. Larger value for H0 by an evolving gravitational constant. Phys. Rev. D 2020, 102, 023529. [Google Scholar] [CrossRef]
- Ballesteros, G.; Notari, A.; Rompineve, F. The H0 tension: ΔGN vs. ΔNeff. J. Cosmol. Astropart. Phys. 2020, 11, 024. [Google Scholar] [CrossRef]
- Nguyen, N.M.; Huterer, D.; Wen, Y. Evidence for Suppression of Structure Growth in the Concordance Cosmological Model. Phys. Rev. Lett. 2023, 131, 111001. [Google Scholar] [CrossRef] [PubMed]
- Sakr, Z.; Sapone, D. Can varying the gravitational constant alleviate the tensions? J. Cosmol. Astropart. Phys. 2022, 03, 034. [Google Scholar] [CrossRef]
- Heisenberg, L.; Villarrubia-Rojo, H.; Zosso, J. Simultaneously solving the H0 and σ8 tensions with late dark energy. Phys. Dark Univ. 2023, 39, 101163. [Google Scholar] [CrossRef]
- Heisenberg, L.; Villarrubia-Rojo, H.; Zosso, J. Can late-time extensions solve the H0 and σ8 tensions? Phys. Rev. D 2022, 106, 043503. [Google Scholar] [CrossRef]
- Lee, B.H.; Lee, W.; Ó Colgáin, E.; Sheikh-Jabbari, M.M.; Thakur, S. Is local H 0 at odds with dark energy EFT? J. Cosmol. Astropart. Phys. 2022, 04, 004. [Google Scholar] [CrossRef]
- Handley, W. Curvature tension: Evidence for a closed universe. Phys. Rev. D 2021, 103, L041301. [Google Scholar] [CrossRef]
- Valentino, E.D.; Melchiorri, A.; Silk, J. Planck evidence for a closed Universe and a possible crisis for cosmology. Nat. Astron. 2019, 4, 196–203. [Google Scholar] [CrossRef]
- Linde, A.D. Inflation with variable Omega. Phys. Lett. B 1995, 351, 99–104. [Google Scholar] [CrossRef]
- Linde, A.D. Can we have inflation with Omega > 1? J. Cosmol. Astropart. Phys. 2003, 5, 002. [Google Scholar] [CrossRef]
- Park, C.G.; Ratra, B. Using the tilted flat-ΛCDM and the untilted non-flat ΛCDM inflation models to measure cosmological parameters from a compilation of observational data. Astrophys. J. 2019, 882, 158. [Google Scholar] [CrossRef]
- Clarkson, C.; Bassett, B.; Lu, T.H.C. A general test of the Copernican Principle. Phys. Rev. Lett. 2008, 101, 011301. [Google Scholar] [CrossRef]
- Madhavacheril, M.S. et al. [ACT] The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters. arXiv 2023, arXiv:2304.05203. [Google Scholar]
- Addison, G.E.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Weiland, J.L. Revisiting the AL Lensing Anomaly in Planck 2018 Temperature Data. arXiv 2023, arXiv:2310.03127. [Google Scholar]
- Schwarz, D.J.; Copi, C.J.; Huterer, D.; Starkman, G.D. CMB Anomalies after Planck. Class. Quant. Grav. 2016, 33, 184001. [Google Scholar] [CrossRef]
- Krishnan, C.; Ó Colgáin, E.; Sheikh-Jabbari, M.M.; Yang, T. Running Hubble Tension and a H0 Diagnostic. Phys. Rev. D 2021, 103, 103509. [Google Scholar] [CrossRef]
- Akarsu, Ö.; Kumar, S.; Sharma, S.; Tedesco, L. Constraints on a Bianchi type I spacetime extension of the standard ΛCDM model. Phys. Rev. D 2019, 100, 023532. [Google Scholar] [CrossRef]
- Akarsu, O.; Valentino, E.D.; Kumar, S.; Ozyigit, M.; Sharma, S. Testing spatial curvature and anisotropic expansion on top of the ΛCDM model. Phys. Dark Univ. 2023, 39, 101162. [Google Scholar] [CrossRef]
- King, A.R.; Ellis, G.F.R. Tilted homogeneous cosmological models. Commun. Math. Phys. 1973, 31, 209–242. [Google Scholar] [CrossRef]
- Krishnan, C.; Mondol, R.; Sheikh-Jabbari, M.M. Dipole cosmology: The Copernican paradigm beyond FLRW. J. Cosmol. Astropart. Phys. 2023, 07, 020. [Google Scholar] [CrossRef]
- Ebrahimian, E.; Krishnan, C.; Mondol, R.; Sheikh-Jabbari, M.M. Towards A Realistic Dipole Cosmology: The Dipole ΛCDM Model. arXiv 2023, arXiv:2305.16177. [Google Scholar] [CrossRef]
- Allahyari, A.; Ebrahimian, E.; Mondol, R.; Sheikh-Jabbari, M.M. Big Bang in Dipole Cosmology. arXiv 2023, arXiv:2307.15791. [Google Scholar]
- Krishnan, C.; Mohayaee, R.; Ó Colgáin, E.; Sheikh-Jabbari, M.M.; Yin, L. Does Hubble tension signal a breakdown in FLRW cosmology? Class. Quant. Grav. 2021, 38, 184001. [Google Scholar] [CrossRef]
- Kashlinsky, A.; Atrio-Barandela, F.; Kocevski, D.; Ebeling, H. A measurement of large-scale peculiar velocities of clusters of galaxies: Results and cosmological implications. Astrophys. J. Lett. 2009, 686, L49–L52. [Google Scholar] [CrossRef]
- Migkas, K.; Schellenberger, G.; Reiprich, T.H.; Pacaud, F.; Ramos-Ceja, M.E.; Lovisari, L. Probing cosmic isotropy with a new X-ray galaxy cluster sample through the LX − T scaling relation. Astron. Astrophys. 2020, 636, A15. [Google Scholar] [CrossRef]
- Migkas, K.; Pacaud, F.; Schellenberger, G.; Erler, J.; Nguyen-Dang, N.T.; Reiprich, T.H.; Ramos-Ceja, M.E.; Lovisari, L. Cosmological implications of the anisotropy of ten galaxy cluster scaling relations. Astron. Astrophys. 2021, 649, A151. [Google Scholar] [CrossRef]
- Watkins, R.; Allen, T.; Bradford, C.J.; Ramon, A.; Walker, A.; Feldman, H.A.; Cionitti, R.; Al-Shorman, Y.; Kourkchi, E.; Tully, R.B. Analysing the large-scale bulk flow using cosmicflows4: Increasing tension with the standard cosmological model. Mon. Not. Roy. Astron. Soc. 2023, 524, 1885–1892. [Google Scholar] [CrossRef]
- Whitford, A.M.; Howlett, C.; Davis, T.M. Evaluating bulk flow estimators for CosmicFlows–4 measurements. Mon. Not. Roy. Astron. Soc. 2023, 526, 3051–3071. [Google Scholar] [CrossRef]
- Hoffman, Y.; Valade, A.; Libeskind, N.I.; Sorce, J.G.; Tully, R.B.; Pfeifer, S.; Gottlöber, S.; Pomaréde, D. The large scale velocity field from the Cosmicflows-4 data. arXiv 2023, arXiv:2311.01340. [Google Scholar] [CrossRef]
- Singal, A.K. Large peculiar motion of the solar system from the dipole anisotropy in sky brightness due to distant radio sources. Astrophys. J. Lett. 2011, 742, L23. [Google Scholar] [CrossRef]
- Rubart, M.; Schwarz, D.J. Cosmic radio dipole from NVSS and WENSS. Astron. Astrophys. 2013, 555, A117. [Google Scholar] [CrossRef]
