Tracking Supermassive Black Hole Mergers from kpc to sub-pc Scales with AXIS
Abstract
:1. Introduction
1.1. Detecting Dual AGNs
1.2. Detecting Binary AGNs
1.3. The Power of AXIS for AGN Pair Studies
2. Observations of Dual AGNs via the AXIS AGN Surveys
2.1. Quantifying the Rate of Dual AGNs to High-z
3. Observations of Binary AGNs with AXIS
3.1. Periodicity, Chirping, and Merger Signatures
3.2. Spectral Hardening and Double Broad Fe Lines
3.3. Synergies with Other EM Observatories
4. Population Statistics with AGN Pairs
4.1. Constraining Binary SMBH Hardening Timescales
4.1.1. Dual AGNs
4.1.2. Binary AGNs
5. Conclusions
- The AXIS AGN surveys (following a “Wedding cake” strategy) will result in the first X-ray study that quantifies the frequency of dual AGNs as a function of redshift up to . Using mock catalogs of AXIS deep and intermediate AGN survey fields, we found that a sample of 10,000 X-ray AGN could be analyzed for the possibility of a dual, while this sample could expand to thousands when including data from a serendipitous wide-area survey from Guest Observer observations.
- With complementary redshift measurements for each source, we showed that AXIS will observationally constrain the frequency of X-ray dual AGN to within 3%, up to , quantifying how (or if) mergers affect SMBH growth and galaxy evolution. If mergers play no role in enhancing SMBH growth, we may expect the frequency of dual AGNs to be under 3% at all redshifts; however, large-scale cosmological simulations predict a dual AGN fraction twice as high. AXIS observations will allow us to statistically differentiate between the low- and high-end predictions.
- Through a blind search among a large number of AGNs and by targeting individual candidates with high sensitivity, AXIS will be sensitive to detecting signatures of binary AGN. These include X-ray periodicities and transient signals in the light curves.
- AXIS’s large effective area at 6 keV is sensitive to detecting Doppler shifted fluorescent Fe Kα lines in binary AGN candidates. In particular, we simulated a mock binary AGN (∼) at sub-pc separation with two broad iron lines (corresponding to an energy separation of 0.4 keV). We found that AXIS could constrain the energies of each emission line, confirming the binary, with a relatively shallow exposure (20 ks), which Chandra was unable to do with an exposure ∼3× as long.
- The AGN pairs detected by AXIS will allow for statistical population analyses, as the detection sample of dual AGNs is expected to result in over a magnitude more dual AGNs than currently possible with Chandra. Assigning physical separations to our mock sample of dual AGNs, we expect to find mergers at a range of physical separations (4 kpc 30 kpc) and redshifts (). AXIS will detect some of the highest-redshift dual AGNs to date, over a large range of physical separations.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- White, S.D.M.; Rees, M.J. Core condensation in heavy halos—A two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 1978, 183, 341–358. [Google Scholar] [CrossRef]
- Volonteri, M.; Haardt, F.; Madau, P. The Assembly and Merging History of Supermassive Black Holes in Hierarchical Models of Galaxy Formation. Astrophys. J. 2003, 582, 559–573. [Google Scholar] [CrossRef]
- De Rosa, A.; Vignali, C.; Husemann, B.; Bianchi, S.; Bogdanović, T.; Guainazzi, M.; Herrero-Illana, R.; Komossa, S.; Kun, E.; Loiseau, N.; et al. Disclosing the properties of low-redshift dual AGN through XMM-Newton and SDSS spectroscopy. Mon. Not. R. Astron. Soc. 2018, 480, 1639–1655. [Google Scholar] [CrossRef]
- D’Orazio, D.J.; Charisi, M. Observational Signatures of Supermassive Black Hole Binaries. arXiv 2023, arXiv:2310.16896. [Google Scholar]
- Binney, J.; Tremaine, S. Galactic Dynamics, 2nd ed.; Princeton Series in Astrophysics; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Tremmel, M.; Governato, F.; Volonteri, M.; Quinn, T.R.; Pontzen, A. Dancing to CHANGA: A self-consistent prediction for close SMBH pair formation time-scales following galaxy mergers. Mon. Not. R. Astron. Soc. 2018, 475, 4967–4977. [Google Scholar] [CrossRef]
- Begelman, M.C.; Blandford, R.D.; Rees, M.J. Massive black hole binaries in active galactic nuclei. Nature 1980, 287, 307–309. [Google Scholar] [CrossRef]
- Mayer, L.; Kazantzidis, S.; Madau, P.; Colpi, M.; Quinn, T.; Wadsley, J. Rapid Formation of Supermassive Black Hole Binaries in Galaxy Mergers with Gas. Science 2007, 316, 1874. [Google Scholar] [CrossRef]
- Dotti, M.; Colpi, M.; Haardt, F.; Mayer, L. Supermassive black hole binaries in gaseous and stellar circumnuclear discs: Orbital dynamics and gas accretion. Mon. Not. R. Astron. Soc. 2007, 379, 956–962. [Google Scholar] [CrossRef]
- Khan, F.M.; Berentzen, I.; Berczik, P.; Just, A.; Mayer, L.; Nitadori, K.; Callegari, S. Formation and Hardening of Supermassive Black Hole Binaries in Minor Mergers of Disk Galaxies. Astrophys. J. 2012, 756, 30. [Google Scholar] [CrossRef]
- Burke-Spolaor, S.; Taylor, S.R.; Charisi, M.; Dolch, T.; Hazboun, J.S.; Holgado, A.M.; Kelley, L.Z.; Lazio, T.J.W.; Madison, D.R.; McMann, N.; et al. The astrophysics of nanohertz gravitational waves. Astron. Astrophys. Rev. 2019, 27, 5. [Google Scholar] [CrossRef]
