Stellar Classification with Vision Transformer and SDSS Photometric Images
Abstract
:1. Introduction
2. Data
3. Methods
3.1. Introduction to Vision Transformer
3.2. ViT for Stellar Classification
- The image is resized from 64 × 64 to 224 × 224.
- The image is then divided into 9 patches and transformed into patch embedding vectors through a linear projection layer.
- The patch embedding vectors are added to the position embedding vectors to obtain new embedding vectors, which serve as the input for the Transformer encoder.
- The Transformer encoder processes the embedding vectors based on self-attention, including steps such as normalization (Norm), multi-head attention, and multi-layer perceptron (MLP), to produce output embedding vectors.
- The output embedding vectors are fed into a classification head (MLP head) to obtain the predicted probabilities for each category of the sample.
3.3. Training Strategy for ViT
4. Results and Analysis
4.1. Evaluation Metrics
4.2. Comparison of Classification Performance
4.3. Performance on Training Datasets of Varied Sizes
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | The latest release is DR 18, for the fifth phase of SDSS. |
2 | http://skyserver.sdss.org/dr16/en/help/docs/api.aspx#imgcutout, accessed on 1 September 2023. |
3 | Accessed on 11 April 2023 via http://www.image-net.org. |
References
- Sharma, K.; Kembhavi, A.; Kembhavi, A.; Sivarani, T.; Abraham, S.; Vaghmare, K. Application of Convolutional Neural Networks for Stellar Spectral Classification. Mon. Not. R. Astron. Soc. 2020, 491, 2280–2300. [Google Scholar] [CrossRef]
- Garrison, R.F.; MacConnel, D.J.; Straizys, V.; Keenan, P.C.; Jaschek, C.; Slettebak, A. Stellar Classification. In Reports on Astronomy; Wayman, P.A., Ed.; Springer: Dordrecht, The Netherlands, 1982; pp. 621–632. [Google Scholar] [CrossRef]
- Abdurro’uf; Accetta, K.; Aerts, C.; Aguirre, V.S.; Ahumada, R.; Ajgaonkar, N.; Ak, N.F.; Alam, S.; Prieto, C.A.; Almeida, A.; et al. The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data. ApJS 2022, 259, 35. [Google Scholar] [CrossRef]
- Brown, T.M.; Latham, D.W.; Everett, M.E.; Esquerdo, G.A. Kepler Input Catalog: Photometric Calibration and Stellar Classification. AJ 2011, 142, 112. [Google Scholar] [CrossRef]
- Kim, E.J.; Brunner, R.J. Star–Galaxy Classification Using Deep Convolutional Neural Networks. Mon. Not. R. Astron. Soc. 2017, 464, 4463–4475. [Google Scholar] [CrossRef]
- Zhu, X.P.; Dai, J.M.; Bian, C.J.; Chen, Y.; Chen, S.; Hu, C. Galaxy Morphology Classification with Deep Convolutional Neural Networks. Astrophys. Space Sci. 2019, 364, 55. [Google Scholar] [CrossRef]
- Osborn, H.P.; Ansdell, M.; Ioannou, Y.; Sasdelli, M.; Angerhausen, D.; Caldwell, D.; Jenkins, J.M.; Räissi, C.; Smith, J.C. Rapid Classification of TESS Planet Candidates with Convolutional Neural Networks. A&A 2020, 633, A53. [Google Scholar] [CrossRef]
- Lu, Y.K.; Qiu, B.; Luo, A.L.; Kong, X.; Jiang, X.; Guo, X.; Wang, L. Using CFSVM Model to Classify Stars from Three-Colour Images. Mon. Not. R. Astron. Soc. 2021, 507, 4095–4101. [Google Scholar] [CrossRef]
- Farias, H.; Ortiz, D.; Damke, G.; Jaque Arancibia, M.; Solar, M. Mask Galaxy: Morphological Segmentation of Galaxies. Astron. Comput. 2020, 33, 100420. [Google Scholar] [CrossRef]
- Jia, P.; Liu, Q.; Sun, Y. Detection and Classification of Astronomical Targets with Deep Neural Networks in Wide-field Small Aperture Telescopes. AJ 2020, 159, 212. [Google Scholar] [CrossRef]
- He, Z.; Qiu, B.; Luo, A.L.; Shi, J.; Kong, X.; Jiang, X. Deep Learning Applications Based on SDSS Photometric Data: Detection and Classification of Sources. Mon. Not. R. Astron. Soc. 2021, 508, 2039–2052. [Google Scholar] [CrossRef]
- D’Isanto, A.; Polsterer, K.L. Photometric Redshift Estimation via Deep Learning - Generalized and Pre-Classification-Less, Image Based, Fully Probabilistic Redshifts. A&A 2018, 609, A111. [Google Scholar] [CrossRef]
- Wu, J.F.; Boada, S. Using Convolutional Neural Networks to Predict Galaxy Metallicity from Three-Colour Images. Mon. Not. R. Astron. Soc. 2019, 484, 4683–4694. [Google Scholar] [CrossRef]