- Singal, A.K. Large disparity in cosmic reference frames determined from the sky distributions of radio sources and the microwave background radiation. Phys. Rev. D 2019, 100, 063501. [Google Scholar] [CrossRef]
- Secrest, N.J.; von Hausegger, S.; Rameez, M.; Mohayaee, R.; Sarkar, S.; Colin, J. A Test of the Cosmological Principle with Quasars. Astrophys. J. Lett. 2021, 908, L51. [Google Scholar] [CrossRef]
- Siewert, T.M.; Schmidt-Rubart, M.; Schwarz, D.J. Cosmic radio dipole: Estimators and frequency dependence. Astron. Astrophys. 2021, 653, A9. [Google Scholar] [CrossRef]
- Secrest, N.J.; von Hausegger, S.; Rameez, M.; Mohayaee, R.; Sarkar, S. A Challenge to the Standard Cosmological Model. Astrophys. J. Lett. 2022, 937, L31. [Google Scholar] [CrossRef]
- Pranav, P.; Buchert, T. Homology reveals significant anisotropy in the cosmic microwave background. arXiv 2023, arXiv:2308.10738. [Google Scholar]
- Mittal, V.; Oayda, O.T.; Lewis, G.F. The Cosmic Dipole in the Quaia Sample of Quasars: A Bayesian Analysis. arXiv 2023, arXiv:2311.14938. [Google Scholar] [CrossRef]
- Aluri, P.K.; Cea, P.; Chingangbam, P.; Chu, M.C.; Clowes, R.G.; Hutsemékers, D.; Kochappan, J.P.; Lopez, A.M.; Liu, L.; Martens, N.C.M.; et al. Is the observable Universe consistent with the cosmological principle? Class. Quant. Grav. 2023, 40, 094001. [Google Scholar] [CrossRef]
- Jones, J.; Copi, C.J.; Starkman, G.D.; Akrami, Y. The Universe is not statistically isotropic. arXiv 2023, arXiv:2310.12859. [Google Scholar]
- Akrami, Y. et al. [COMPACT] The Search for the Topology of the Universe Has Just Begun. arXiv 2022, arXiv:2210.11426. [Google Scholar]
- Petersen, P. et al. [COMPACT] Cosmic topology. Part I. Limits on orientable Euclidean manifolds from circle searches. J. Cosmol. Astropart. Phys. 2023, 1, 30. [Google Scholar] [CrossRef]
- Eskilt, J.R. et al. [COMPACT] Cosmic topology. Part II. Eigenmodes, correlation matrices, and detectability of orientable Euclidean manifolds. arXiv 2023, arXiv:2306.17112. [Google Scholar]
- Giani, L.; Howlett, C.; Said, K.; Davis, T.; Vagnozzi, S. An effective description of Laniakea: Impact on cosmology and the local determination of the Hubble constant. J. Cosmol. Astropart. Phys. 2024, 1, 71. [Google Scholar] [CrossRef]
- Krishnan, C.; Mohayaee, R.; Ó Colgáin, E.; Sheikh-Jabbari, M.M.; Yin, L. Hints of FLRW breakdown from supernovae. Phys. Rev. D 2022, 105, 063514. [Google Scholar] [CrossRef]
- Zhai, Z.; Percival, W.J. Sample variance for supernovae distance measurements and the Hubble tension. Phys. Rev. D 2022, 106, 103527. [Google Scholar] [CrossRef]
- Conville, R.M.; Ó Colgáin, E. Anisotropic distance ladder in Pantheon+supernovae. Phys. Rev. D 2023, 108, 123533. [Google Scholar] [CrossRef]
- Fosalba, P.; Gaztanaga, E. Explaining Cosmological Anisotropy: Evidence for Causal Horizons from CMB data. arXiv 2020, arXiv:2011.00910. [Google Scholar] [CrossRef]
- Yeung, S.; Chu, M.C. Directional variations of cosmological parameters from the Planck CMB data. Phys. Rev. D 2022, 105, 083508. [Google Scholar] [CrossRef]
- Kovács, A.; García-Bellido, J. Cosmic troublemakers: The Cold Spot, the Eridanus Supervoid, and the Great Walls. Mon. Not. Roy. Astron. Soc. 2016, 462, 1882–1893. [Google Scholar] [CrossRef]
- Kovács, A. et al. [DES] The DES view of the Eridanus supervoid and the CMB cold spot. Mon. Not. Roy. Astron. Soc. 2022, 510, 216–229. [Google Scholar] [CrossRef]
- Lambas, D.G.; Hansen, F.K.; Toscano, F.; Luparello, H.E.; Boero, E.F. The CMB Cold Spot as predicted by foregrounds around nearby galaxies. Astron. Astrophys. 2024, 681, A2. [Google Scholar] [CrossRef]
- Aiola, S. et al. [ACT] The Atacama Cosmology Telescope: DR4 Maps and Cosmological Parameters. J. Cosmol. Astropart. Phys. 2020, 12, 047. [Google Scholar] [CrossRef]
- Balkenhol, L. et al. [SPT-3G] Measurement of the CMB temperature power spectrum and constraints on cosmology from the SPT-3G 2018 TT, TE, and EE dataset. Phys. Rev. D 2023, 108, 023510. [Google Scholar] [CrossRef]
- Mortsell, E.; Goobar, A.; Johansson, J.; Dhawan, S. The Hubble Tension Revisited: Additional Local Distance Ladder Uncertainties. Astrophys. J. 2022, 935, 58. [Google Scholar] [CrossRef]
- Perivolaropoulos, L.; Skara, F. Hubble tension or a transition of the Cepheid SnIa calibrator parameters? Phys. Rev. D 2021, 104, 123511. [Google Scholar] [CrossRef]
- Perivolaropoulos, L.; Skara, F. On the homogeneity of SnIa absolute magnitude in the Pantheon+ sample. Mon. Not. Roy. Astron. Soc. 2023, 520, 5110–5125. [Google Scholar] [CrossRef]
- Lane, Z.G.; Seifert, A.; Ridden-Harper, R.; Wagner, J.; Wiltshire, D.L. Cosmological foundations revisited with Pantheon+. arXiv 2023, arXiv:2311.01438. [Google Scholar]
- Boruah, S.S.; Hudson, M.J.; Lavaux, G. Cosmic flows in the nearby Universe: New peculiar velocities from SNe and cosmological constraints. Mon. Not. Roy. Astron. Soc. 2020, 498, 2703–2718. [Google Scholar] [CrossRef]
- Said, K.; Colless, M.; Magoulas, C.; Lucey, J.R.; Hudson, M.J. Joint analysis of 6dFGS and SDSS peculiar velocities for the growth rate of cosmic structure and tests of gravity. Mon. Not. Roy. Astron. Soc. 2020, 497, 1275–1293. [Google Scholar] [CrossRef]
- Hollinger, A.M.; Hudson, M.J. Cosmological parameters estimated from velocity—Density comparisons: Calibrating 2M++. arXiv 2023, arXiv:2312.03904. [Google Scholar] [CrossRef]
- Ade, P.A.R. et al. [Planck] Planck 2013 results. XX. Cosmology from Sunyaev–Zeldovich cluster counts. Astron. Astrophys. 2014, 571, A20. [Google Scholar] [CrossRef]
- Macaulay, E.; Wehus, I.K.; Eriksen, H.K. Lower Growth Rate from Recent Redshift Space Distortion Measurements than Expected from Planck. Phys. Rev. Lett. 2013, 111, 161301. [Google Scholar] [CrossRef]
