Finite Time Path Field Theory Perturbative Methods for Local Quantum Spin Chain Quenches
Abstract
:1. Introduction
2. The Model
3. Loschmidt Echo
- +
- Overlap at time t between two quantum states evolved from the same initial state at . One is evolved by the perturbed Hamiltonian , and the other by the unperturbed Hamiltonian . In this case, is a measure of sensitivity of time evolution of to perturbations and is referred to also as fidelity.
- +
- Overlap between the initial state and the state evolved in time, first by in the interval , and then by in the interval . For Hamiltonians and with time reversal symmetry; this second part of time evolution in is equivalent to time reversed backward evolution of the state from time t to by . Hence, it is a measure of imperfect recovery of the initial state, i.e., irreversibility generated by the differences in forward and backward time evolution due to interactions with the environment and dephasing.
- +
- Time evolution operator from to time t in the interaction picture is . In case of an eigenstate of the unperturbed Hamiltonian , LE is the overlap between the initial and time evolved state. In that context, it can be used as a measure of revival of the initial state.
4. Perturbative Calculations
5. Projected Functions and Resummation
- +
- WT of a projected function (22) isIt is evident that is retarded, like .
- +
- +
- Remark: It is hard to see how matrix , given by (31), can be diagonalizable for all values of . However, for the purpose of evaluating (32), it is important that matrix , which comprises only of nonsingular “on shell” elements of the matrix ,
- +
- Assumption 1: We assume that, if all eigenvalues of the matrix are within the radius of convergence of infinite geometric series , the validity of (29), (30), and (32) can be extended outside the radius of convergence by methods of analytic continuation. After integrations over and in (32), parts that contain only nonsingular “on shell” elements defining the matrix are resummed separately.
- +
- Assumption 2: Parts of (32) that contain contributions from singular “on shell” elements of the matrix are treated by assuming that singular points are also inherited by its matrix function . This is certainly true for all poles of finite order, because they are within the radius of convergence of the nonsingular “on shell” part . Proof is given in Appendix B. The same procedure is followed in integration over .
6. Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Diagonalization of Hamiltonian
- +
- The Hamiltonian is divided in two parity sectors corresponding to eigenspaces of parity operator with eigenvalues equal to or ,
- +
- +
- Nondegenerate ground state of (A5) is represented as a Bogoliubov vacuum. For N even and , and also for N odd and , ground state is a state of positive parity . It is a Bogliubov vacuum, meaning thatFor N odd and , the ground state is a state of negative parity . It is also a Bogoliubov vacuum,
Appendix B. Poles and Residues of the Matrix Function R(A(p0, δh, N))
References
- Sengupta, K.; Powell, S.; Sachdev, S. Quench dynamics across quantum critical points. Phys. Rev. A 2004, 69, 053616. [Google Scholar] [CrossRef]
- Silva, A. The statistics of the work done on a quantum critical system by quenching a control parameter. Phys. Rev. Lett. 2008, 101, 120603. [Google Scholar] [CrossRef]
- Fagotti, M.; Calabrese, P. Evolution of entanglement entropy following a quantum quench: Analytic results for the XY chain in a transverse magnetic field. Phys. Rev. A 2008, 78, 010306. [Google Scholar] [CrossRef]
- Rossini, D.; Silva, A.; Mussardo, G.; Santoro, G. Effective thermal dynamics following a quantum quench in a spin chain. Phys. Rev. Lett. 2009, 102, 127204. [Google Scholar] [CrossRef] [PubMed]
