Spinning Systems in Quantum Mechanics: An Overview and New Trends
Abstract
:1. Introduction
2. Classical Rotating Systems
The Sagnac Effect
3. Nonrelativistic Quantum Mechanics in a Rotating Frame
3.1. The Schrödinger Equation in a Rotating Frame for the One-Dimensional Case
3.2. Analogy with Aharonov–Bohm Effect
3.3. The Schrödinger Equation for Electrons Confined in a Rotating Disk
3.4. Effects of Rotation in Two-Dimensional Quantum Rings
3.5. The Pauli–Schrödinger Equation in a Rotating Frame
3.6. Other Examples of Rotating Nonrelativistic Systems
4. Relativistic Quantum Mechanics in a Rotating Frame
4.1. Equivalence Principle and Rotations
4.2. The Dirac Equation in a Rotating Frame
4.3. Applications in High Energy Physics and Gravitation
4.4. Applications in Low-Dimensional Materials
5. Topological Defects and Rotating Effects in Quantum Systems
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chernodub, M.N. Rotational Diode: Clockwise/Counterclockwise Asymmetry in Conducting and Mechanical Properties of Rotating (semi)Conductors. Symmetry 2021, 13, 1569. [Google Scholar] [CrossRef]
- Wang, B.; Vuković, L.; Král, P. Nanoscale Rotary Motors Driven by Electron Tunneling. Phys. Rev. Lett. 2008, 101, 186808. [Google Scholar] [CrossRef] [PubMed]
- Tu, Q.; Yang, Q.; Wang, H.; Li, S. Rotating carbon nanotube membrane filter for water desalination. Sci. Rep. 2016, 6, 26183. [Google Scholar] [CrossRef] [PubMed]
- Stickler, B.A.; Hornberger, K.; Kim, M. Quantum rotations of nanoparticles. Nat. Rev. Phys. 2021, 3, 589–597. [Google Scholar] [CrossRef]
- Arbunich, J.; Nenciu, I.; Sparber, C. Stability and instability properties of rotating Bose–Einstein condensates. Lett. Math. Phys. 2019, 109, 1415–1432. [Google Scholar] [CrossRef]
- Sakaguchi, H.; Malomed, B.A. Localized matter-wave patterns with attractive interaction in rotating potentials. Phys. Rev. A 2008, 78, 063606. [Google Scholar] [CrossRef]
- Guo, Y.; Luo, Y.; Peng, S. Existence and Asymptotic Behavior of Ground States for Rotating Bose–Einstein Condensates. SIAM J. Math. Anal. 2023, 55, 773–804. [Google Scholar] [CrossRef]
- Koch, C.P.; Lemeshko, M.; Sugny, D. Quantum control of molecular rotation. Rev. Mod. Phys. 2019, 91, 035005. [Google Scholar] [CrossRef]
- Guvendi, A.; Dogan, S.G. Vector bosons in the rotating frame of negative curvature wormholes. Gen. Relativ. Gravit. 2024, 56, 32. [Google Scholar] [CrossRef]
- Santos, L.C.N.; Barros, C.C. Rotational effects on the Casimir energy in the space–time with one extra compactified dimension. Int. J. Mod. Phys. A 2018, 33, 1850122. [Google Scholar] [CrossRef]
- Švančara, P.; Smaniotto, P.; Solidoro, L.; MacDonald, J.F.; Patrick, S.; Gregory, R.; Barenghi, C.F.; Weinfurtner, S. Rotating curved spacetime signatures from a giant quantum vortex. Nature 2024, 628, 66–70. [Google Scholar] [CrossRef]
- Silverman, M. Rotational degeneracy breaking of atomic substates: A composite quantum system in a noninertial reference frame. Gen. Relativ. Gravit. 1989, 21, 517–532. [Google Scholar] [CrossRef]
- Guvendi, A.; Hassanabadi, H. Noninertial effects on a composite system. Int. J. Mod. Phys. A 2021, 36, 2150253. [Google Scholar] [CrossRef]