- Sesana, A.; Haardt, F.; Madau, P. Interaction of Massive Black Hole Binaries with Their Stellar Environment. II. Loss Cone Depletion and Binary Orbital Decay. Astrophys. J. 2007, 660, 546–555. [Google Scholar] [CrossRef]
- Luo, J.; Chen, L.S.; Duan, H.Z.; Gong, Y.G.; Hu, S.; Ji, J.; Liu, Q.; Mei, J.; Milyukov, V.; Sazhin, M.; et al. TianQin: A space-borne gravitational wave detector. Class. Quantum Gravity 2016, 33, 035010. [Google Scholar] [CrossRef]
- Amaro-Seoane, P.; Andrews, J.; Arca Sedda, M.; Askar, A.; Baghi, Q.; Balasov, R.; Bartos, I.; Bavera, S.S.; Bellovary, J.; Berry, C.P.L.; et al. Astrophysics with the Laser Interferometer Space Antenna. Living Rev. Relativ. 2023, 26, 2. [Google Scholar] [CrossRef]
- Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Arzoumanian, Z.; Baker, P.T.; Bécsy, B.; Blecha, L.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; et al. The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background. Astrophys. J. Lett. 2023, 951, L8. [Google Scholar] [CrossRef]
- EPTA Collaboration; InPTA Collaboration; Antoniadis, J.; Arumugam, P.; Arumugam, S.; Babak, S.; Bagchi, M.; Bak Nielsen, A.S.; Bassa, C.G.; Bathula, A.; et al. The second data release from the European Pulsar Timing Array. III. Search for gravitational wave signals. Astron. Astrophys. 2023, 678, A50. [Google Scholar] [CrossRef]
- Reardon, D.J.; Zic, A.; Shannon, R.M.; Hobbs, G.B.; Bailes, M.; Di Marco, V.; Kapur, A.; Rogers, A.F.; Thrane, E.; Askew, J.; et al. Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array. Astrophys. J. Lett. 2023, 951, L6. [Google Scholar] [CrossRef]
- Xu, H.; Chen, S.; Guo, Y.; Jiang, J.; Wang, B.; Xu, J.; Xue, Z.; Nicolas Caballero, R.; Yuan, J.; Xu, Y.; et al. Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I. Res. Astron. Astrophys. 2023, 23, 075024. [Google Scholar] [CrossRef]
- Magorrian, J.; Tremaine, S.; Richstone, D.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Gebhardt, K.; Green, R.; Grillmair, C.; et al. The Demography of Massive Dark Objects in Galaxy Centers. AJAstron. J. 1998, 115, 2285–2305. [Google Scholar] [CrossRef]
- Ferrarese, L.; Merritt, D. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. Astrophys. J. Lett. 2000, 539, L9–L12. [Google Scholar] [CrossRef]
- Tremaine, S.; Gebhardt, K.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; Green, R.; Grillmair, C.; Ho, L.C.; et al. The Slope of the Black Hole Mass versus Velocity Dispersion Correlation. Astrophys. J. 2002, 574, 740–753. [Google Scholar] [CrossRef]
- Gültekin, K.; Richstone, D.O.; Gebhardt, K.; Lauer, T.R.; Tremaine, S.; Aller, M.C.; Bender, R.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; et al. The M-σ and M-L Relations in Galactic Bulges, and Determinations of Their Intrinsic Scatter. Astrophys. J. 2009, 698, 198–221. [Google Scholar] [CrossRef]
- McConnell, N.J.; Ma, C.P. Revisiting the Scaling Relations of Black Hole Masses and Host Galaxy Properties. Astrophys. J. 2013, 764, 184. [Google Scholar] [CrossRef]
- Jahnke, K.; Macciò, A.V. The Non-causal Origin of the Black-hole-galaxy Scaling Relations. Astrophys. J. 2011, 734, 92. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Hernquist, L.; Cox, T.J.; Di Matteo, T.; Robertson, B.; Springel, V. A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-ray Background, Supermassive Black Holes, and Galaxy Spheroids. Astrophys. J. Suppl. Ser. 2006, 163, 1. [Google Scholar] [CrossRef]
- Sobral, D.; Stroe, A.; Dawson, W.A.; Wittman, D.; Jee, M.J.; Röttgering, H.; van Weeren, R.J.; Brüggen, M. MC2: Boosted AGN and star formation activity in CIZA J2242.8+5301, a massive post-merger cluster at z = 0.19. Mon. Not. R. Astron. Soc. 2015, 450, 630–645. [Google Scholar] [CrossRef]
- Barnes, J.E.; Hernquist, L.E. Fueling starburst galaxies with gas-rich mergers. Astrophys. J. Lett. 1991, 370, L65–L68. [Google Scholar] [CrossRef]
- Di Matteo, T.; Colberg, J.; Springel, V.; Hernquist, L.; Sijacki, D. Direct Cosmological Simulations of the Growth of Black Holes and Galaxies. Astrophys. J. 2008, 676, 33–53. [Google Scholar] [CrossRef]
- Anglés-Alcázar, D.; Davé, R.; Faucher-Giguère, C.A.; Özel, F.; Hopkins, P.F. Gravitational torque-driven black hole growth and feedback in cosmological simulations. Mon. Not. R. Astron. Soc. 2017, 464, 2840–2853. [Google Scholar] [CrossRef]
- Wyithe, J.S.B.; Loeb, A. Self-regulated Growth of Supermassive Black Holes in Galaxies as the Origin of the Optical and X-ray Luminosity Functions of Quasars. Astrophys. J. 2003, 595, 614–623. [Google Scholar] [CrossRef]
- Di Matteo, T.; Springel, V.; Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 2005, 433, 604–607. [Google Scholar] [CrossRef]
- Canalizo, G.; Stockton, A. Quasi-Stellar Objects, Ultraluminous Infrared Galaxies, and Mergers. Astrophys. J. 2001, 555, 719–743. [Google Scholar] [CrossRef]
- Koss, M.; Mushotzky, R.; Veilleux, S.; Winter, L. Merging and Clustering of the Swift BAT AGN Sample. Astrophys. J. Lett. 2010, 716, L125–L130. [Google Scholar] [CrossRef]
- Villar-Martín, M.; Tadhunter, C.; Humphrey, A.; Encina, R.F.; Delgado, R.G.; Torres, M.P.; Martínez-Sansigre, A. Interactions, star formation and extended nebulae in SDSS type 2 quasars at z ∼ 0.3–0.6. Mon. Not. R. Astron. Soc. 2011, 416, 262–278. [Google Scholar] [CrossRef]