- Rossini, D.; Suzuki, S.; Mussardo, G.; Santoro, G.E.; Silva, A. Long time dynamics following a quench in an integrable quantum spin chain: Local versus non-local operators and effective thermal behaviour. Phys. Rev. B 2010, 82, 144302. [Google Scholar] [CrossRef]
- Venuti, L.C.; Zanardi, P. Unitary equilibrations: Probability distribution of the Loschmidt echo. Phys. Rev. A 2010, 81, 022113. [Google Scholar] [CrossRef]
- Gambassi, A.; Silva, A. Statistics of the Work in Quantum Quenches, Universality and the Critical Casimir Effect. arXiv 2011, arXiv:1106.2671v1. [Google Scholar]
- Guo, H.L.; Liu, Z.; Fan, H.; Chen, S. Correlation properties of anisotropic XY model with a sudden quench. Eur. Phys. J. B 2011, 79, 503. [Google Scholar] [CrossRef]
- Canovi, E.; Rossini, D.; Fazio, R.; Santoro, G.E.; Silva, A. Quantum Quenches, Thermalization and Many-Body Localization. Phys. Rev. B 2011, 83, 094431. [Google Scholar] [CrossRef]
- Venuti, L.C.; Jacobson, N.T.; Santra, S.; Zanardi, P. Exact Infinite-Time Statistics of the Loschmidt Echo for a Quantum Quench. Phys. Rev. Lett. 2011, 107, 010403. [Google Scholar] [CrossRef]
- Calabrese, P.; Essler, F.H.L.; Fagotti, M. Quantum Quench in the Transverse Field Ising Chain. Phys. Rev. Lett. 2011, 106, 227203. [Google Scholar] [CrossRef] [PubMed]
- Iglói, F.; Rieger, H. Long-Range correlations in the nonequilibrium quantum relaxation of a spin chain. Phys. Rev. Lett. 2000, 85, 3233. [Google Scholar] [CrossRef] [PubMed]
- Iglói, F.; Rieger, H. Quantum relaxation after a quench in systems with boundaries. Phys. Rev. Lett. 2011, 106, 035701. [Google Scholar] [CrossRef] [PubMed]
- Foini, L.; Cugliandolo, L.F.; Gambassi, A. Fluctuation-dissipation relations and critical quenches in the transverse field Ising chain. Phys. Rev. B 2011, 84, 212404. [Google Scholar] [CrossRef]
- Rieger, H.; Iglói, F. Semiclassical theory for quantum quenches in finite transverse Ising chains. Phys. Rev. B 2011, 84, 165117. [Google Scholar] [CrossRef]
- Polkovnikov, A.; Sengupta, K.; Silva, A.; Vengalattore, M. Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys. 2011, 83, 863. [Google Scholar] [CrossRef]
- Schuricht, D.; Essler, F.H.L. Dynamics in the Ising field theory after a quantum quench. J. Stat. Mech. 2012, 2012, P04017. [Google Scholar] [CrossRef]
- Calabrese, P.; Essler, F.H.L.; Fagotti, M. Quantum quench in the transverse field Ising chain: I. Time evolution of order parameter correlators. J. Stat. Mech. 2012, 2012, P07016. [Google Scholar] [CrossRef]
- Calabrese, P.; Essler, F.H.L.; Fagotti, M. Quantum quenches in the transverse field Ising chain: II. Stationary state properties. J. Stat. Mech. 2012, 2012, P07022. [Google Scholar] [CrossRef]
- Fagotti, M. Finite-size corrections versus relaxation after a sudden quench. Phys. Rev. B 2013, 87, 165106. [Google Scholar] [CrossRef]
- Heyl, M.; Polkovnikov, A.; Kehrein, S. Dynamical Quantum Phase Transitions in the Transverse-Field Ising Model. Phys. Rev. Lett. 2013, 110, 135704. [Google Scholar] [CrossRef] [PubMed]
- Essler, F.H.L.; Fagotti, M. Quench dynamics and relaxation in isolated integrable quantum spin chains. J. Stat. Mech. 2016, 2016, 064002. [Google Scholar] [CrossRef]
- Mitra, A. Correlation functions in the prethermalized regime after a quantum quench of a spin chain. Phys. Rev. B 2013, 87, 205109. [Google Scholar] [CrossRef]
- Marcuzzi, M.; Marino, J.; Gambassi, A.; Silva, A. Prethermalization in a Nonintegrable Quantum Spin Chain after a Quench. Phys. Rev. Lett. 2013, 111, 197203. [Google Scholar] [CrossRef] [PubMed]
- Bertini, B.; Fagotti, M. Pre-relaxation in weakly interacting models. J. Stat. Mech. 2015, 2015, P07012. [Google Scholar] [CrossRef]