- Maniharsingh, K. Particle creation in slowly-rotating Robertson-Walker universes. Astrophys. Space Sci. 1991, 182, 141–153. [Google Scholar] [CrossRef]
- Vieira, M.; de M. Carvalho, A.M.; Furtado, C. Aharonov-Bohm effect for light in a moving medium. Phys. Rev. A 2014, 90, 012105. [Google Scholar] [CrossRef]
- Toroš, M.; Cromb, M.; Paternostro, M.; Faccio, D. Generation of Entanglement from Mechanical Rotation. Phys. Rev. Lett. 2022, 129, 260401. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshits, E.M. Mechanics, 3rd ed.; Course of Theoretical Physics; Pergamon Press: Oxford, UK, 1976; Volume 1, 169p. [Google Scholar]
- Sagnac, G. Sur la preuve de la réalité de l’éther lumineux par l’expérience de l’interférographe tournant. CR Acad. Sci. 1913, 157, 1410–1413. [Google Scholar]
- Laue, M. Zum versuch von f. harress. Ann. Der Phys. 1920, 367, 448–463. [Google Scholar] [CrossRef]
- Pascoli, G. The Sagnac effect and its interpretation by Paul Langevin. Comptes Rendus. Phys. 2017, 18, 563–569. [Google Scholar] [CrossRef]
- Grøn, Ø.; Hervik, S. Einstein’s General Theory of Relativity: With Modern Applications in Cosmology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Stedman, G. Ring-laser tests of fundamental physics and geophysics. Rep. Prog. Phys. 1997, 60, 615. [Google Scholar] [CrossRef]
- Matos, G.C.; Souza, R.d.M.e.; Neto, P.A.M.; Impens, F.m.c. Quantum Vacuum Sagnac Effect. Phys. Rev. Lett. 2021, 127, 270401. [Google Scholar] [CrossRef] [PubMed]
- Gautier, R.; Guessoum, M.; Sidorenkov, L.A.; Bouton, Q.; Landragin, A.; Geiger, R. Accurate measurement of the Sagnac effect for matter waves. Sci. Adv. 2022, 8, eabn8009. [Google Scholar] [CrossRef] [PubMed]
- Aharonov, Y.; Bohm, D. Significance of Electromagnetic Potentials in the Quantum Theory. Phys. Rev. 1959, 115, 485–491. [Google Scholar] [CrossRef]
- Griffiths, D.J. Introduction to Quantum Mechanics, 2nd ed.; Addison-Wesley: San Francisco, CA, USA, 2005. [Google Scholar]
- Pereira, L.F.C.; Cunha, M.M.; Silva, E.O. 1D Quantum ring: A Toy Model Describing Noninertial Effects on Electronic States, Persistent Current and Magnetization. Few-Body Syst. 2022, 63, 58. [Google Scholar] [CrossRef]
- Barnett, S.J. Magnetization by Rotation. Phys. Rev. 1915, 6, 239–270. [Google Scholar] [CrossRef]
- Weder, R. The electric Aharonov-Bohm effect. J. Math. Phys. 2011, 52, 052109. [Google Scholar] [CrossRef]
- Dartora, C.; Nobrega, K.; Cabrera, G. Optical analogue of the Aharonov–Bohm effect using anisotropic media. Phys. Lett. A 2011, 375, 2254–2257. [Google Scholar] [CrossRef]
- Bezerra, V.B. Gravitational analogs of the Aharonov–Bohm effect. J. Math. Phys. 1989, 30, 2895–2899. [Google Scholar] [CrossRef]
- Davidowitz, H.; Steinberg, V. On an analog of the Aharonov-Bohm effect in superfluid helium. Europhys. Lett. (EPL) 1997, 38, 297–300. [Google Scholar] [CrossRef]
- Aharonov, Y.; Casher, A. Topological Quantum Effects for Neutral Particles. Phys. Rev. Lett. 1984, 53, 319–321. [Google Scholar] [CrossRef]