- Battye, R.A.; Charnock, T.; Moss, A. Tension between the power spectrum of density perturbations measured on large and small scales. Phys. Rev. D 2015, 91, 103508. [Google Scholar] [CrossRef]
- Nesseris, S.; Pantazis, G.; Perivolaropoulos, L. Tension and constraints on modified gravity parametrizations of Geff(z) from growth rate and Planck data. Phys. Rev. D 2017, 96, 023542. [Google Scholar] [CrossRef]
- Kazantzidis, L.; Perivolaropoulos, L. Evolution of the fσ8 tension with the Planck15/ΛCDM determination and implications for modified gravity theories. Phys. Rev. D 2018, 97, 103503. [Google Scholar] [CrossRef]
- Skara, F.; Perivolaropoulos, L. Tension of the EG statistic and redshift space distortion data with the Planck-ΛCDM model and implications for weakening gravity. Phys. Rev. D 2020, 101, 063521. [Google Scholar] [CrossRef]
- Quelle, A.; Maroto, A.L. On the tension between growth rate and CMB data. Eur. Phys. J. C 2020, 80, 369. [Google Scholar] [CrossRef]
- Li, E.K.; Du, M.; Zhou, Z.H.; Zhang, H.; Xu, L. Testing the effect of H0 on fσ8 tension using a Gaussian process method. Mon. Not. Roy. Astron. Soc. 2021, 501, 4452–4463. [Google Scholar] [CrossRef]
- Benisty, D. Quantifying the S8 tension with the Redshift Space Distortion data set. Phys. Dark Univ. 2021, 31, 100766. [Google Scholar] [CrossRef]
- Nunes, R.C.; Vagnozzi, S. Arbitrating the S8 discrepancy with growth rate measurements from redshift-space distortions. Mon. Not. Roy. Astron. Soc. 2021, 505, 5427–5437. [Google Scholar] [CrossRef]
- Esposito, M.; Iršič, V.; Costanzi, M.; Borgani, S.; Saro, A.; Viel, M. Weighing cosmic structures with clusters of galaxies and the intergalactic medium. Mon. Not. Roy. Astron. Soc. 2022, 515, 857–870. [Google Scholar] [CrossRef]
- Adil, S.A.; Akarsu, Ö.; Malekjani, M.; Ó Colgáin, E.; Pourojaghi, S.; Sen, A.A.; Sheikh-Jabbari, M.M. S8 increases with effective redshift in ΛCDM cosmology. arXiv 2023, arXiv:2303.06928. [Google Scholar]
- Kovács, A. et al. [DES] More out of less: An excess integrated Sachs-Wolfe signal from supervoids mapped out by the Dark Energy Survey. Mon. Not. Roy. Astron. Soc. 2019, 484, 5267–5277. [Google Scholar] [CrossRef]
- Kovács, A.; Beck, R.; Smith, A.; Rácz, G.; Csabai, I.; Szapudi, I. Evidence for a high-z ISW signal from supervoids in the distribution of eBOSS quasars. Mon. Not. Roy. Astron. Soc. 2022, 513, 15–26. [Google Scholar] [CrossRef]
- Tutusaus, I.; Bonvin, C.; Grimm, N. First measurement of the Weyl potential evolution from the Year 3 Dark Energy Survey data: Localising the σ8 tension. arXiv 2023, arXiv:2312.06434. [Google Scholar]
- Farren, G.S. et al. [ACT] The Atacama Cosmology Telescope: Cosmology from cross-correlations of unWISE galaxies and ACT DR6 CMB lensing. arXiv 2023, arXiv:2309.05659. [Google Scholar]
- Kim, J. et al. [ACT and DESI] The Atacama Cosmology Telescope DR6 and DESI: Structure formation over cosmic time with a measurement of the cross-correlation of CMB Lensing and Luminous Red Galaxies. arXiv 2024, arXiv:2407.04606. [Google Scholar]
- Sailer, N.; Kim, J.; Ferraro, S.; Madhavacheril, M.S.; White, M.; Abril-Cabezas, I.; Aguilar, J.N.; Ahlen, S.; Bond, J.R.; Brooks, D.; et al. Cosmological constraints from the cross-correlation of DESI Luminous Red Galaxies with CMB lensing from Planck PR4 and ACT DR6. arXiv 2024, arXiv:2407.04607. [Google Scholar]
- Tiwari, P.; Nusser, A. Revisiting the NVSS number count dipole. J. Cosmol. Astropart. Phys. 2016, 03, 062. [Google Scholar] [CrossRef]
- Ma, C.; Zhang, T.J. Power of Observational Hubble Parameter Data: A Figure of Merit Exploration. Astrophys. J. 2011, 730, 74. [Google Scholar] [CrossRef]
- Moresco, M. Raising the bar: New constraints on the Hubble parameter with cosmic chronometers at z ∼ 2. Mon. Not. Roy. Astron. Soc. 2015, 450, L16–L20. [Google Scholar] [CrossRef]
- Moresco, M.; Jimenez, R.; Verde, L.; Pozzetti, L.; Cimatti, A.; Citro, A. Setting the Stage for Cosmic Chronometers. I. Assessing the Impact of Young Stellar Populations on Hubble Parameter Measurements. Astrophys. J. 2018, 868, 84. [Google Scholar] [CrossRef]
- Vagnozzi, S.; Loeb, A.; Moresco, M. Eppur è piatto? The Cosmic Chronometers Take on Spatial Curvature and Cosmic Concordance. Astrophys. J. 2021, 908, 84. [Google Scholar] [CrossRef]
- Jiao, K.; Borghi, N.; Moresco, M.; Zhang, T.J. New Observational H(z) Data from Full-spectrum Fitting of Cosmic Chronometers in the LEGA-C Survey. Astrophys. J. Suppl. 2023, 265, 48. [Google Scholar] [CrossRef]
- Holsclaw, T.; Alam, U.; Sanso, B.; Lee, H.; Heitmann, K.; Habib, S.; Higdon, D. Nonparametric Reconstruction of the Dark Energy Equation of State. Phys. Rev. D 2010, 82, 103502. [Google Scholar] [CrossRef]
- Holsclaw, T.; Alam, U.; Sanso, B.; Lee, H.; Heitmann, K.; Habib, S.; Higdon, D. Nonparametric Dark Energy Reconstruction from Supernova Data. Phys. Rev. Lett. 2010, 105, 241302. [Google Scholar] [CrossRef]
- Shafieloo, A.; Kim, A.G.; Linder, E.V. Gaussian Process Cosmography. Phys. Rev. D 2012, 85, 123530. [Google Scholar] [CrossRef]
- Keeley, R.E.; Shafieloo, A.; Zhao, G.B.; Vazquez, J.A.; Koo, H. Reconstructing the Universe: Testing the Mutual Consistency of the Pantheon and SDSS/eBOSS BAO Data Sets with Gaussian Processes. Astron. J. 2021, 161, 151. [Google Scholar] [CrossRef]
- Seikel, M.; Clarkson, C.; Smith, M. Reconstruction of dark energy and expansion dynamics using Gaussian processes. J. Cosmol. Astropart. Phys. 2012, 6, 36. [Google Scholar] [CrossRef]
- Nesseris, S.; Garcia-Bellido, J. A new perspective on Dark Energy modeling via Genetic Algorithms. J. Cosmol. Astropart. Phys. 2012, 11, 33. [Google Scholar] [CrossRef]