- Mitra, A. Quantum Quench Dynamics. Annu. Rev. Condens. Matter Phys. 2018, 9, 245. [Google Scholar] [CrossRef]
- Nandkishore, R.; Huse, D.A. Many-Body Localization and Thermalization in Quantum Statistical Mechanics. Annu. Rev. Condens. Matter Phys. 2015, 6, 15. [Google Scholar] [CrossRef]
- Yang, Z.-C.; Hamma, A.; Giampaolo, S.M.; Mucciolo, E.R.; Chamon, C. Entanglement complexity in quantum many-body dynamics, thermalization, and localization. Phys. Rev. B 2017, 96, 020408. [Google Scholar] [CrossRef]
- Žunkovič, B.; Silva, A.; Fabrizio, M. Dynamical phase transitions and Loschmidt echo in the infinite-range XY model. Phil. Trans. R. Soc. A 2016, 374, 20150160. [Google Scholar] [CrossRef]
- Jafari, R. Dynamical Quantum Phase Transition and Quasi Particle Excitation. Sci. Rep. 2019, 9, 2871. [Google Scholar] [CrossRef]
- Paul, S.; Titum, P.; Maghrebi, M. Hidden quantum criticality and entanglement in quench dynamics. Phys. Rev. Res. 2024, 6, L032003. [Google Scholar] [CrossRef]
- Ding, C. Dynamical quantum phase transition from a critical quantum quench. Phys. Rev. B 2020, 102, 060409. [Google Scholar] [CrossRef]
- Porta, S.; Cavaliere, F.; Sasseti, M.; Ziani, N.T. Topological classification of dynamical quantum phase transitions in the xy chain. Sci. Rep. 2020, 10, 12766. [Google Scholar] [CrossRef] [PubMed]
- Lupo, C.; Schiró, M. Transient Loschmidt echo in quenched Ising chains. Phys. Rev. B 2016, 94, 014310. [Google Scholar] [CrossRef]
- Goussev, A.; Jalabert, R.A.; Pastawski, H.M.; Wisniacki, D.A. Loschmidt echo. Scholarpedia 2012, 7, 11687. [Google Scholar]
- Torre, G.; Marić, V.; Kuić, D.; Franchini, F.; Giampaolo, S.M. Odd thermodynamic limit for the Loschmidt echo. Phys. Rev. B 2022, 105, 184424. [Google Scholar] [CrossRef]
- Catalano, A.G.; Giampaolo, S.M.; Morsch, O.; Giovannetti, V.; Franchini, F. Frustrating Quantum Batteries. PRX Quantum 2024, 5, 030319. [Google Scholar] [CrossRef]
- Rossini, D.; Calarco, T.; Giovannetti, V.; Montangero, S.; Fazio, R. Decoherence induced by interacting quantum spin baths. Phys. Rev. A 2007, 75, 032333. [Google Scholar] [CrossRef]
- Goold, J.; Fogarty, T.; Gullo, N.L.; Paternostro, M.; Busch, T. Orthogonality catastrophe as a consequence of qubit embedding in an ultracold Fermi gas. Phys. Rev. A 2011, 84, 063632. [Google Scholar] [CrossRef]
- Knap, M.; Shashi, A.; Nishida, Y.; Imambekov, A.; Abanin, D.A.; Demler, E. Time-Dependent Impurity in Ultracold Fermions: Orthogonality Catastrophe and Beyond. Phys. Rev. X 2012, 2, 041020. [Google Scholar] [CrossRef]
- Knap, M.; Kantian, A.; Giamarchi, T.; Bloch, I.; Lukin, M.D.; Demler, E. Probing Real-Space and Time-Resolved Correlation Functions with Many-Body Ramsey Interferometry. Phys. Rev. Lett. 2013, 111, 147205. [Google Scholar] [CrossRef] [PubMed]
- Dóra, B.; Pollmann, F.; Fortágh, J.; Zaránd, G. Loschmidt Echo and the Many-Body Orthogonality Catastrophe in a Qubit-Coupled Luttinger Liquid. Phys. Rev. Lett. 2013, 111, 046402. [Google Scholar] [CrossRef] [PubMed]
- Dorner, R.; Clark, S.R.; Heaney, L.; Fazio, R.; Goold, J.; Vedral, V. Extracting Quantum Work Statistics and Fluctuation Theorems by Single-Qubit Interferometry. Phys. Rev. Lett. 2013, 110, 230601. [Google Scholar] [CrossRef]
- Mazzola, L.; Chiara, G.D.; Paternostro, M. Measuring the Characteristic Function of the Work Distribution. Phys. Rev. Lett. 2013, 110, 230602. [Google Scholar] [CrossRef]
- Lieb, E.; Schultz, T.; Mattis, D. Two Soluble Models of an Antiferromagnetic Chain. Ann. Phys. 1961, 16, 407. [Google Scholar] [CrossRef]
- Franchini, F. An Introduction to Integrable Techniques for One-Dimensional Quantum Systems; Lecture Notes in Physics; Springer: Cham, Switzerland, 2017; Volume 940. [Google Scholar]