- König, M.; Tschetschetkin, A.; Hankiewicz, E.M.; Sinova, J.; Hock, V.; Daumer, V.; Schäfer, M.; Becker, C.R.; Buhmann, H.; Molenkamp, L.W. Direct Observation of the Aharonov-Casher Phase. Phys. Rev. Lett. 2006, 96, 076804. [Google Scholar] [CrossRef] [PubMed]
- Bakke, K.; Furtado, C. The analogue of the Aharonov-Bohm effect for bound states for neutral particles. Mod. Phys. Lett. A 2011, 26, 1331–1341. [Google Scholar] [CrossRef]
- Bell, M.T.; Zhang, W.; Ioffe, L.B.; Gershenson, M.E. Spectroscopic Evidence of the Aharonov-Casher Effect in a Cooper Pair Box. Phys. Rev. Lett. 2016, 116, 107002. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, B.H.W.; Nienhuis, G. Sagnac effect as viewed by a co-rotating observer. Quantum Opt. J. Eur. Opt. Soc. Part B 1990, 2, 13. [Google Scholar] [CrossRef]
- Aharonov, Y.; Carmi, G. Quantum aspects of the equivalence principle. Found. Phys. 1973, 3, 493–498. [Google Scholar] [CrossRef]
- Harris, J.H.; Semon, M.D. A review of the Aharonov-Carmi thought experiment concerning the inertial and electromagnetic vector potentials. Found. Phys. 1980, 10, 151–162. [Google Scholar] [CrossRef]
- Shen, J.Q.; He, S.; Zhuang, F. Aharonov-Carmi effect and energy shift of valence electrons in rotating C60 molecules. Eur. Phys. J. D-At. Mol. Opt. Plasma Phys. 2005, 33, 35–38. [Google Scholar] [CrossRef]
- Johnson, B.L. Inertial forces and the Hall effect. Am. J. Phys. 2000, 68, 649–653. [Google Scholar] [CrossRef]
- Brandão, J.E.; Moraes, F.; Cunha, M.; Lima, J.R.; Filgueiras, C. Inertial-Hall effect: The influence of rotation on the Hall conductivity. Results Phys. 2015, 5, 55–59. [Google Scholar] [CrossRef]
- Tan, W.C.; Inkson, J.C. Electron states in a two-dimensional ring - an exactly soluble model. Semicond. Sci. Technol. 1996, 11, 1635. [Google Scholar] [CrossRef]
- Pereira, L.F.C.; Silva, E.O. Modification of Landau Levels in a 2D Ring Due to Rotation Effects and Edge States. Ann. Der Phys. 2023, 535, 2200371. [Google Scholar] [CrossRef]
- Lima, D.F.; dos S. Azevedo, F.; Pereira, L.F.C.; Filgueiras, C.; Silva, E.O. Optical and electronic properties of a two-dimensional quantum ring under rotating effects. Ann. Phys. 2023, 459, 169547. [Google Scholar] [CrossRef]
- Pereira, C.M.O.; Azevedo, F.d.S.; Pereira, L.F.C.; Silva, E.O. Rotating effects on the photoionization cross-section of a 2D quantum ring. Commun. Theor. Phys. 2024, 76, 105701. [Google Scholar] [CrossRef]
- Ghanbari, A. Rotating effects on the thermophysical properties of a two-dimensional GaAs quantum ring. Commun. Theor. Phys. 2024, 76, 065504. [Google Scholar] [CrossRef]
- Lima, D.F.; Cunha, M.M.; Pereira, L.F.C.; Silva, E.O. Bound States for the Spin-1/2 Aharonov-Bohm Problem in a Rotating Frame. Universe 2021, 7, 457. [Google Scholar] [CrossRef]
- Reed, M.; Simon, B. Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness; Academic Press: New York, NY, USA; London, UK, 1975. [Google Scholar]
- Matsuo, M.; Ieda, J.; Saitoh, E.; Maekawa, S. Effects of Mechanical Rotation on Spin Currents. Phys. Rev. Lett. 2011, 106, 076601. [Google Scholar] [CrossRef]
- da Costa, R.C.T. Quantum mechanics of a constrained particle. Phys. Rev. A 1981, 23, 1982–1987. [Google Scholar] [CrossRef]