- Arjona, R.; Nesseris, S. What can Machine Learning tell us about the background expansion of the Universe? Phys. Rev. D 2020, 101, 123525. [Google Scholar] [CrossRef]
- Mukherjee, P.; Said, J.L.; Mifsud, J. Neural network reconstruction of H’(z) and its application in teleparallel gravity. J. Cosmol. Astropart. Phys. 2022, 12, 29. [Google Scholar] [CrossRef]
- Bengaly, C.; Dantas, M.A.; Casarini, L.; Alcaniz, J. Measuring the Hubble constant with cosmic chronometers: A machine learning approach. Eur. Phys. J. C 2023, 83, 548. [Google Scholar] [CrossRef]
- Giambagli, L.; Fanelli, D.; Risaliti, G.; Signorini, M. Nonparametric analysis of the Hubble diagram with neural networks. Astron. Astrophys. 2023, 678, A13. [Google Scholar] [CrossRef]
- Gómez-Vargas, I.; Andrade, J.B.; Vázquez, J.A. Neural networks optimized by genetic algorithms in cosmology. Phys. Rev. D 2023, 107, 043509. [Google Scholar] [CrossRef]
- Dialektopoulos, K.F.; Mukherjee, P.; Said, J.L.; Mifsud, J. Neural network reconstruction of cosmology using the Pantheon compilation. Eur. Phys. J. C 2023, 83, 956. [Google Scholar] [CrossRef]
- Medel-Esquivel, R.; Gómez-Vargas, I.; Sánchez, A.A.M.; García-Salcedo, R.; Vázquez, J.A. Cosmological parameter estimation with Genetic Algorithms. Universe 2024, 10, 11. [Google Scholar] [CrossRef]
- Gómez-Vargas, I.; Esquivel, R.M.; García-Salcedo, R.; Vázquez, J.A. Neural network reconstructions for the Hubble parameter, growth rate and distance modulus. Eur. Phys. J. C 2023, 83, 304. [Google Scholar] [CrossRef]
- Akarsu, O.; Ó Colgáin, E.; Özulker, E.; Thakur, S.; Yin, L. Inevitable manifestation of wiggles in the expansion of the late Universe. Phys. Rev. D 2023, 107, 123526. [Google Scholar] [CrossRef]
- Zhao, G.B.; Raveri, M.; Pogosian, L.; Wang, Y.; Crittenden, R.G.; Handley, W.J.; Percival, W.J.; Beutler, F.; Brinkmann, J.; Chuang, C.H.; et al. Dynamical dark energy in light of the latest observations. Nat. Astron. 2017, 1, 627–632. [Google Scholar] [CrossRef]
- Padilla, L.E.; Tellez, L.O.; Escamilla, L.A.; Vazquez, J.A. Cosmological Parameter Inference with Bayesian Statistics. Universe 2021, 7, 213. [Google Scholar] [CrossRef]
- Wang, Y.; Pogosian, L.; Zhao, G.B.; Zucca, A. Evolution of dark energy reconstructed from the latest observations. Astrophys. J. Lett. 2018, 869, L8. [Google Scholar] [CrossRef]
- Escamilla, L.A.; Vazquez, J.A. Model selection applied to reconstructions of the Dark Energy. Eur. Phys. J. C 2023, 83, 251. [Google Scholar] [CrossRef]
- Escamilla, L.A.; Akarsu, O.; Valentino, E.D.; Vazquez, J.A. Model-independent reconstruction of the interacting dark energy kernel: Binned and Gaussian process. J. Cosmol. Astropart. Phys. 2023, 11, 051. [Google Scholar] [CrossRef]
- Ó Colgáin, E.; Sheikh-Jabbari, M.M. Elucidating cosmological model dependence with H0. Eur. Phys. J. C 2021, 81, 892. [Google Scholar] [CrossRef]
- Jimenez, R.; Loeb, A. Constraining cosmological parameters based on relative galaxy ages. Astrophys. J. 2002, 573, 37–42. [Google Scholar] [CrossRef]
- Busti, V.C.; Clarkson, C.; Seikel, M. Evidence for a Lower Value for H0 from Cosmic Chronometers Data? Mon. Not. Roy. Astron. Soc. 2014, 441, 11. [Google Scholar] [CrossRef]
- Gómez-Valent, A.; Amendola, L. H0 from cosmic chronometers and Type Ia supernovae, with Gaussian Processes and the novel Weighted Polynomial Regression method. J. Cosmol. Astropart. Phys. 2018, 04, 051. [Google Scholar] [CrossRef]
- Haridasu, B.S.; Luković, V.V.; Moresco, M.; Vittorio, N. An improved model-independent assessment of the late-time cosmic expansion. J. Cosmol. Astropart. Phys. 2018, 10, 015. [Google Scholar] [CrossRef]
- Moresco, M. Addressing the Hubble tension with cosmic chronometers. arXiv 2023, arXiv:2307.09501. [Google Scholar]
- Liu, G.; Wang, Y.; Zhao, W. Testing the consistency of early and late cosmological parameters with BAO and CMB data. arXiv 2024, arXiv:2401.10571. [Google Scholar] [CrossRef]
- Riess, A.G. et al. [Supernova Search Team] Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009–1038. [Google Scholar] [CrossRef]
- Perlmutter, S. et al. [Supernova Cosmology Project] Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Ó Colgáin, E.; Sheikh-Jabbari, M.M.; Solomon, R.; Dainotti, M.G.; Stojkovic, D. Putting Flat ΛCDM In The (Redshift) Bin. arXiv 2022, arXiv:2206.11447. [Google Scholar]
- Ó Colgáin, E.; Sheikh-Jabbari, M.M.; Solomon, R. High redshift ΛCDM cosmology: To bin or not to bin? Phys. Dark Univ. 2023, 40, 101216. [Google Scholar] [CrossRef]
- Kerr, A.W.; Hauck, J.C.; Mashhoon, B. Standard clocks, orbital precession and the cosmological constant. Class. Quant. Grav. 2003, 20, 2727. [Google Scholar] [CrossRef]
- Arakida, H.; Kasai, M. Effect of the cosmological constant on the bending of light and the cosmological lens equation. Phys. Rev. D 2012, 85, 023006. [Google Scholar] [CrossRef]
- Arakida, H. Note on the perihelion/periastron advance due to cosmological constant. Int. J. Theor. Phys. 2013, 52, 1408–1414. [Google Scholar] [CrossRef]
- Benisty, D.; Davis, A.C.; Evans, N.W. Constraining Dark Energy from the Local Group Dynamics. Astrophys. J. Lett. 2023, 953, L2. [Google Scholar] [CrossRef]
- Benisty, D.; Wagner, J.; Staicova, D. Dark Energy as a Critical Period in Binary Motion: Bounds from Multi-scale Binaries. arXiv 2023, arXiv:2310.11488. [Google Scholar] [CrossRef]
- Benisty, D. Dark energy Constraints from different Local Group Histories. arXiv 2024, arXiv:2401.09546. [Google Scholar]
- Chevallier, M.; Polarski, D. Accelerating universes with scaling dark matter. Int. J. Mod. Phys. D 2001, 10, 213–224. [Google Scholar] [CrossRef]
- Linder, E.V. Exploring the expansion history of the universe. Phys. Rev. Lett. 2003, 90, 091301. [Google Scholar] [CrossRef]