- Schawinski, K.; Simmons, B.D.; Urry, C.M.; Treister, E.; Glikman, E. Heavily obscured quasar host galaxies at z ∼ 2 are discs, not major mergers. Mon. Not. R. Astron. Soc. 2012, 425, L61–L65. [Google Scholar] [CrossRef]
- Treister, E.; Schawinski, K.; Urry, C.M.; Simmons, B.D. Major Galaxy Mergers Only Trigger the Most Luminous Active Galactic Nuclei. Astrophys. J. Lett. 2012, 758, L39. [Google Scholar] [CrossRef]
- Satyapal, S.; Ellison, S.L.; McAlpine, W.; Hickox, R.C.; Patton, D.R.; Mendel, J.T. Galaxy pairs in the Sloan Digital Sky Survey—IX. Merger-induced AGN activity as traced by the Wide-field Infrared Survey Explorer. Mon. Not. R. Astron. Soc. 2014, 441, 1297–1304. [Google Scholar] [CrossRef]
- Villforth, C.; Hamann, F.; Rosario, D.J.; Santini, P.; McGrath, E.J.; van der Wel, A.; Chang, Y.Y.; Guo, Y.; Dahlen, T.; Bell, E.F.; et al. Morphologies of z ∼ 0.7 AGN host galaxies in CANDELS: No trend of merger incidence with AGN luminosity. Mon. Not. R. Astron. Soc. 2014, 439, 3342–3356. [Google Scholar] [CrossRef]
- Glikman, E.; Simmons, B.; Mailly, M.; Schawinski, K.; Urry, C.M.; Lacy, M. Major Mergers Host the Most-luminous Red Quasars at z ∼ 2: A Hubble Space Telescope WFC3/IR Study. Astrophys. J. 2015, 806, 218. [Google Scholar] [CrossRef]
- Glikman, E.; Lacy, M.; LaMassa, S.; Stern, D.; Djorgovski, S.G.; Graham, M.J.; Urrutia, T.; Lovdal, L.; Crnogorcevic, M.; Daniels-Koch, H.; et al. Luminous WISE-selected Obscured, Unobscured, and Red Quasars in Stripe 82. Astrophys. J. 2018, 861, 37. [Google Scholar] [CrossRef]
- Fan, L.; Han, Y.; Fang, G.; Gao, Y.; Zhang, D.; Jiang, X.; Wu, Q.; Yang, J.; Li, Z. The Most Luminous Heavily Obscured Quasars Have a High Merger Fraction: Morphological Study of WISE-selected Hot Dust-obscured Galaxies. Astrophys. J. Lett. 2016, 822, L32. [Google Scholar] [CrossRef]
- Weston, M.E.; McIntosh, D.H.; Brodwin, M.; Mann, J.; Cooper, A.; McConnell, A.; Nielsen, J.L. Incidence of WISE -selected obscured AGNs in major mergers and interactions from the SDSS. Mon. Not. R. Astron. Soc. 2017, 464, 3882–3906. [Google Scholar] [CrossRef]
- Barrows, R.S.; Comerford, J.M.; Greene, J.E. Spatially Offset Active Galactic Nuclei. III. Discovery of Late-stage Galaxy Mergers with the Hubble Space Telescope. Astrophys. J. 2018, 869, 154. [Google Scholar] [CrossRef]
- Goulding, A.D.; Greene, J.E.; Bezanson, R.; Greco, J.; Johnson, S.; Leauthaud, A.; Matsuoka, Y.; Medezinski, E.; Price-Whelan, A.M. Galaxy interactions trigger rapid black hole growth: An unprecedented view from the Hyper Suprime-Cam survey. Publ. Astron. Soc. Jpn. 2018, 70, S37. [Google Scholar] [CrossRef]
- Onoue, M.; Kashikawa, N.; Uchiyama, H.; Akiyama, M.; Harikane, Y.; Imanishi, M.; Komiyama, Y.; Matsuoka, Y.; Nagao, T.; Nishizawa, A.J.; et al. Enhancement of galaxy overdensity around quasar pairs at z < 3.6 based on the Hyper Suprime-Cam Subaru Strategic Program Survey. Publ. Astron. Soc. Jpn. 2018, 70, S31. [Google Scholar] [CrossRef]
- Ellison, S.L.; Viswanathan, A.; Patton, D.R.; Bottrell, C.; McConnachie, A.W.; Gwyn, S.; Cuillandre, J.C. A definitive merger-AGN connection at z ∼ 0 with CFIS: Mergers have an excess of AGN and AGN hosts are more frequently disturbed. Mon. Not. R. Astron. Soc. 2019, 487, 2491–2504. [Google Scholar] [CrossRef]
- Marian, V.; Jahnke, K.; Mechtley, M.; Cohen, S.; Husemann, B.; Jones, V.; Koekemoer, A.; Schulze, A.; van der Wel, A.; Villforth, C.; et al. Major Mergers Are Not the Dominant Trigger for High-accretion AGNs at z ∼ 2. Astrophys. J. 2019, 882, 141. [Google Scholar] [CrossRef]
- Zhao, D.; Ho, L.C.; Zhao, Y.; Shangguan, J.; Kim, M. The Role of Major Mergers and Nuclear Star Formation in Nearby Obscured Quasars. Astrophys. J. 2019, 877, 52. [Google Scholar] [CrossRef]
- Zhao, Y.; Ho, L.C.; Shangguan, J.; Kim, M.; Zhao, D.; Gao, H. The Diverse Morphology, Stellar Population, and Black Hole Scaling Relations of the Host Galaxies of Nearby Quasars. Astrophys. J. 2021, 911, 94. [Google Scholar] [CrossRef]
- Pierce, J.C.S.; Tadhunter, C.; Ramos Almeida, C.; Bessiere, P.; Heaton, J.V.; Ellison, S.L.; Speranza, G.; Gordon, Y.; O’Dea, C.; Grimmett, L.; et al. Galaxy interactions are the dominant trigger for local type 2 quasars. Mon. Not. R. Astron. Soc. 2023, 522, 1736–1751. [Google Scholar] [CrossRef]
- Comerford, J.M.; Nevin, R.; Negus, J.; Barrows, R.S.; Eracleous, M.; Müller-Sánchez, F.; Roy, N.; Stemo, A.; Storchi-Bergmann, T.; Wylezalek, D. An Excess of Active Galactic Nuclei Triggered by Galaxy Mergers in MaNGA Galaxies of Stellar Mass ∼1011M⊙. Astrophys. J. 2024, 963, 53. [Google Scholar] [CrossRef]
- Kocevski, D.D.; Brightman, M.; Nandra, K.; Koekemoer, A.M.; Salvato, M.; Aird, J.; Bell, E.F.; Hsu, L.T.; Kartaltepe, J.S.; Koo, D.C.; et al. Are Compton-thick AGNs the Missing Link between Mergers and Black Hole Growth? Astrophys. J. 2015, 814, 104. [Google Scholar] [CrossRef]
- Koss, M.J.; Assef, R.; Baloković, M.; Stern, D.; Gandhi, P.; Lamperti, I.; Alexander, D.M.; Ballantyne, D.R.; Bauer, F.E.; Berney, S.; et al. A New Population of Compton-thick AGNs Identified Using the Spectral Curvature above 10 keV. Astrophys. J. 2016, 825, 85. [Google Scholar] [CrossRef]