- da Costa, R.C.T. Constraints in quantum mechanics. Phys. Rev. A 1982, 25, 2893–2900. [Google Scholar] [CrossRef]
- Aoki, H.; Suezawa, H. Landau quantization of electrons on a sphere. Phys. Rev. A 1992, 46, R1163–R1166. [Google Scholar] [CrossRef]
- Lima, J.R.; de Pádua Santos, A.; Cunha, M.M.; Moraes, F. Effects of rotation on Landau states of electrons on a spherical shell. Phys. Lett. A 2018, 382, 2499–2505. [Google Scholar] [CrossRef]
- Atanasov, V.; Dandoloff, R. The curvature of the rotating disk and its quantum manifestation. Phys. Scr. 2015, 90, 065001. [Google Scholar] [CrossRef]
- Cunha, M.M.; Lima, J.R.F.; Moraes, F.; Fumeron, S.; Berche, B. Spin current generation and control in carbon nanotubes by combining rotation and magnetic field. J. Phys. Condens. Matter 2020, 32, 185301. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Wang, L.; Zhao, H.; Wang, Y.L.; Wang, J. The spin-1/2 particle on a rotating curved surface in time-varying fields. Results Phys. 2022, 42, 105974. [Google Scholar] [CrossRef]
- Landry, A.; Hammad, F.; Saadati, R. The Quantum Hall Effect under the Influence of Gravity and Inertia: A Unified Approach. Universe 2024, 10, 136. [Google Scholar] [CrossRef]
- Fonseca, I.; Bakke, K. Rotating effects on an atom with a magnetic quadrupole moment confined to a quantum ring. Eur. Phys. J. Plus 2016, 131, 67. [Google Scholar] [CrossRef]
- Nelson, R.A. Generalized Lorentz transformation for an accelerated, rotating frame of reference. J. Math. Phys. 1987, 28, 2379–2383. [Google Scholar] [CrossRef]
- Brill, D.R.; Cohen, J.M. Rotating masses and their effect on inertial frames. Phys. Rev. 1966, 143, 1011. [Google Scholar] [CrossRef]
- Detweiler, S. Klein-Gordon equation and rotating black holes. Phys. Rev. D 1980, 22, 2323. [Google Scholar] [CrossRef]
- Tamburini, F.; Thidé, B.; Molina-Terriza, G.; Anzolin, G. Twisting of light around rotating black holes. Nat. Phys. 2011, 7, 195–197. [Google Scholar] [CrossRef]
- Altamirano, N.; Kubizňák, D.; Mann, R.B.; Sherkatghanad, Z. Thermodynamics of rotating black holes and black rings: Phase transitions and thermodynamic volume. Galaxies 2014, 2, 89–159. [Google Scholar] [CrossRef]
- Pappas, G. An accurate metric for the spacetime around rotating neutron stars. Mon. Not. R. Astron. Soc. 2017, 466, 4381–4394. [Google Scholar] [CrossRef]
- Pesonen, J. Eckart frame vibration-rotation Hamiltonians: Contravariant metric tensor. J. Chem. Phys. 2014, 140, 074101. [Google Scholar] [CrossRef] [PubMed]
- Iyer, B. Dirac field theory in rotating coordinates. Phys. Rev. D 1982, 26, 1900. [Google Scholar] [CrossRef]
- Bermudez, A.; Martin-Delgado, M.; Solano, E. Exact mapping of the 2+ 1 Dirac oscillator onto the Jaynes-Cummings model: Ion-trap experimental proposal. Phys. Rev. A—At. Mol. Opt. Phys. 2007, 76, 041801. [Google Scholar] [CrossRef]
- Yang, J.; Piekarewicz, J. Dirac oscillator: An alternative basis for nuclear structure calculations. Phys. Rev. C 2020, 102, 054308. [Google Scholar] [CrossRef]
- Bakke, K. Rotating effects on the Dirac oscillator in the cosmic string spacetime. Gen. Relativ. Gravit. 2013, 45, 1847–1859. [Google Scholar] [CrossRef]