- Brout, D.; Scolnic, D.; Popovic, B.; Riess, A.G.; Zuntz, J.; Kessler, R.; Carr, A.; Davis, T.M.; Hinton, S.; Jones, D.; et al. The Pantheon+ Analysis: Cosmological Constraints. Astrophys. J. 2022, 938, 110. [Google Scholar] [CrossRef]
- Rubin, D.; Aldering, G.; Betoule, M.; Fruchter, A.; Huang, X.; Kim, A.G.; Lidman, C.; Linder, E.; Perlmutter, S.; Ruiz-Lapuente, P.; et al. Union Through UNITY: Cosmology with 2000 SNe Using a Unified Bayesian Framework. arXiv 2023, arXiv:2311.12098. [Google Scholar]
- Abbott, T.M.C. et al. [DES] The Dark Energy Survey: Cosmology Results with ~1500 New High-redshift Type Ia Supernovae Using The Full 5-year Dataset. arXiv 2024, arXiv:2401.02929. [Google Scholar]
- Ó Colgáin, E.; Sheikh-Jabbari, M.M.; Yin, L. Can dark energy be dynamical? Phys. Rev. D 2021, 104, 023510. [Google Scholar] [CrossRef]
- Alam, S. et al. [eBOSS] Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory. Phys. Rev. D 2021, 103, 083533. [Google Scholar] [CrossRef]
- Cattoën, C.; Visser, M. The Hubble series: Convergence properties and redshift variables. Class. Quant. Grav. 2007, 24, 5985–5998. [Google Scholar] [CrossRef]
- Dong, F.; Park, C.; Hong, S.E.; Kim, J.; Hwang, H.S.; Park, H.; Appleby, S. Tomographic Alcock–Paczyński Test with Redshift-space Correlation Function: Evidence for the Dark Energy Equation-of-state Parameter w > −1. Astrophys. J. 2023, 953, 98. [Google Scholar] [CrossRef]
- Bocquet, S. et al. [DES and SPT] SPT Clusters with DES and HST Weak Lensing. II. Cosmological Constraints from the Abundance of Massive Halos. arXiv 2024, arXiv:2401.02075. [Google Scholar]
- Huterer, D. Growth of cosmic structure. Astron. Astrophys. Rev. 2023, 31, 2. [Google Scholar] [CrossRef]
- Amon, A.; Efstathiou, G. A non-linear solution to the S8 tension? arXiv 2022, arXiv:2206.11794. [Google Scholar] [CrossRef]
- Preston, C.; Amon, A.; Efstathiou, G. A non-linear solution to the S8 tension—II. Analysis of DES Year 3 cosmic shear. Mon. Not. Roy. Astron. Soc. 2023, 525, 5554–5564. [Google Scholar] [CrossRef]
- Qu, F.J. et al. [ACT] The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth. arXiv 2023, arXiv:2304.05202. [Google Scholar]
- Marques, G.A. et al. [ACT and DES] Cosmological constraints from the tomography of DES-Y3 galaxies with CMB lensing from ACT DR4. arXiv 2023, arXiv:2306.17268. [Google Scholar]
- Miyatake, H.; Harikane, Y.; Ouchi, M.; Ono, Y.; Yamamoto, N.; Nishizawa, A.J.; Bahcall, N.; Miyazaki, S.; Malagón, A.A.P. First Identification of a CMB Lensing Signal Produced by 1.5 Million Galaxies at z∼4: Constraints on Matter Density Fluctuations at High Redshift. Phys. Rev. Lett. 2022, 129, 061301. [Google Scholar] [CrossRef] [PubMed]
- Alonso, D.; Fabbian, G.; Storey-Fisher, K.; Eilers, A.C.; García-García, C.; Hogg, D.W.; Rix, H.W. Constraining cosmology with the Gaia-unWISE Quasar Catalog and CMB lensing: Structure growth. J. Cosmol. Astropart. Phys. 2023, 11, 043. [Google Scholar] [CrossRef]
- Chapman, M.J.; Zhai, Z.; Percival, W.J. Isolating the linear signal when making redshift space distortion measurements. Mon. Not. Roy. Astron. Soc. 2023, 525, 2135–2153. [Google Scholar] [CrossRef]
- Porredon, A. et al. [DES] Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and galaxy-galaxy lensing using the MagLim lens sample. Phys. Rev. D 2022, 106, 103530. [Google Scholar] [CrossRef]
- Abbott, T.M.C. et al. [Kilo-Degree Survey and Dark Energy Survey] DES Y3 + KiDS-1000: Consistent cosmology combining cosmic shear surveys. Open J. Astrophys. 2023, 6, 2305.17173. [Google Scholar] [CrossRef]
- Addison, G.E.; Watts, D.J.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Weiland, J.L. Elucidating ΛCDM: Impact of Baryon Acoustic Oscillation Measurements on the Hubble Constant Discrepancy. Astrophys. J. 2018, 853, 119. [Google Scholar] [CrossRef]
- Cuceu, A.; Farr, J.; Lemos, P.; Font-Ribera, A. Baryon Acoustic Oscillations and the Hubble Constant: Past, Present and Future. J. Cosmol. Astropart. Phys. 2019, 10, 044. [Google Scholar] [CrossRef]
- Schöneberg, N.; Lesgourgues, J.; Hooper, D.C. The BAO+BBN take on the Hubble tension. J. Cosmol. Astropart. Phys. 2019, 10, 029. [Google Scholar] [CrossRef]
- Schöneberg, N.; Verde, L.; Gil-Marín, H.; Brieden, S. BAO+BBN revisited—Growing the Hubble tension with a 0.7 km s−1 Mpc−1 constraint. J. Cosmol. Astropart. Phys. 2022, 11, 039. [Google Scholar] [CrossRef]
- Freedman, W.L. et al. [HST] Final results from the Hubble Space Telescope key project to measure the Hubble constant. Astrophys. J. 2001, 553, 47–72. [Google Scholar] [CrossRef]
- Freedman, W.L.; Madore, B.F.; Scowcroft, V.; Burns, C.; Monson, A.; Persson, S.E.; Seibert, M.; Rigby, J. Carnegie Hubble Program: A Mid-Infrared Calibration of the Hubble Constant. Astrophys. J. 2012, 758, 24. [Google Scholar] [CrossRef]
- Cardona, W.; Kunz, M.; Pettorino, V. Determining H0 with Bayesian hyper-parameters. J. Cosmol. Astropart. Phys. 2017, 03, 056. [Google Scholar] [CrossRef]
- Follin, B.; Knox, L. Insensitivity of the distance ladder Hubble constant determination to Cepheid calibration modelling choices. Mon. Not. Roy. Astron. Soc. 2018, 477, 4534–4542. [Google Scholar] [CrossRef]
- Riess, A.G.; Anand, G.S.; Yuan, W.; Casertano, S.; Dolphin, A.; Macri, L.M.; Breuval, L.; Scolnic, D.; Perrin, M.; Anderson, R.I. Crowded No More: The Accuracy of the Hubble Constant Tested with High-resolution Observations of Cepheids by JWST. Astrophys. J. Lett. 2023, 956, L18. [Google Scholar] [CrossRef]
- Schombert, J.; McGaugh, S.; Lelli, F. Using the Baryonic Tully–Fisher Relation to Measure Ho. Astron. J. 2020, 160, 71. [Google Scholar] [CrossRef]
- de Jaeger, T.; Stahl, B.E.; Zheng, W.; Filippenko, A.V.; Riess, A.G.; Galbany, L. A measurement of the Hubble constant from Type II supernovae. Mon. Not. Roy. Astron. Soc. 2020, 496, 3402–3411. [Google Scholar] [CrossRef]