- Schuldt, S.; Suyu, S.H.; Cañameras, R.; Taubenberger, S.; Meinhardt, T.; Leal-Taixé, L.; Hsieh, B.C. Photometric Redshift Estimation with a Convolutional Neural Network: NetZ. A&A 2021, 651, A55. [Google Scholar] [CrossRef]
- Shi, J.H.; Qiu, B.; Luo, A.L.; He, Z.D.; Kong, X.; Jiang, X. Stellar Classification with Convolutional Neural Networks and Photometric Images: A New Catalogue of 50 Million SDSS Stars without Spectra. Mon. Not. R. Astron. Soc. 2023, 520, 2269–2280. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929. [Google Scholar]
- Chen, C.F.R.; Fan, Q.; Panda, R. CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 357–366. [Google Scholar]
- Hwang, S.Y.; Sabiu, C.G.; Park, I.; Hong, S.E. The Universe Is Worth 643 Pixels: Convolution Neural Network and Vision Transformers for Cosmology. J. Cosmol. Astropart. Phys. 2023, 2023, 75. [Google Scholar] [CrossRef]
- Cao, J.; Xu, T.; Deng, Y.; Deng, L.; Yang, M.; Liu, Z.; Zhou, W. Galaxy Morphology Classification Based on Convolutional Vision Transformer (CvT). Astron. Astrophys. 2024, 683, A42. [Google Scholar] [CrossRef]
- Lupton, R.; Blanton, M.R.; Fekete, G.; Hogg, D.W.; O’Mullane, W.; Szalay, A.; Wherry, N. Preparing Red-Green-Blue Images from CCD Data. Publ. Astron. Soc. Pac. 2004, 116, 133–137. [Google Scholar] [CrossRef]
- Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef]
- Lin, J.Y.Y.; Liao, S.M.; Huang, H.J.; Kuo, W.T.; Ou, O.H.M. Galaxy Morphological Classification with Efficient Vision Transformer. arXiv 2022, arXiv:2110.01024. [Google Scholar]
- Donoso-Oliva, C.; Becker, I.; Protopapas, P.; Cabrera-Vives, G.; Vishnu, M.; Vardhan, H. ASTROMER—A Transformer-Based Embedding for the Representation of Light Curves. A&A 2023, 670, A54. [Google Scholar] [CrossRef]
- Pan, J.S.; Ting, Y.S.; Yu, J. Astroconformer: The Prospects of Analyzing Stellar Light Curves with Transformer-Based Deep Learning Models. Mon. Not. R. Astron. Soc. 2024, 528, stae068. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef]
- He, K.; Girshick, R.; Dollar, P. Rethinking ImageNet Pre-Training. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 4918–4927. [Google Scholar]
- Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Loshchilov, I.; Hutter, F. SGDR: Stochastic Gradient Descent with Warm Restarts. In Proceedings of the 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017; Conference Track Proceedings. OpenReview.net: Boston, MA, USA, 2017. [Google Scholar]
- Dieleman, S.; Willett, K.W.; Dambre, J. Rotation-Invariant Convolutional Neural Networks for Galaxy Morphology Prediction. Mon. Not. R. Astron. Soc. 2015, 450, 1441–1459. [Google Scholar] [CrossRef]
- Khramtsov, V.; Dobrycheva, D.V.; Vasylenko, M.Y.; Akhmetov, V.S. Deep Learning for Morphological Classification of Galaxies from SDSS. Odessa Astron. Publ. 2019, 32, 21–23. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
Method | F1 | Accuracy | ||||||
---|---|---|---|---|---|---|---|---|
O | B | A | F | G | K | M | ||
Stellar-ViT | 0.709 | 0.733 | 0.770 | 0.842 | 0.883 | 0.954 | 0.99 | 0.863 |
SCNet [15] | 0.714 | 0.737 | 0.767 | 0.824 | 0.877 | 0.96 | 0.99 | 0.861 |
Stellar-ViT-gri | 0.626 | 0.709 | 0.727 | 0.812 | 0.849 | 0.949 | 0.983 | 0.839 |
SCNet-gri [15] | 0.586 | 0.684 | 0.746 | 0.794 | 0.836 | 0.94 | 0.98 | 0.830 |
VGGNet19 [32] | 0.585 | 0.675 | 0.711 | 0.782 | 0.836 | 0.95 | 0.98 | 0.823 |
ResNet34 [33] | 0.577 | 0.685 | 0.692 | 0.795 | 0.844 | 0.94 | 0.98 | 0.822 |
DenseNet169 [34] | 0.563 | 0.686 | 0.679 | 0.797 | 0.835 | 0.94 | 0.97 | 0.819 |
EfficientNet-B3 [35] | 0.577 | 0.688 | 0.679 | 0.781 | 0.815 | 0.94 | 0.98 | 0.814 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Li, X. Stellar Classification with Vision Transformer and SDSS Photometric Images. Universe 2024, 10, 214. https://doi.org/10.3390/universe10050214
Yang Y, Li X. Stellar Classification with Vision Transformer and SDSS Photometric Images. Universe. 2024; 10(5):214. https://doi.org/10.3390/universe10050214
Chicago/Turabian StyleYang, Yi, and Xin Li. 2024. "Stellar Classification with Vision Transformer and SDSS Photometric Images" Universe 10, no. 5: 214. https://doi.org/10.3390/universe10050214
APA StyleYang, Y., & Li, X. (2024). Stellar Classification with Vision Transformer and SDSS Photometric Images. Universe, 10(5), 214. https://doi.org/10.3390/universe10050214