- Pacheco, M.; Landim, R.; Almeida, C. One-dimensional Dirac oscillator in a thermal bath. Phys. Lett. A 2003, 311, 93–96. [Google Scholar] [CrossRef]
- Myers, N.M.; Abah, O.; Deffner, S. Quantum Otto engines at relativistic energies. New J. Phys. 2021, 23, 105001. [Google Scholar] [CrossRef]
- Strange, P.; Ryder, L.H. The Dirac oscillator in a rotating frame of reference. Phys. Lett. A 2016, 380, 3465–3468. [Google Scholar] [CrossRef]
- Hehl, F.W.; Ni, W.T. Inertial effects of a Dirac particle. Phys. Rev. D 1990, 42, 2045–2048. [Google Scholar] [CrossRef]
- Varjú, K.; Ryder, L.H. Comparing the effects of curved space and noninertial frames on spin 1/2 particles. Phys. Rev. D 2000, 62, 024016. [Google Scholar] [CrossRef]
- Dayi, O.F.; Kilinçarslan, E. Semiclassical transport equations of Dirac particles in rotating frames. Phys. Rev. D 2020, 102, 045015. [Google Scholar] [CrossRef]
- Zhang, C.M.; Beesham, A. Rotation intrinsic spin coupling: The parallelism description. Mod. Phys. Lett. A 2001, 16, 2319–2326. [Google Scholar] [CrossRef]
- Chowdhury, D.; Basu, B. The effect of inertia on the Dirac electron, the spin Hall current and the momentum space Berry curvature. Ann. Phys. 2013, 329, 166–178. [Google Scholar] [CrossRef]
- Papini, G. Spin currents in non-inertial frames. Phys. Lett. A 2013, 377, 960–963. [Google Scholar] [CrossRef]
- Vilenkin, A. Quantum field theory at finite temperature in a rotating system. Phys. Rev. D 1980, 21, 2260. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef]
- Tang, C.; Yan, W.; Zheng, Y.; Li, G.; Li, L. Dirac equation description of the electronic states and magnetic properties of a square graphene quantum dot. Nanotechnology 2008, 19, 435401. [Google Scholar] [CrossRef]
- Park, C.H.; Son, Y.W.; Yang, L.; Cohen, M.L.; Louie, S.G. Landau Levels and Quantum Hall Effect in Graphene Superlattices. Phys. Rev. Lett. 2009, 103, 046808. [Google Scholar] [CrossRef]
- Castro-Villarreal, P.; Ruiz-Sánchez, R. Pseudomagnetic field in curved graphene. Phys. Rev. B 2017, 95, 125432. [Google Scholar] [CrossRef]
- Gallerati, A. Graphene, Dirac equation and analogue gravity. Phys. Scr. 2022, 97, 064005. [Google Scholar] [CrossRef]
- Johnson, R.D.; Yannoni, C.S.; Dorn, H.C.; Salem, J.R.; Bethune, D.S. C60 Rotation in the Solid State: Dynamics of a Faceted Spherical Top. Science 1992, 255, 1235–1238. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Tsui, O.K.C.; Xu, Y.; Li, H.; Xiao, X. Effect of C60 Molecular Rotation on Nanotribology. Phys. Rev. Lett. 2003, 90, 146102. [Google Scholar] [CrossRef] [PubMed]
- Bubenchikov, A.M.; Bubenchikov, M.A.; Mamontov, D.V.; Lun-Fu, A.V. Md-Simulation of Fullerene Rotations in Molecular Crystal Fullerite. Crystals 2019, 9, 496. [Google Scholar] [CrossRef]
- Bubenchikov, A.M.; Bubenchikov, M.A.; Lun-Fu, A.V.; Ovchinnikov, V.A. Gyroscopic effects in fullerite crystal upon deformation. Eur. Phys. J. Plus 2021, 136, 388. [Google Scholar] [CrossRef]
- Shen, J.Q.; He, S.L. Geometric phases of electrons due to spin-rotation coupling in rotating C60 molecules. Phys. Rev. B 2003, 68, 195421. [Google Scholar] [CrossRef]