- Rodriguez, C.; Taylor, G.B.; Zavala, R.T.; Peck, A.B.; Pollack, L.K.; Romani, R.W. A Compact Supermassive Binary Black Hole System. Astrophys. J. 2006, 646, 49–60. [Google Scholar] [CrossRef]
- Rosario, D.J.; Shields, G.A.; Taylor, G.B.; Salviander, S.; Smith, K.L. The Jet-driven Outflow in the Radio Galaxy SDSS J1517+3353: Implications for Double-peaked Narrow-line Active Galactic Nucleus. Astrophys. J. 2010, 716, 131–143. [Google Scholar] [CrossRef]
- Fu, H.; Myers, A.D.; Djorgovski, S.G.; Yan, L.; Wrobel, J.M.; Stockton, A. Radio-selected Binary Active Galactic Nuclei from the Very Large Array Stripe 82 Survey. Astrophys. J. 2015, 799, 72. [Google Scholar] [CrossRef]
- Tingay, S.J.; Wayth, R.B. A VLBA Search for Binary Black Holes in Active Galactic Nuclei with Double-peaked Optical Emission Line Spectra. Astron. J. 2011, 141, 174. [Google Scholar] [CrossRef]
- Deane, R.P.; Paragi, Z.; Jarvis, M.J.; Coriat, M.; Bernardi, G.; Fender, R.P.; Frey, S.; Heywood, I.; Klöckner, H.R.; Grainge, K.; et al. A close-pair binary in a distant triple supermassive black hole system. Nature 2014, 511, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Gabányi, K.É.; Frey, S.; Xiao, T.; Paragi, Z.; An, T.; Kun, E.; Gergely, L.Á. A single radio-emitting nucleus in the dual AGN candidate NGC 5515. Mon. Not. R. Astron. Soc. 2014, 443, 1509–1514. [Google Scholar] [CrossRef]
- Wrobel, J.M.; Comerford, J.M.; Middelberg, E. Constraints on Two Active Galactic Nuclei in the Merger Remnant COSMOS J100043.15+020637.2. Astrophys. J. 2014, 782, 116. [Google Scholar] [CrossRef]
- Wrobel, J.M.; Walker, R.C.; Fu, H. Evidence from the Very Long Baseline Array That J1502SE/SW are Double Hotspots, Not a Supermassive Binary Black Hole. Astrophys. J. Lett. 2014, 792, L8. [Google Scholar] [CrossRef]
- Müller-Sánchez, F.; Comerford, J.M.; Nevin, R.; Barrows, R.S.; Cooper, M.C.; Greene, J.E. The Origin of Double-peaked Narrow Lines in Active Galactic Nuclei. I. Very Large Array Detections of Dual AGNs and AGN Outflows. Astrophys. J. 2015, 813, 103. [Google Scholar] [CrossRef]
- Kharb, P.; Lal, D.V.; Merritt, D. A candidate sub-parsec binary black hole in the Seyfert galaxy NGC 7674. Nat. Astron. 2017, 1, 727–733. [Google Scholar] [CrossRef]
- Hooper, E.J.; Impey, C.D.; Foltz, C.B.; Hewett, P.C. Radio properties of optically selected quasars. Astrophys. J. 1995, 445, 62–79. [Google Scholar] [CrossRef]
- Ricci, C.; Bauer, F.E.; Treister, E.; Schawinski, K.; Privon, G.C.; Blecha, L.; Arevalo, P.; Armus, L.; Harrison, F.; Ho, L.C.; et al. Growing supermassive black holes in the late stages of galaxy mergers are heavily obscured. Mon. Not. R. Astron. Soc. 2017, 468, 1273–1299. [Google Scholar] [CrossRef]
- Blecha, L.; Snyder, G.F.; Satyapal, S.; Ellison, S.L. The power of infrared AGN selection in mergers: A theoretical study. Mon. Not. R. Astron. Soc. 2018, 478, 3056–3071. [Google Scholar] [CrossRef]
- Koss, M.J.; Blecha, L.; Bernhard, P.; Hung, C.L.; Lu, J.R.; Trakhtenbrot, B.; Treister, E.; Weigel, A.; Sartori, L.F.; Mushotzky, R.; et al. A population of luminous accreting black holes with hidden mergers. Nature 2018, 563, 214–216. [Google Scholar] [CrossRef] [PubMed]
- Lanzuisi, G.; Civano, F.; Marchesi, S.; Comastri, A.; Brusa, M.; Gilli, R.; Vignali, C.; Zamorani, G.; Brightman, M.; Griffiths, R.E.; et al. The Chandra COSMOS Legacy Survey: Compton thick AGN at high redshift. Mon. Not. R. Astron. Soc. 2018, 480, 2578–2592. [Google Scholar] [CrossRef]
- Torres-Albà, N.; Iwasawa, K.; Díaz-Santos, T.; Charmandaris, V.; Ricci, C.; Chu, J.K.; Sanders, D.B.; Armus, L.; Barcos-Muñoz, L.; Evans, A.S.; et al. C-GOALS. II. Chandra observations of the lower luminosity sample of nearby luminous infrared galaxies in GOALS. Astron. Astrophys. 2018, 620, A140. [Google Scholar] [CrossRef]
- Komossa, S.; Burwitz, V.; Hasinger, G.; Predehl, P.; Kaastra, J.S.; Ikebe, Y. Discovery of a Binary Active Galactic Nucleus in the Ultraluminous Infrared Galaxy NGC 6240 Using Chandra. Astrophys. J. Lett. 2003, 582, L15–L19. [Google Scholar] [CrossRef]
- Koss, M.; Mushotzky, R.; Treister, E.; Veilleux, S.; Vasudevan, R.; Trippe, M. Understanding Dual Active Galactic Nucleus Activation in the nearby Universe. Astrophys. J. Lett. 2012, 746, L22. [Google Scholar] [CrossRef]
- Foord, A.; Gültekin, K.; Reynolds, M.T.; Hodges-Kluck, E.; Cackett, E.M.; Comerford, J.M.; King, A.L.; Miller, J.M.; Runnoe, J.C. A Bayesian Analysis of SDSS J0914+0853, a Low-mass Dual AGN Candidate. Astrophys. J. 2019, 877, 17. [Google Scholar] [CrossRef]
- Foord, A.; Gültekin, K.; Runnoe, J.C.; Koss, M.J. AGN Triality of Triple Mergers: Detection of Faint X-ray Point Sources. Astrophys. J. 2021, 907, 71. [Google Scholar] [CrossRef]
- Chen, Y.C.; Hwang, H.C.; Shen, Y.; Liu, X.; Zakamska, N.L.; Yang, Q.; Li, J.I. Varstrometry for Off-nucleus and Dual Subkiloparsec AGN (VODKA): Hubble Space Telescope Discovers Double Quasars. Astrophys. J. 2022, 925, 162. [Google Scholar] [CrossRef]
- Sandoval, B.; Foord, A.; Allen, S.W.; Volonteri, M.; Stemo, A.; Chen, N.; Di Matteo, T.; Gultekin, K.; Habouzit, M.; Puerto-Sanchez, C.; et al. Searching for the Highest-z Dual AGN in the Deepest Chandra Surveys. arXiv 2023, arXiv:2312.02311. [Google Scholar]