- de Jaeger, T.; Galbany, L.; Riess, A.G.; Stahl, B.E.; Shappee, B.J.; Filippenko, A.V.; Zheng, W. A 5 per cent measurement of the Hubble–Lemaître constant from Type II supernovae. Mon. Not. Roy. Astron. Soc. 2022, 514, 4620–4628. [Google Scholar] [CrossRef]
- Abbott, B.P. et al. [LIGO Scientific, Virgo, 1M2H, Dark Energy Camera GW-E, DES, DLT40, Las Cumbres Observatory, VINROUGE and MASTER] A gravitational-wave standard siren measurement of the Hubble constant. Nature 2017, 551, 85–88. [Google Scholar] [CrossRef]
- Nicolaou, C.; Lahav, O.; Lemos, P.; Hartley, W.; Braden, J. The Impact of Peculiar Velocities on the Estimation of the Hubble Constant from Gravitational Wave Standard Sirens. Mon. Not. Roy. Astron. Soc. 2020, 495, 90–97. [Google Scholar] [CrossRef]
- Reid, M.J.; Pesce, D.W.; Riess, A.G. An Improved Distance to NGC 4258 and its Implications for the Hubble Constant. Astrophys. J. Lett. 2019, 886, L27. [Google Scholar] [CrossRef]
- Freedman, W.L.; Madore, B.F.; Hoyt, T.; Jang, I.S.; Beaton, R.; Lee, M.G.; Monson, A.; Neeley, J.; Rich, J. Calibration of the Tip of the Red Giant Branch (TRGB). arXiv 2020, arXiv:2002.01550. [Google Scholar]
- Anderson, R.I.; Koblischke, N.W.; Eyer, L. Reconciling astronomical distance scales with variable red giant stars. arXiv 2023, arXiv:2303.04790. [Google Scholar]
- Scolnic, D.; Riess, A.G.; Wu, J.; Li, S.; Anand, G.S.; Beaton, R.; Casertano, S.; Anderson, R.I.; Dhawan, S.; Ke, X. CATS: The Hubble Constant from Standardized TRGB and Type Ia Supernova Measurements. Astrophys. J. Lett. 2023, 954, L31. [Google Scholar] [CrossRef]
- Uddin, S.A.; Burns, C.R.; Phillips, M.M.; Suntzeff, N.B.; Freedman, W.L.; Brown, P.J.; Morrell, N.; Hamuy, M.; Krisciunas, K.; Wang, L.; et al. Carnegie Supernova Project-I and -II: Measurements of H0 using Cepheid, TRGB, and SBF Distance Calibration to Type Ia Supernovae. arXiv 2023, arXiv:2308.01875. [Google Scholar]
- Wong, K.C.; Suyu, S.H.; Chen, G.C.F.; Rusu, C.E.; Millon, M.; Sluse, D.; Bonvin, V.; Fassnacht, C.D.; Taubenberger, S.; Auger, M.W.; et al. H0LiCOW—XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes. Mon. Not. Roy. Astron. Soc. 2020, 498, 1420–1439. [Google Scholar] [CrossRef]
- Shajib, A.J. et al. [DES] STRIDES: A 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408−5354. Mon. Not. Roy. Astron. Soc. 2020, 494, 6072–6102. [Google Scholar] [CrossRef]
- Millon, M.; Galan, A.; Courbin, F.; Treu, T.; Suyu, S.H.; Ding, X.; Birrer, S.; Chen, G.C.F.; Shajib, A.J.; Sluse, D.; et al. TDCOSMO. I. An exploration of systematic uncertainties in the inference of H0 from time-delay cosmography. Astron. Astrophys. 2020, 639, A101. [Google Scholar] [CrossRef]
- Yang, T.; Birrer, S.; Hu, B. The first simultaneous measurement of Hubble constant and post-Newtonian parameter from Time-Delay Strong Lensing. Mon. Not. Roy. Astron. Soc. 2020, 497, L56–L61. [Google Scholar] [CrossRef]
- Birrer, S.; Shajib, A.J.; Galan, A.; Millon, M.; Treu, T.; Agnello, A.; Auger, M.; Chen, G.C.F.; Christensen, L.; Collett, T.; et al. TDCOSMO—IV. Hierarchical time-delay cosmography—Joint inference of the Hubble constant and galaxy density profiles. Astron. Astrophys. 2020, 643, A165. [Google Scholar] [CrossRef]
- Denzel, P.; Coles, J.P.; Saha, P.; Williams, L.L.R. The Hubble constant from eight time-delay galaxy lenses. Mon. Not. Roy. Astron. Soc. 2021, 501, 784–801. [Google Scholar] [CrossRef]
- Shajib, A.J.; Mozumdar, P.; Chen, G.C.F.; Treu, T.; Cappellari, M.; Knabel, S.; Suyu, S.H.; Bennert, V.N.; Frieman, J.A.; Sluse, D.; et al. TDCOSMO. XII. Improved Hubble constant measurement from lensing time delays using spatially resolved stellar kinematics of the lens galaxy. Astron. Astrophys. 2023, 673, A9. [Google Scholar] [CrossRef]
- Palmese, A. et al. [DES] A statistical standard siren measurement of the Hubble constant from the LIGO/Virgo gravitational wave compact object merger GW190814 and Dark Energy Survey galaxies. Astrophys. J. Lett. 2020, 900, L33. [Google Scholar] [CrossRef]
- Palmese, A.; Bom, C.R.; Mucesh, S.; Hartley, W.G. A Standard Siren Measurement of the Hubble Constant Using Gravitational-wave Events from the First Three LIGO/Virgo Observing Runs and the DESI Legacy Survey. Astrophys. J. 2023, 943, 56. [Google Scholar] [CrossRef]
- Ballard, W. et al. [DESI] A Dark Siren Measurement of the Hubble Constant with the LIGO/Virgo Gravitational Wave Event GW190412 and DESI Galaxies. Res. Notes AAS 2023, 7, 250. [Google Scholar] [CrossRef]
- Kelly, P.L.; Rodney, S.; Treu, T.; Oguri, M.; Chen, W.; Zitrin, A.; Birrer, S.; Bonvin, V.; Dessart, L.; Diego, J.M.; et al. Constraints on the Hubble constant from supernova Refsdal’s reappearance. Science 2023, 380, abh1322. [Google Scholar] [CrossRef]
- Falco, E.E.; Gorenstein, M.V.; Shapiro, I.I. On model-dependent bounds on H (0) from gravitational images Application of Q0957+ 561A, B. Astrophys. J. 1985, 289, L1. [Google Scholar] [CrossRef]
- Wagner, J. Generalised model-independent characterisation of strong gravitational lenses IV: Formalism-intrinsic degeneracies. Astron. Astrophys. 2018, 620, A86. [Google Scholar] [CrossRef]
- Wagner, J. Generalised model-independent characterisation of strong gravitational lenses—VI. The origin of the formalism intrinsic degeneracies and their influence on H0. Mon. Not. Roy. Astron. Soc. 2019, 487, 4492–4503. [Google Scholar] [CrossRef]
- Li, X.; Liao, K. Determining Cosmological-model-independent H0 with Gravitationally Lensed Supernova Refsdal. arXiv 2024, arXiv:2401.12052. [Google Scholar]
- Krishnan, C.; Ó Colgáin, E.; Ruchika; Sen, A.A.; Sheikh-Jabbari, M.M.; Yang, T. Is there an early Universe solution to Hubble tension? Phys. Rev. D 2020, 102, 103525. [Google Scholar] [CrossRef]