- Zhang, G.P.; Bai, Y.H.; George, T.F. Optically and thermally driven huge lattice orbital and spin angular momenta from spinning fullerenes. Phys. Rev. B 2021, 104, L100302. [Google Scholar] [CrossRef]
- Lima, J.R.; Brandão, J.; Cunha, M.M.; Moraes, F. Effects of Rotation in the Energy Spectrum of C60. Eur. Phys. J. D 2014, 68, 94. [Google Scholar] [CrossRef]
- Lima, J.R.; Moraes, F. The combined effect of inertial and electromagnetic fields in a fullerene molecule. Eur. Phys. J. B 2015, 88, 63. [Google Scholar] [CrossRef]
- Cavalcante, E.; Carvalho, J.; Furtado, C. Description for rotating C60 fullerenes via an analogue of Gödel-type metric. Eur. Phys. J. Plus 2016, 131, 288. [Google Scholar] [CrossRef]
- Král, P.; Sadeghpour, H.R. Laser spinning of nanotubes: A path to fast-rotating microdevices. Phys. Rev. B 2002, 65, 161401. [Google Scholar] [CrossRef]
- Cai, K.; Yin, H.; Qin, Q.H.; Li, Y. Self-excited oscillation of rotating double-walled carbon nanotubes. Nano Lett. 2014, 14, 2558–2562. [Google Scholar] [CrossRef] [PubMed]
- Cunha, M.M.; Brandão, J.; Lima, J.R.; Moraes, F. Spin splitting at the Fermi level in carbon nanotubes in the absence of a magnetic field. Eur. Phys. J. B 2015, 88, 288. [Google Scholar] [CrossRef]
- Durrer, R. Topological defects in cosmology. New Astron. Rev. 1999, 43, 111–156. [Google Scholar] [CrossRef]
- Fumeron, S.; Berche, B. Introduction to topological defects: From liquid crystals to particle physics. Eur. Phys. J. Spec. Top. 2023, 232, 1813–1833. [Google Scholar] [CrossRef]
- Kivotides, D. Superfluid helium-4 hydrodynamics with discrete topological defects. Phys. Rev. Fluids 2018, 3, 104701. [Google Scholar] [CrossRef]
- Dodgson, M.J.W.; Moore, M.A. Topological defects in the Abrikosov lattice of vortices in type-II superconductors. Phys. Rev. B 1995, 51, 11887–11902. [Google Scholar] [CrossRef]
- Lin, Z.K.; Wang, Q.; Liu, Y.; Xue, H.; Zhang, B.; Chong, Y.; Jiang, J.H. Topological phenomena at defects in acoustic, photonic and solid-state lattices. Nat. Rev. Phys. 2023, 5, 483–495. [Google Scholar] [CrossRef]
- Braverman, L.; Scheibner, C.; VanSaders, B.; Vitelli, V. Topological Defects in Solids with Odd Elasticity. Phys. Rev. Lett. 2021, 127, 268001. [Google Scholar] [CrossRef]
- Katanaev, M.O. Geometric theory of defects. Physics-Uspekhi 2005, 48, 675. [Google Scholar] [CrossRef]
- Fumeron, S.; Berche, B.; Moraes, F. Geometric theory of topological defects: Methodological developments and new trends. Liq. Cryst. Rev. 2021, 9, 85–110. [Google Scholar] [CrossRef]
- Fumeron, S.; Pereira, E.; Moraes, F. Modeling heat conduction in the presence of a dislocation. Int. J. Therm. Sci. 2013, 67, 64–71. [Google Scholar] [CrossRef]
- Katanaev, M.O.; Volovich, I.V. Theory of defects in solids and three-dimensional gravity. Ann. Phys. 1992, 216, 1–28. [Google Scholar] [CrossRef]
- Furtado, C.; Moraes, F.; de M. Carvalho, A. Geometric phases in graphitic cones. Phys. Lett. A 2008, 372, 5368–5371. [Google Scholar] [CrossRef]
- Dantas, L.; Furtado, C.; Silva Netto, A. Quantum ring in a rotating frame in the presence of a topological defect. Phys. Lett. A 2015, 379, 11–15. [Google Scholar] [CrossRef]