- Bansal, K.; Taylor, G.B.; Peck, A.B.; Zavala, R.T.; Romani, R.W. Constraining the Orbit of the Supermassive Black Hole Binary 0402 + 379. Astrophys. J. 2017, 843, 14. [Google Scholar] [CrossRef]
- Lehto, H.J.; Valtonen, M.J. OJ 287 Outburst Structure and a Binary Black Hole Model. Astrophys. J. 1996, 460, 207. [Google Scholar] [CrossRef]
- Ivanov, P.B.; Igumenshchev, I.V.; Novikov, I.D. Hydrodynamics of Black Hole-Accretion Disk Collision. Astrophys. J. 1998, 507, 131–144. [Google Scholar] [CrossRef]
- MacFadyen, A.I.; Milosavljević, M. An Eccentric Circumbinary Accretion Disk and the Detection of Binary Massive Black Holes. Astrophys. J. 2008, 672, 83–93. [Google Scholar] [CrossRef]
- Shi, J.M.; Krolik, J.H.; Lubow, S.H.; Hawley, J.F. Three-dimensional Magnetohydrodynamic Simulations of Circumbinary Accretion Disks: Disk Structures and Angular Momentum Transport. Astrophys. J. 2012, 749, 118. [Google Scholar] [CrossRef]
- Noble, S.C.; Mundim, B.C.; Nakano, H.; Krolik, J.H.; Campanelli, M.; Zlochower, Y.; Yunes, N. Circumbinary Magnetohydrodynamic Accretion into Inspiraling Binary Black Holes. Astrophys. J. 2012, 755, 51. [Google Scholar] [CrossRef]
- D’Orazio, D.J.; Haiman, Z.; MacFadyen, A. Accretion into the central cavity of a circumbinary disc. Mon. Not. R. Astron. Soc. 2013, 436, 2997–3020. [Google Scholar] [CrossRef]
- Farris, B.D.; Duffell, P.; MacFadyen, A.I.; Haiman, Z. Binary Black Hole Accretion from a Circumbinary Disk: Gas Dynamics inside the Central Cavity. Astrophys. J. 2014, 783, 134. [Google Scholar] [CrossRef]
- Gold, R.; Paschalidis, V.; Etienne, Z.B.; Shapiro, S.L.; Pfeiffer, H.P. Accretion disks around binary black holes of unequal mass: General relativistic magnetohydrodynamic simulations near decoupling. Phys. Rev. D 2014, 89, 064060. [Google Scholar] [CrossRef]
- D’Orazio, D.J.; Haiman, Z.; Schiminovich, D. Relativistic boost as the cause of periodicity in a massive black-hole binary candidate. Nature 2015, 525, 351–353. [Google Scholar] [CrossRef] [PubMed]
- D’Orazio, D.J.; Di Stefano, R. Periodic self-lensing from accreting massive black hole binaries. Mon. Not. R. Astron. Soc. 2018, 474, 2975–2986. [Google Scholar] [CrossRef]
- Graham, M.J.; Djorgovski, S.G.; Stern, D.; Drake, A.J.; Mahabal, A.A.; Donalek, C.; Glikman, E.; Larson, S.; Christensen, E. A systematic search for close supermassive black hole binaries in the Catalina Real-time Transient Survey. Mon. Not. R. Astron. Soc. 2015, 453, 1562–1576. [Google Scholar] [CrossRef]
- Graham, M.J.; Djorgovski, S.G.; Stern, D.; Glikman, E.; Drake, A.J.; Mahabal, A.A.; Donalek, C.; Larson, S.; Christensen, E. A possible close supermassive black-hole binary in a quasar with optical periodicity. Nature 2015, 518, 74–76. [Google Scholar] [CrossRef] [PubMed]
- Charisi, M.; Bartos, I.; Haiman, Z.; Price-Whelan, A.M.; Graham, M.J.; Bellm, E.C.; Laher, R.R.; Márka, S. A population of short-period variable quasars from PTF as supermassive black hole binary candidates. Mon. Not. R. Astron. Soc. 2016, 463, 2145–2171. [Google Scholar] [CrossRef]
- Liu, T.; Gezari, S.; Heinis, S.; Magnier, E.A.; Burgett, W.S.; Chambers, K.; Flewelling, H.; Huber, M.; Hodapp, K.W.; Kaiser, N.; et al. A Periodically Varying Luminous Quasar at z = 2 from the Pan-STARRS1 Medium Deep Survey: A Candidate Supermassive Black Hole Binary in the Gravitational Wave-driven Regime. Astrophys. J. Lett. 2015, 803, L16. [Google Scholar] [CrossRef]
- Liu, T.; Gezari, S.; Ayers, M.; Burgett, W.; Chambers, K.; Hodapp, K.; Huber, M.E.; Kudritzki, R.P.; Metcalfe, N.; Tonry, J.; et al. Supermassive Black Hole Binary Candidates from the Pan-STARRS1 Medium Deep Survey. Astrophys. J. 2019, 884, 36. [Google Scholar] [CrossRef]
- Chen, Y.C.; Liu, X.; Liao, W.T.; Holgado, A.M.; Guo, H.; Gruendl, R.A.; Morganson, E.; Shen, Y.; Zhang, K.; Abbott, T.M.C.; et al. Candidate periodically variable quasars from the Dark Energy Survey and the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 2020, 499, 2245–2264. [Google Scholar] [CrossRef]
- Chen, Y.J.; Zhai, S.; Liu, J.R.; Guo, W.J.; Peng, Y.C.; Li, Y.R.; Songsheng, Y.Y.; Du, P.; Hu, C.; Wang, J.M. Searching for quasar candidates with periodic variations from the Zwicky Transient Facility: Results and implications. Mon. Not. R. Astron. Soc. 2024, 527, 12154–12177. [Google Scholar] [CrossRef]
- Liu, T.; Koss, M.; Blecha, L.; Ricci, C.; Trakhtenbrot, B.; Mushotzky, R.; Harrison, F.; Ichikawa, K.; Kakkad, D.; Oh, K.; et al. The BAT AGN Spectroscopic Survey. XVIII. Searching for Supermassive Black Hole Binaries in X-rays. Astrophys. J. 2020, 896, 122. [Google Scholar] [CrossRef]
- Tang, Y.; Haiman, Z.; MacFadyen, A. The late inspiral of supermassive black hole binaries with circumbinary gas discs in the LISA band. Mon. Not. R. Astron. Soc. 2018, 476, 2249–2257. [Google Scholar] [CrossRef]
- d’Ascoli, S.; Noble, S.C.; Bowen, D.B.; Campanelli, M.; Krolik, J.H.; Mewes, V. Electromagnetic Emission from Supermassive Binary Black Holes Approaching Merger. Astrophys. J. 2018, 865, 140. [Google Scholar] [CrossRef]
