On the Copenhagen Interpretation of Quantum Measurement
Abstract
:1. Introduction
1.1. What Is the Quantum Measurement Problem?
1.2. Models of Quantum Measurement
2. The Energetics of Measurement
2.1. The Energetics of Classical Measurement
2.2. The Energetics of Quantum Measurement
2.3. The Measurement Interaction Energy
3. The Resultant Random Walk Leads to the Emergence of Born’s Probabilistic Interpretation
4. Discussion
4.1. A Natural Definition of a Measuring Device/System
- That the lowest energy state be restricted by the value of the measured observable;
- That the interaction between the measured state and the measuring system be shorter than the timescale of fluctuations of the superposition.
4.2. Natural Emergence of Quantum Collapse and Born’s Interpretation
4.3. Other Considerations
4.3.1. Quantum Non-Locality
4.3.2. Is the Walk Random?
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Busch, P.; Lahti, P.J.; Mittelstaedt, P. The Quantum Theory of Measurement; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Neumann, J.V. Mathematical Foundations of Quantum Mechanics; Number 2; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- Yin, J.; Cao, Y.; Li, Y.H.; Liao, S.K.; Zhang, L.; Ren, J.G.; Cai, W.Q.; Liu, W.Y.; Li, B.; Dai, H.; et al. Satellite-based entanglement distribution over 1200 km. Science 2017, 356, 1140–1144. [Google Scholar] [CrossRef] [PubMed]
- Fein, Y.; Geyer, P.; Zwick, P.; Kiałka, F.; Pedalino, S.; Mayor, M.; Gerlich, S.; Arndt, M. Quantum superposition of molecules beyond 25 kDa. Nat. Phys. 2019, 15, 1242–1245. [Google Scholar] [CrossRef]
- Eibenberger, S.; Gerlich, S.; Arndt, M.; Mayor, M.; Tüxen, J. Matter–wave interference of particles selected from a molecular library with masses exceeding 10000 amu. Phys. Chem. Chem. Phys. 2013, 15, 14696–14700. [Google Scholar] [CrossRef] [PubMed]
- Kotler, S.; Peterson, G.; Shojaee, E.; Lecocq, F.; Cicak, K.; Kwiatkowski, A.; Geller, S.; Glancy, S.; Knill, E.; Simmonds, R.; et al. Direct observation of deterministic macroscopic entanglement. Science 2021, 372, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Everett, H.; DeWitt, B.S.; Graham, N. The Many-Worlds Interpretation of Quantum Mechanics; Princeton Series in Physics; Princeton University Press: Princeton, NJ, USA, 1973. [Google Scholar]
- Penrose, R. On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 1996, 28, 581–600. [Google Scholar] [CrossRef]
- Wheeler, J.; Zurek, W. Quantum Theory and Measurement; Princeton Legacy Library, Princeton University Press: Princeton, NJ, USA, 2014. [Google Scholar]
- Stein, H. The Everett interpretation of quantum mechanics: Many worlds or none? Noûs 1984, 18, 635–652. [Google Scholar] [CrossRef]
- Kent, A. Against many-worlds interpretations. Int. J. Mod. Phys. A 1990, 5, 1745–1762. [Google Scholar] [CrossRef]
- Vaidman, L. Probability in the many-worlds interpretation of quantum mechanics. In Probability in Physics; Springer: Berlin/Heidelberg, Germany, 2012; pp. 299–311. [Google Scholar]
- Hemmo, M.; Pitowsky, I. Quantum probability and many worlds. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2007, 38, 333–350. [Google Scholar] [CrossRef]
- Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M. Understanding quantum measurement from the solution of dynamical models. Phys. Rep. 2013, 525, 1–166. [Google Scholar] [CrossRef]
- Budiyono, A. A stochastic model for quantum measurement. J. Stat. Mech. Theory Exp. 2013, 2013, P11007. [Google Scholar] [CrossRef]
- Aharonov, Y.; Anandan, J.; Vaidman, L. Meaning of the wave function. Phys. Rev. A 1993, 47, 4616. [Google Scholar] [CrossRef] [PubMed]
- Aharonov, Y.; Albert, D.; Casher, A.; Vaidman, L. Novel Properties of Preselected and Postselected Ensemblesa. Ann. N. Y. Acad. Sci. 1986, 480, 417–421. [Google Scholar] [CrossRef]
- Huygens, C. De Ratiociniis in Ludo Aleae; Ex Officinia J. Elsevirii: Leiden, The Netherlands, 1980. [Google Scholar]
- Unruh, W. Reality and measurement of the wave function. Phys. Rev. A 1994, 50, 882. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walker, M.L. On the Copenhagen Interpretation of Quantum Measurement. Universe 2024, 10, 113. https://doi.org/10.3390/universe10030113
Walker ML. On the Copenhagen Interpretation of Quantum Measurement. Universe. 2024; 10(3):113. https://doi.org/10.3390/universe10030113
Chicago/Turabian StyleWalker, Michael L. 2024. "On the Copenhagen Interpretation of Quantum Measurement" Universe 10, no. 3: 113. https://doi.org/10.3390/universe10030113
APA StyleWalker, M. L. (2024). On the Copenhagen Interpretation of Quantum Measurement. Universe, 10(3), 113. https://doi.org/10.3390/universe10030113