- Brandão, J.; Filgueiras, C.; Rojas, M.; Moraes, F. Inertial and topological effects on a 2D electron gas. J. Phys. Commun. 2017, 1, 035004. [Google Scholar] [CrossRef]
- Rojas, M.; Filgueiras, C.; Brandão, J.; Moraes, F. Topological and non inertial effects on the interband light absorption. Phys. Lett. A 2018, 382, 432–439. [Google Scholar] [CrossRef]
- Oliveira, R. Topological and noninertial effects in an Aharonov–Bohm ring. Gen. Relativ. Gravit. 2019, 51, 120. [Google Scholar] [CrossRef]
- Oliveira, R. Noninertial and spin effects on the 2D Dirac oscillator in the magnetic cosmic string background. Gen. Relativ. Gravit. 2020, 52, 88. [Google Scholar] [CrossRef]
- Cuzinatto, R.; De Montigny, M.; Pompeia, P. Non-commutativity and non-inertial effects on the Dirac oscillator in a cosmic string space–time. Gen. Relativ. Gravit. 2019, 51, 107. [Google Scholar] [CrossRef]
- Garcia, G.Q.; Cavalcante, E.; de M. Carvalho, A.M.; Furtado, C. The geometric theory of defects description for c 60 fullerenes in a rotating frame. Eur. Phys. J. Plus 2017, 132, 183. [Google Scholar] [CrossRef]
- Guvendi, A.; Dogan, S.G. Effect of internal magnetic flux on a relativistic spin-1 oscillator in the spinning point source-generated spacetime. Mod. Phys. Lett. A 2023, 38, 2350075. [Google Scholar] [CrossRef]
- Yoon, J.; Pramanik, T.; Park, B.K.; Cho, Y.W.; Lee, S.Y.; Kim, S.; Han, S.W.; Moon, S.; Kim, Y.S. Experimental comparison of various quantum key distribution protocols under reference frame rotation and fluctuation. Opt. Commun. 2019, 441, 64–68. [Google Scholar] [CrossRef]
- Mäkinen, J.; Autti, S.; Heikkinen, P.; Hosio, J.; Hänninen, R.; L’vov, V.; Walmsley, P.; Zavjalov, V.; Eltsov, V. Rotating quantum wave turbulence. Nat. Phys. 2023, 19, 898–903. [Google Scholar] [CrossRef]
- Restuccia, S.; Toroš, M.; Gibson, G.M.; Ulbricht, H.; Faccio, D.; Padgett, M.J. Photon Bunching in a Rotating Reference Frame. Phys. Rev. Lett. 2019, 123, 110401. [Google Scholar] [CrossRef]
- Mustafa, O. PDM Klein–Gordon particles in Gödel-type Som–Raychaudhuri cosmic string spacetime background. Eur. Phys. J. Plus 2023, 138, 21. [Google Scholar] [CrossRef]
- Boumali, A.; Bouzenada, A.; Messai, N.; Mustafa, O. PDM-Coulombic effects of non-inertial cosmic string on a Klein-Gordon oscillator. Rev. Mex. Física 2024, 70, 050802. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brito, E.; Brandão, J.E.; Cunha, M.M. Spinning Systems in Quantum Mechanics: An Overview and New Trends. Universe 2024, 10, 389. https://doi.org/10.3390/universe10100389
Brito E, Brandão JE, Cunha MM. Spinning Systems in Quantum Mechanics: An Overview and New Trends. Universe. 2024; 10(10):389. https://doi.org/10.3390/universe10100389
Chicago/Turabian StyleBrito, E., Júlio E. Brandão, and Márcio M. Cunha. 2024. "Spinning Systems in Quantum Mechanics: An Overview and New Trends" Universe 10, no. 10: 389. https://doi.org/10.3390/universe10100389
APA StyleBrito, E., Brandão, J. E., & Cunha, M. M. (2024). Spinning Systems in Quantum Mechanics: An Overview and New Trends. Universe, 10(10), 389. https://doi.org/10.3390/universe10100389