- Krauth, L.M.; Davelaar, J.; Haiman, Z.; Westernacher-Schneider, J.R.; Zrake, J.; MacFadyen, A. Disappearing thermal X-ray emission as a tell-tale signature of merging massive black hole binaries. Mon. Not. R. Astron. Soc. 2023, 526, 5441–5454. [Google Scholar] [CrossRef]
- Roedig, C.; Krolik, J.H.; Miller, M.C. Observational Signatures of Binary Supermassive Black Holes. Astrophys. J. 2014, 785, 115. [Google Scholar] [CrossRef]
- Farris, B.D.; Duffell, P.; MacFadyen, A.I.; Haiman, Z. Characteristic signatures in the thermal emission from accreting binary black holes. Mon. Not. R. Astron. Soc. 2015, 446, L36–L40. [Google Scholar] [CrossRef]
- Sesana, A.; Roedig, C.; Reynolds, M.T.; Dotti, M. Multimessenger astronomy with pulsar timing and X-ray observations of massive black hole binaries. Mon. Not. R. Astron. Soc. 2012, 420, 860–877. [Google Scholar] [CrossRef]
- Jovanović, P.; Borka Jovanović, V.; Borka, D.; Bogdanović, T. Composite profile of the Fe Kα spectral line emitted from a binary system of supermassive black holes. Adv. Space Res. 2014, 54, 1448–1457. [Google Scholar] [CrossRef]
- Agazie, G.; Anumarlapudi, A.; Archibald, A.M.; Baker, P.T.; Bécsy, B.; Blecha, L.; Bonilla, A.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; et al. The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background. Astrophys. J. Lett. 2023, 952, L37. [Google Scholar] [CrossRef]
- Rosado, P.A.; Sesana, A.; Gair, J. Expected properties of the first gravitational wave signal detected with pulsar timing arrays. Mon. Not. R. Astron. Soc. 2015, 451, 2417–2433. [Google Scholar] [CrossRef]
- Kelley, L.Z.; Blecha, L.; Hernquist, L.; Sesana, A.; Taylor, S.R. Single sources in the low-frequency gravitational wave sky: Properties and time to detection by pulsar timing arrays. Mon. Not. R. Astron. Soc. 2018, 477, 964–976. [Google Scholar] [CrossRef]
- AXIS Time-Domain; Multi-Messenger Science Working Group; Arcodia, R.; Bauer, F.E.; Cenko, S.B.; Dage, K.C.; Haggard, D.; Ho, W.C.G.; Kara, E.; Koss, M.; et al. Prospects for Time-Domain and Multi-Messenger Science with AXIS. arXiv 2023, arXiv:2311.07658. [Google Scholar]
- Reynolds, C.S.; Kara, E.A.; Mushotzky, R.F.; Ptak, A.; Koss, M.J.; Williams, B.J.; Allen, S.W.; Bauer, F.E.; Bautz, M.; Bogadhee, A.; et al. Overview of the advanced X-ray imaging satellite (AXIS). In Proceedings of the UV, X-ray, and Gamma-Ray Space Instrumentation for Astronomy XXIII, San Diego, CA, USA, 5 October 2023; Volume 12678, p. 126781E. [Google Scholar] [CrossRef]
- Dauser, T.; Falkner, S.; Lorenz, M.; Kirsch, C.; Peille, P.; Cucchetti, E.; Schmid, C.; Brand, T.; Oertel, M.; Smith, R.; et al. SIXTE: A generic X-ray instrument simulation toolkit. Astron. Astrophys. 2019, 630, A66. [Google Scholar] [CrossRef]
- Cappelluti, N.; Foord, A.; Marchesi, S.; Pacucci, F.; Ricarte, A.; Habouzit, M.; Vito, F.; Powell, M.; Koss, M.; Mushotzky, R.; et al. Surveying the onset and evolution of supermassive black holes at high-z with AXIS. arXiv 2023, arXiv:2311.07669. [Google Scholar]
- Gilli, R.; Comastri, A.; Hasinger, G. The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era. Astron. Astrophys. 2007, 463, 79–96. [Google Scholar] [CrossRef]
- Vito, F.; Gilli, R.; Vignali, C.; Comastri, A.; Brusa, M.; Cappelluti, N.; Iwasawa, K. The hard X-ray luminosity function of high-redshift (3 < z ≤ 5) active galactic nuclei. Mon. Not. R. Astron. Soc. 2014, 445, 3557–3574. [Google Scholar] [CrossRef]
- Kocevski, D.D.; Hasinger, G.; Brightman, M.; Nandra, K.; Georgakakis, A.; Cappelluti, N.; Civano, F.; Li, Y.; Li, Y.; Aird, J.; et al. X-UDS: The Chandra Legacy Survey of the UKIDSS Ultra Deep Survey Field. Astrophys. J. Suppl. Ser. 2018, 236, 48. [Google Scholar] [CrossRef]
- Nandra, K.; Laird, E.S.; Aird, J.A.; Salvato, M.; Georgakakis, A.; Barro, G.; Perez-Gonzalez, P.G.; Barmby, P.; Chary, R.R.; Coil, A.; et al. AEGIS-X: Deep Chandra Imaging of The Central Groth Strip. Astrophys. J. Suppl. Ser. 2015, 220, 10. [Google Scholar] [CrossRef]
- Luo, B.; Brandt, W.N.; Xue, Y.Q.; Lehmer, B.; Alexander, D.M.; Bauer, F.E.; Vito, F.; Yang, G.; Basu-Zych, A.R.; Comastri, A.; et al. The Chandra Deep Field-South Survey: 7 Ms Source Catalogs. Astrophys. J. Suppl. Ser. 2016, 228, 2. [Google Scholar] [CrossRef]
- Civano, F.; Marchesi, S.; Comastri, A.; Urry, M.C.; Elvis, M.; Cappelluti, N.; Puccetti, S.; Brusa, M.; Zamorani, G.; Hasinger, G.; et al. The Chandra COSMOS Legacy Survey: Overview and Point Source Catalog. Astrophys. J. 2016, 819, 62. [Google Scholar] [CrossRef]
- Aird, J.; Coil, A.L.; Georgakakis, A. X-rays across the galaxy population—III. The incidence of AGN as a function of star formation rate. Mon. Not. R. Astron. Soc. 2019, 484, 4360–4378. [Google Scholar] [CrossRef]
- Ventou, E.; Contini, T.; Bouché, N.; Epinat, B.; Brinchmann, J.; Bacon, R.; Inami, H.; Lam, D.; Drake, A.; Garel, T.; et al. The MUSE Hubble Ultra Deep Field Survey. IX. Evolution of galaxy merger fraction since z ≈ 6. Astron. Astrophys. 2017, 608, A9. [Google Scholar] [CrossRef]
- Volonteri, M.; Pfister, H.; Beckmann, R.; Dotti, M.; Dubois, Y.; Massonneau, W.; Musoke, G.; Tremmel, M. Dual AGN in the Horizon-AGN simulation and their link to galaxy and massive black hole mergers, with an excursus on multiple AGN. Mon. Not. R. Astron. Soc. 2022, 514, 640–656. [Google Scholar] [CrossRef]