- Dainotti, M.G.; Simone, B.D.; Schiavone, T.; Montani, G.; Rinaldi, E.; Lambiase, G. On the Hubble constant tension in the SNe Ia Pantheon sample. Astrophys. J. 2021, 912, 150. [Google Scholar] [CrossRef]
- Dainotti, M.G.; Simone, B.D.; Schiavone, T.; Montani, G.; Rinaldi, E.; Lambiase, G.; Bogdan, M.; Ugale, S. On the Evolution of the Hubble Constant with the SNe Ia Pantheon Sample and Baryon Acoustic Oscillations: A Feasibility Study for GRB-Cosmology in 2030. Galaxies 2022, 10, 24. [Google Scholar] [CrossRef]
- Hu, J.P.; Wang, F.Y. Revealing the late-time transition of H0: Relieve the Hubble crisis. Mon. Not. Roy. Astron. Soc. 2022, 517, 576–581. [Google Scholar] [CrossRef]
- Ó Colgáin, E.; Sheikh-Jabbari, M.M.; Solomon, R.; Bargiacchi, G.; Capozziello, S.; Dainotti, M.G.; Stojkovic, D. Revealing intrinsic flat ΛCDM biases with standardizable candles. Phys. Rev. D 2022, 106, L041301. [Google Scholar] [CrossRef]
- Jia, X.D.; Hu, J.P.; Wang, F.Y. Evidence of a decreasing trend for the Hubble constant. Astron. Astrophys. 2023, 674, A45. [Google Scholar] [CrossRef]
- Dainotti, M.; Simone, B.D.; Montani, G.; Schiavone, T.; Lambiase, G. The Hubble constant tension: Current status and future perspectives through new cosmological probes. arXiv 2023, arXiv:2301.10572. [Google Scholar]
- Wagner, J. Solving the Hubble tension à la Ellis & Stoeger 1987. PoS CORFU 2023, 2022, 267. [Google Scholar] [CrossRef]
- Phillips, M.M. The absolute magnitudes of Type IA supernovae. Astrophys. J. Lett. 1993, 413, L105–L108. [Google Scholar] [CrossRef]
- Risaliti, G.; Lusso, E. A Hubble Diagram for Quasars. Astrophys. J. 2015, 815, 33. [Google Scholar] [CrossRef]
- Risaliti, G.; Lusso, E. Cosmological constraints from the Hubble diagram of quasars at high redshifts. Nat. Astron. 2019, 3, 272–277. [Google Scholar] [CrossRef]
- Lusso, E.; Risaliti, G.; Nardini, E.; Bargiacchi, G.; Benetti, M.; Bisogni, S.; Capozziello, S.; Civano, F.; Eggleston, L.; Elvis, M.; et al. Quasars as standard candles III. Validation of a new sample for cosmological studies. Astron. Astrophys. 2020, 642, A150. [Google Scholar] [CrossRef]
- Yang, T.; Banerjee, A.; Ó Colgáin, E. Cosmography and flat ΛCDM tensions at high redshift. Phys. Rev. D 2020, 102, 123532. [Google Scholar] [CrossRef]
- Scolnic, D.M. et al. [Pan-STARRS1] The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astrophys. J. 2018, 859, 101. [Google Scholar] [CrossRef]
- Malekjani, M.; Conville, R.M.; Ó Colgáin, E.; Pourojaghi, S.; Sheikh-Jabbari, M.M. On redshift evolution and negative dark energy density in Pantheon + Supernovae. Eur. Phys. J. C 2024, 84, 317. [Google Scholar] [CrossRef]
- Ó Colgáin, E.; Pourojaghi, S.; Sheikh-Jabbari, M.M. Implications of DES 5YR SNe Dataset for ΛCDM. arXiv 2024, arXiv:2406.06389. [Google Scholar]
- Pourojaghi, S.; Zabihi, N.F.; Malekjani, M. Can high-redshift Hubble diagrams rule out the standard model of cosmology in the context of cosmography? Phys. Rev. D 2022, 106, 123523. [Google Scholar] [CrossRef]
- Pastén, E.; Cárdenas, V. Testing ΛCDM cosmology in a binned universe: Anomalies in the deceleration parameter. arXiv 2023, arXiv:2301.10740. [Google Scholar] [CrossRef]
- Khadka, N.; Ratra, B. Using quasar X-ray and UV flux measurements to constrain cosmological model parameters. Mon. Not. Roy. Astron. Soc. 2020, 497, 263–278. [Google Scholar] [CrossRef]
- Khadka, N.; Ratra, B. Determining the range of validity of quasar X-ray and UV flux measurements for constraining cosmological model parameters. Mon. Not. Roy. Astron. Soc. 2021, 502, 6140–6156. [Google Scholar] [CrossRef]
- Dainotti, M.G.; Bardiacchi, G.; Lenart, A.L.; Capozziello, S.; Ó Colgáin, E.; Solomon, R.; Stojkovic, D.; Sheikh-Jabbari, M.M. Quasar Standardization: Overcoming Selection Biases and Redshift Evolution. Astrophys. J. 2022, 931, 106. [Google Scholar] [CrossRef]
- Singal, J.; Mutchnick, S.; Petrosian, V. The X-Ray Luminosity Function Evolution of Quasars and the Correlation between the X-Ray and Ultraviolet Luminosities. Astrophys. J. 2022, 932, 111. [Google Scholar] [CrossRef]
- Petrosian, V.; Singal, J.; Mutchnick, S. Can the Distance-Redshift Relation be Determined from Correlations between Luminosities? Astrophys. J. Lett. 2022, 935, L19. [Google Scholar] [CrossRef]
- Zajaček, M.; Czerny, B.; Khadka, N.; Martínez-Aldama, M.L.; Prince, R.; Panda, S.; Ratra, B. Effect of extinction on quasar luminosity distances determined from UV and X-ray flux measurements. arXiv 2023, arXiv:2305.08179. [Google Scholar] [CrossRef]
- Adams, N.J.; Conselice, C.J.; Ferreira, L.; Austin, D.; Trussler, J.A.A.; Juodžbalis, I.; Vijayan, A.P. Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field. Mon. Not. Roy. Astron. Soc. 2022, 518, 4755. [Google Scholar]
- Labbe, I.; van Dokkum, P.; Nelson, E.; Bezanson, R.; Suess, K.A.; Leja, J.; Brammer, G.; Whitaker, K.; Mathews, E.; Stefanon, M.; et al. A population of red candidate massive galaxies ~600 Myr after the Big Bang. Nature 2023, 616, 266–269. [Google Scholar] [CrossRef]
- Castellano, M.; Fontana, A.; Treu, T.; Santini, P.; Merlin, E.; Leethochawalit, N.; Yang, L. Early results from GLASS-JWST. III. Galaxy candidates at z 9–15. Astrophys. J. Lett. 2022, 938, L15. [Google Scholar] [CrossRef]
- Naidu, R.P.; Oesch, P.A.; van Dokkum, P.; Nelson, E.J.; Suess, K.A.; Brammer, G.; Weibel, A. Two remarkably luminous galaxy candidates at z ≈ 10–12 revealed by JWST. Astrophys. J. Lett. 2022, 940, L14. [Google Scholar] [CrossRef]
- Xiao, M.; Oesch, P.; Elbaz, D.; Bing, L.; Nelson, E.; Weibel, A.; Wyithe, J.S. Massive Optically Dark Galaxies Unveiled by JWST Challenge Galaxy Formation Models. arXiv 2023, arXiv:2309.02492. [Google Scholar]