- Chen, N.; Di Matteo, T.; Ni, Y.; Tremmel, M.; DeGraf, C.; Shen, Y.; Holgado, A.M.; Bird, S.; Croft, R.; Feng, Y. Properties and evolution of dual and offset AGN in the ASTRID simulation at z ∼ 2. Mon. Not. R. Astron. Soc. 2023, 522, 1895–1913. [Google Scholar] [CrossRef]
- Hennawi, J.F.; Strauss, M.A.; Oguri, M.; Inada, N.; Richards, G.T.; Pindor, B.; Schneider, D.P.; Becker, R.H.; Gregg, M.D.; Hall, P.B.; et al. Binary Quasars in the Sloan Digital Sky Survey: Evidence for Excess Clustering on Small Scales. Astron. J. 2006, 131, 1. [Google Scholar] [CrossRef]
- Myers, A.D.; Richards, G.T.; Brunner, R.J.; Schneider, D.P.; Strand, N.E.; Hall, P.B.; Blomquist, J.A.; York, D.G. Quasar Clustering at 25 h−1 kpc from a Complete Sample of Binaries. Astrophys. J. 2008, 678, 635–646. [Google Scholar] [CrossRef]
- Hennawi, J.F.; Myers, A.D.; Shen, Y.; Strauss, M.A.; Djorgovski, S.G.; Fan, X.; Glikman, E.; Mahabal, A.; Martin, C.L.; Richards, G.T.; et al. Binary Quasars at High Redshift. I. 24 New Quasar Pairs at z ∼ 3–4. Astrophys. J. 2010, 719, 1672–1692. [Google Scholar] [CrossRef]
- Kayo, I.; Oguri, M. Very small scale clustering of quasars from a complete quasar lens survey. Mon. Not. R. Astron. Soc. 2012, 424, 1363–1371. [Google Scholar] [CrossRef]
- Eftekharzadeh, S.; Myers, A.D.; Hennawi, J.F.; Djorgovski, S.G.; Richards, G.T.; Mahabal, A.A.; Graham, M.J. Clustering on very small scales from a large sample of confirmed quasar pairs: Does quasar clustering track from Mpc to kpc scales? Mon. Not. R. Astron. Soc. 2017, 468, 77–90. [Google Scholar] [CrossRef]
- Yue, M.; Fan, X.; Yang, J.; Wang, F. A Candidate Kiloparsec-scale Quasar Pair at z = 5.66. Astrophys. J. Lett. 2021, 921, L27. [Google Scholar] [CrossRef]
- Yue, M.; Fan, X.; Yang, J.; Wang, F. A Survey for High-redshift Gravitationally Lensed Quasars and Close Quasar Pairs. I. The Discoveries of an Intermediately Lensed Quasar and a Kiloparsec-scale Quasar Pair at z ∼ 5. Astron. J. 2023, 165, 191. [Google Scholar] [CrossRef]
- Chen, Y.C.; Liu, X.; Foord, A.; Shen, Y.; Oguri, M.; Chen, N.; Di Matteo, T.; Holgado, M.; Hwang, H.C.; Zakamska, N. A close quasar pair in a disk-disk galaxy merger at z = 2.17. Nature 2023, 616, 45–49. [Google Scholar] [CrossRef]
- Ciurlo, A.; Campbell, R.D.; Morris, M.R.; Do, T.; Ghez, A.M.; Hees, A.; Sitarski, B.N.; Kosmo O’Neil, K.; Chu, D.S.; Martinez, G.D.; et al. A population of dust-enshrouded objects orbiting the Galactic black hole. Nature 2020, 577, 337–340. [Google Scholar] [CrossRef]
- Silverman, J.D.; Tang, S.; Lee, K.G.; Hartwig, T.; Goulding, A.; Strauss, M.A.; Schramm, M.; Ding, X.; Riffel, R.A.; Fujimoto, S.; et al. Dual Supermassive Black Holes at Close Separation Revealed by the Hyper Suprime-Cam Subaru Strategic Program. Astrophys. J. 2020, 899, 154. [Google Scholar] [CrossRef]
- Shen, Y.; Hwang, H.C.; Oguri, M.; Chen, N.; Di Matteo, T.; Ni, Y.; Bird, S.; Zakamska, N.; Liu, X.; Chen, Y.C.; et al. Statistics of Galactic-scale Quasar Pairs at Cosmic Noon. Astrophys. J. 2023, 943, 38. [Google Scholar] [CrossRef]
- Foord, A.; Gültekin, K.; Runnoe, J.C.; Koss, M.J. AGN Triality of Triple Mergers: Multiwavelength Classifications. Astrophys. J. 2021, 907, 72. [Google Scholar] [CrossRef]
- Steinborn, L.K.; Dolag, K.; Comerford, J.M.; Hirschmann, M.; Remus, R.S.; Teklu, A.F. Origin and properties of dual and offset active galactic nuclei in a cosmological simulation at z = 2. Mon. Not. R. Astron. Soc. 2016, 458, 1013–1028. [Google Scholar] [CrossRef]
- Rosas-Guevara, Y.M.; Bower, R.G.; McAlpine, S.; Bonoli, S.; Tissera, P.B. The abundances and properties of Dual AGN and their host galaxies in the EAGLE simulations. Mon. Not. R. Astron. Soc. 2019, 483, 2712–2720. [Google Scholar] [CrossRef]
- Perna, M.; Arribas, S.; Lamperti, I.; Circosta, C.; Bertola, E.; Pérez-González, P.G.; D’Eugenio, F.; Übler, H.; Cresci, G.; Maiolino, R.; et al. A surprisingly high number of dual active galactic nuclei in the early Universe. arXiv 2023, arXiv:2310.03067. [Google Scholar]
- Capelo, P.R.; Dotti, M.; Volonteri, M.; Mayer, L.; Bellovary, J.M.; Shen, S. A survey of dual active galactic nuclei in simulations of galaxy mergers: Frequency and properties. Mon. Not. R. Astron. Soc. 2017, 469, 4437–4454. [Google Scholar] [CrossRef]
- Blecha, L.; Loeb, A.; Narayan, R. Double-peaked narrow-line signatures of dual supermassive black holes in galaxy merger simulations. Mon. Not. R. Astron. Soc. 2013, 429, 2594–2616. [Google Scholar] [CrossRef]
- Gold, R. Relativistic Aspects of Accreting Supermassive Black Hole Binaries in Their Natural Habitat: A Review. Galaxies 2019, 7, 63. [Google Scholar] [CrossRef]
- Bogdanović, T.; Miller, M.C.; Blecha, L. Electromagnetic counterparts to massive black-hole mergers. Living Rev. Relativ. 2022, 25, 3. [Google Scholar] [CrossRef]
- Bowen, D.B.; Mewes, V.; Noble, S.C.; Avara, M.; Campanelli, M.; Krolik, J.H. Quasi-periodicity of Supermassive Binary Black Hole Accretion Approaching Merger. Astrophys. J. 2019, 879, 76. [Google Scholar] [CrossRef]
- Noble, S.C.; Krolik, J.H.; Campanelli, M.; Zlochower, Y.; Mundim, B.C.; Nakano, H.; Zilhão, M. Mass-ratio and Magnetic Flux Dependence of Modulated Accretion from Circumbinary Disks. Astrophys. J. 2021, 922, 175. [Google Scholar] [CrossRef]
- Bowen, D.B.; Campanelli, M.; Krolik, J.H.; Mewes, V.; Noble, S.C. Relativistic Dynamics and Mass Exchange in Binary Black Hole Mini-disks. Astrophys. J. 2017, 838, 42. [Google Scholar] [CrossRef]
- Kelley, L.Z.; Haiman, Z.; Sesana, A.; Hernquist, L. Massive BH binaries as periodically variable AGN. Mon. Not. R. Astron. Soc. 2019, 485, 1579–1594. [Google Scholar] [CrossRef]
- Vaughan, S.; Uttley, P.; Markowitz, A.G.; Huppenkothen, D.; Middleton, M.J.; Alston, W.N.; Scargle, J.D.; Farr, W.M. False periodicities in quasar time-domain surveys. Mon. Not. R. Astron. Soc. 2016, 461, 3145–3152. [Google Scholar] [CrossRef]
- Severgnini, P.; Cicone, C.; Della Ceca, R.; Braito, V.; Caccianiga, A.; Ballo, L.; Campana, S.; Moretti, A.; La Parola, V.; Vignali, C.; et al. Swift data hint at a binary supermassive black hole candidate at sub-parsec separation. Mon. Not. R. Astron. Soc. 2018, 479, 3804–3813. [Google Scholar] [CrossRef]
- Serafinelli, R.; Severgnini, P.; Braito, V.; Della Ceca, R.; Vignali, C.; Ambrosino, F.; Cicone, C.; Zaino, A.; Dotti, M.; Sesana, A.; et al. Unveiling Sub-pc Supermassive Black Hole Binary Candidates in Active Galactic Nuclei. Astrophys. J. 2020, 902, 10. [Google Scholar] [CrossRef]
- Davelaar, J.; Haiman, Z. Self-lensing flares from black hole binaries: General-relativistic ray tracing of black hole binaries. Phys. Rev. D 2022, 105, 103010. [Google Scholar] [CrossRef]
- Dittmann, A.J.; Ryan, G.; Miller, M.C. The Decoupling of Binaries from Their Circumbinary Disks. Astrophys. J. Lett. 2023, 949, L30. [Google Scholar] [CrossRef]
- Saade, M.L.; Stern, D.; Brightman, M.; Haiman, Z.; Djorgovski, S.G.; D’Orazio, D.; Ford, K.E.S.; Graham, M.J.; Jun, H.D.; Kraft, R.P.; et al. Chandra Observations of Candidate Subparsec Binary Supermassive Black Holes. Astrophys. J. 2020, 900, 148. [Google Scholar] [CrossRef]
- Saade, M.L.; Brightman, M.; Stern, D.; Connor, T.; Djorgovski, S.G.; D’Orazio, D.J.; Ford, K.E.S.; Graham, M.J.; Haiman, Z.; Jun, H.D.; et al. NuSTAR Observations of Candidate Subparsec Binary Supermassive Black Holes. Astrophys. J. 2024, 966, 104. [Google Scholar] [CrossRef]
- Foord, A.; Gültekin, K.; Reynolds, M.; Ayers, M.; Liu, T.; Gezari, S.; Runnoe, J. A Multi-wavelength Analysis of Binary-AGN Candidate PSO J334.2028+01.4075. Astrophys. J. 2017, 851, 106. [Google Scholar] [CrossRef]
- Foord, A.; Liu, X.; Gültekin, K.; Whitley, K.; Shi, F.; Chen, Y.C. Investigating the Accretion Nature of Binary Supermassive Black Hole Candidate SDSS J025214.67-002813.7. Astrophys. J. 2022, 927, 3. [Google Scholar] [CrossRef]
- Krolik, J.H.; Volonteri, M.; Dubois, Y.; Devriendt, J. Population Estimates for Electromagnetically Distinguishable Supermassive Binary Black Holes. Astrophys. J. 2019, 879, 110. [Google Scholar] [CrossRef]
- Westernacher-Schneider, J.R.; Zrake, J.; MacFadyen, A.; Haiman, Z. Multiband light curves from eccentric accreting supermassive black hole binaries. Phys. Rev. D 2022, 106, 103010. [Google Scholar] [CrossRef]
- Kelley, L.Z.; D’Orazio, D.J.; Di Stefano, R. Gravitational self-lensing in populations of massive black hole binaries. Mon. Not. R. Astron. Soc. 2021, 508, 2524–2536. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Bundy, K.; Hernquist, L.; Ellis, R.S. Observational Evidence for the Coevolution of Galaxy Mergers, Quasars, and the Blue/Red Galaxy Transition. Astrophys. J. 2007, 659, 976–996. [Google Scholar] [CrossRef]
- Foord, A.; Gültekin, K.; Nevin, R.; Comerford, J.M.; Hodges-Kluck, E.; Barrows, R.S.; Goulding, A.D.; Greene, J.E. A Second Look at 12 Candidate Dual AGNs using BAYMAX. Astrophys. J. 2020, 892, 29. [Google Scholar] [CrossRef]
- Haiman, Z.; Kocsis, B.; Menou, K. The Population of Viscosity- and Gravitational Wave-driven Supermassive Black Hole Binaries Among Luminous Active Galactic Nuclei. Astrophys. J. 2009, 700, 1952–1969. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foord, A.; Cappelluti, N.; Liu, T.; Volonteri, M.; Habouzit, M.; Pacucci, F.; Marchesi, S.; Chen, N.; Di Matteo, T.; Mallick, L.; et al. Tracking Supermassive Black Hole Mergers from kpc to sub-pc Scales with AXIS. Universe 2024, 10, 237. https://doi.org/10.3390/universe10060237
Foord A, Cappelluti N, Liu T, Volonteri M, Habouzit M, Pacucci F, Marchesi S, Chen N, Di Matteo T, Mallick L, et al. Tracking Supermassive Black Hole Mergers from kpc to sub-pc Scales with AXIS. Universe. 2024; 10(6):237. https://doi.org/10.3390/universe10060237
Chicago/Turabian StyleFoord, Adi, Nico Cappelluti, Tingting Liu, Marta Volonteri, Melanie Habouzit, Fabio Pacucci, Stefano Marchesi, Nianyi Chen, Tiziana Di Matteo, Labani Mallick, and et al. 2024. "Tracking Supermassive Black Hole Mergers from kpc to sub-pc Scales with AXIS" Universe 10, no. 6: 237. https://doi.org/10.3390/universe10060237
APA StyleFoord, A., Cappelluti, N., Liu, T., Volonteri, M., Habouzit, M., Pacucci, F., Marchesi, S., Chen, N., Di Matteo, T., Mallick, L., & Koss, M. (2024). Tracking Supermassive Black Hole Mergers from kpc to sub-pc Scales with AXIS. Universe, 10(6), 237. https://doi.org/10.3390/universe10060237