- Boylan-Kolchin, M. Stress testing ΛCDM with high-redshift galaxy candidates. Nat. Astron. 2023, 7, 731–735. [Google Scholar] [CrossRef]
- Shanks, T.; Hogarth, L.; Metcalfe, N. Gaia Cepheid parallaxes and ‘Local Hole’ relieve H0 tension. Mon. Not. Roy. Astron. Soc. 2019, 484, L64–L68. [Google Scholar] [CrossRef]
- Kenworthy, W.D.; Scolnic, D.; Riess, A. The Local Perspective on the Hubble Tension: Local Structure Does Not Impact Measurement of the Hubble Constant. Astrophys. J. 2019, 875, 145. [Google Scholar] [CrossRef]
- Haslbauer, M.; Banik, I.; Kroupa, P. The KBC void and Hubble tension contradict ΛCDM on a Gpc scale—Milgromian dynamics as a possible solution. Mon. Not. Roy. Astron. Soc. 2020, 499, 2845–2883. [Google Scholar] [CrossRef]
- Cai, R.G.; Ding, J.F.; Guo, Z.K.; Wang, S.J.; Yu, W.W. Do the observational data favor a local void? Phys. Rev. D 2021, 103, 123539. [Google Scholar] [CrossRef]
- Camarena, D.; Marra, V.; Sakr, Z.; Clarkson, C. A void in the Hubble tension? The end of the line for the Hubble bubble. Class. Quant. Grav. 2022, 39, 184001. [Google Scholar] [CrossRef]
- Mazurenko, S.; Banik, I.; Kroupa, P.; Haslbauer, M. A simultaneous solution to the Hubble tension and observed bulk flow within 250 h−1 Mpc. Mon. Not. Roy. Astron. Soc. 2024, 527, 4388–4396. [Google Scholar] [CrossRef]
- Ding, Q.; Nakama, T.; Wang, Y. A gigaparsec-scale local void and the Hubble tension. Sci. China Phys. Mech. Astron. 2020, 63, 290403. [Google Scholar] [CrossRef]
- Haslbauer, M.; Kroupa, P.; Jerabkova, T. The cosmological star formation history from the Local Cosmological Volume of galaxies and constraints on the matter homogeneity. Mon. Not. Roy. Astron. Soc. 2023, 524, 3252–3262. [Google Scholar] [CrossRef]
- Gómez-Valent, A. Fast test to assess the impact of marginalization in Monte Carlo analyses and its application to cosmology. Phys. Rev. D 2022, 106, 063506. [Google Scholar] [CrossRef]
- Ó Colgáin, E.; Pourojaghi, S.; Sheikh-Jabbari, M.M.; Sherwin, D. MCMC Marginalisation Bias and ΛCDM tensions. arXiv 2023, arXiv:2307.16349. [Google Scholar]
- Herold, L.; Ferreira, E.G.M.; Komatsu, E. New Constraint on Early Dark Energy from Planck and BOSS Data Using the Profile Likelihood. Astrophys. J. Lett. 2022, 929, L16. [Google Scholar] [CrossRef]
- Holm, E.B.; Herold, L.; Simon, T.; Ferreira, E.G.M.; Hannestad, S.; Poulin, V.; Tram, T. Bayesian and frequentist investigation of prior effects in EFT of LSS analyses of full-shape BOSS and eBOSS data. Phys. Rev. D 2023, 108, 123514. [Google Scholar] [CrossRef]
- Holm, E.B.; Nygaard, A.; Dakin, J.; Hannestad, S.; Tram, T. PROSPECT: A profile likelihood code for frequentist cosmological parameter inference. arXiv 2023, arXiv:2312.02972. [Google Scholar]
- Kroupa, P.; Gjergo, E.; Asencio, E.; Haslbauer, M.; Pflamm-Altenburg, J.; Wittenburg, N.; Samaras, N.; Thies, I.; Oehm, W. The many tensions with dark-matter based models and implications on the nature of the Universe. PoS CORFU 2023, 2022, 231. [Google Scholar] [CrossRef]
- Wang, B.; Abdalla, E.; Atrio-Barandela, F.; Pavon, D. Dark Matter and Dark Energy Interactions: Theoretical Challenges, Cosmological Implications and Observational Signatures. Rept. Prog. Phys. 2016, 79, 096901. [Google Scholar] [CrossRef]
- Valentino, E.D.; Melchiorri, A.; Mena, O. Can interacting dark energy solve the H0 tension? Phys. Rev. D 2017, 96, 043503. [Google Scholar] [CrossRef]
- Valentino, E.D.; Melchiorri, A.; Mena, O.; Vagnozzi, S. Interacting dark energy in the early 2020s: A promising solution to the H0 and cosmic shear tensions. Phys. Dark Univ. 2020, 30, 100666. [Google Scholar] [CrossRef]
- Gómez-Valent, A.; Pettorino, V.; Amendola, L. Update on coupled dark energy and the H0 tension. Phys. Rev. D 2020, 101, 123513. [Google Scholar] [CrossRef]
- Wang, B.; Abdalla, E.; Atrio-Barandela, F.; Pavón, D. Further understanding the interaction between dark energy and dark matter: Current status and future directions. arXiv 2024, arXiv:2402.00819. [Google Scholar] [CrossRef]
- Akarsu, Ö.; Barrow, J.D.; Escamilla, L.A.; Vazquez, J.A. Graduated dark energy: Observational hints of a spontaneous sign switch in the cosmological constant. Phys. Rev. D 2020, 101, 063528. [Google Scholar] [CrossRef]
- Akarsu, Ö.; Kumar, S.; Özülker, E.; Vazquez, J.A. Relaxing cosmological tensions with a sign switching cosmological constant. Phys. Rev. D 2021, 104, 123512. [Google Scholar] [CrossRef]
- Akarsu, O.; Kumar, S.; Özülker, E.; Vazquez, J.A.; Yadav, A. Relaxing cosmological tensions with a sign switching cosmological constant: Improved results with Planck, BAO, and Pantheon data. Phys. Rev. D 2023, 108, 023513. [Google Scholar] [CrossRef]
- Akarsu, O.; Valentino, E.D.; Kumar, S.; Nunes, R.C.; Vazquez, J.A.; Yadav, A. ΛsCDM model: A promising scenario for alleviation of cosmological tensions. arXiv 2023, arXiv:2307.10899. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akarsu, Ö.; Ó Colgáin, E.; Sen, A.A.; Sheikh-Jabbari, M.M. ΛCDM Tensions: Localising Missing Physics through Consistency Checks. Universe 2024, 10, 305. https://doi.org/10.3390/universe10080305
Akarsu Ö, Ó Colgáin E, Sen AA, Sheikh-Jabbari MM. ΛCDM Tensions: Localising Missing Physics through Consistency Checks. Universe. 2024; 10(8):305. https://doi.org/10.3390/universe10080305
Chicago/Turabian StyleAkarsu, Özgür, Eoin Ó Colgáin, Anjan A. Sen, and M. M. Sheikh-Jabbari. 2024. "ΛCDM Tensions: Localising Missing Physics through Consistency Checks" Universe 10, no. 8: 305. https://doi.org/10.3390/universe10080305
APA StyleAkarsu, Ö., Ó Colgáin, E., Sen, A. A., & Sheikh-Jabbari, M. M. (2024). ΛCDM Tensions: Localising Missing Physics through Consistency Checks. Universe, 10(8), 305. https://doi.org/10.3390/universe10080305