- Lancaster, T.; Blundell, S.J. Quantum Field Theory for the Gifted Amateur; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Le Bellac, M. Thermal Field Theory; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Coleman, P. Introduction to Many-Body Physics; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Dadić, I.; Klabučar, D.; Kuić, D. Direct Photons from Hot Quark Matter in Renormalized Finite-Time-Path QED. Particles 2020, 3, 676–692. [Google Scholar] [CrossRef]
- Dadić, I.; Klabučar, D. Neutrino Oscillations in Finite Time Path Out-of-Equilibrium Thermal Field Theory. Symmetry 2023, 15, 1970. [Google Scholar] [CrossRef]
- Dadić, I.; Klabučar, D. Causality and Renormalization in Finite-Time-Path Out-of-Equilibrium ϕ3 QFT. Particles 2019, 2, 92–102. [Google Scholar] [CrossRef]
- Dadić, I. Out of equilibrium thermal field theories: Finite time after switching on the interaction and Wigner transforms of projected functions. Phys. Rev. D 2000, 63, 025011. [Google Scholar] [CrossRef]
- Damski, B.; Rams, M.M. Exact results for fidelity susceptibility of the quantum Ising model: The interplay between parity, system size, and magnetic field. J. Phys. A Math. Theor. 2014, 47, 025303. [Google Scholar] [CrossRef]
- Dong, J.-J.; Li, P.; Chen, Q.-H. The a-cycle problem for transverse Ising ring. J. Stat. Mech. 2016, 2016, P113102. [Google Scholar] [CrossRef]
- Dong, J.-J.; Li, P. The a-cycle problem in xy model with ring frustration. Mod. Phys. Lett. B 2017, 31, 1750061. [Google Scholar] [CrossRef]
- Giampaolo, S.M.; Ramos, F.B.; Franchini, F. The Frustration in being Odd: Area Law Violation in Local Systems. J. Phys. Commun. 2019, 3, 081001. [Google Scholar] [CrossRef]
- Marić, V.; Giampaolo, S.M.; Kuić, D.; Franchini, F. The Frustration of being Odd: How Boundary Conditions can destroy Local Order. New J. Phys. 2020, 22, 083024. [Google Scholar] [CrossRef]
- Marić, V.; Giampaolo, S.M.; Franchini, F. Quantum phase transition induced by topological frustration. Commun. Phys. 2020, 3, 220. [Google Scholar] [CrossRef]
- Marić, V.; Franchini, F.; Kuić, D.; Giampaolo, S.M. Resilience of the topological phases to frustration. Sci. Rep. 2021, 11, 6508. [Google Scholar] [CrossRef]
- Torre, G.; Marić, V.; Franchini, F.; Giampaolo, S.M. Effects of defects in the XY chain with frustrated boundary conditions. Phys. Rev. B 2021, 103, 014429. [Google Scholar] [CrossRef]
- Marić, V.; Giampaolo, S.M.; Franchini, F. Fate of local order in topologically frustrated spin chains. Phys. Rev. B 2022, 105, 064408. [Google Scholar] [CrossRef]
- Marić, V.; Torre, G.; Franchini, F.; Giampaolo, S.M. Topological Frustration can modify the nature of a Quantum Phase Transition. SciPost Phys. 2022, 12, 075. [Google Scholar] [CrossRef]
- Odavić, J.; Haug, T.; Torre, G.; Hamma, A.; Franchini, F.; Giampaolo, S.M. Complexity of frustration: A new source of non-local non-stabilizerness. SciPost Phys. 2023, 15, 131. [Google Scholar] [CrossRef]
- Jordan, P.; Wigner, E. Über das Paulische Äquivalenzverbot. Z. Phys. 1928, 47, 631. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuić, D.; Knapp, A.; Šaponja-Milutinović, D. Finite Time Path Field Theory Perturbative Methods for Local Quantum Spin Chain Quenches. Universe 2024, 10, 384. https://doi.org/10.3390/universe10100384
Kuić D, Knapp A, Šaponja-Milutinović D. Finite Time Path Field Theory Perturbative Methods for Local Quantum Spin Chain Quenches. Universe. 2024; 10(10):384. https://doi.org/10.3390/universe10100384
Chicago/Turabian StyleKuić, Domagoj, Alemka Knapp, and Diana Šaponja-Milutinović. 2024. "Finite Time Path Field Theory Perturbative Methods for Local Quantum Spin Chain Quenches" Universe 10, no. 10: 384. https://doi.org/10.3390/universe10100384
APA StyleKuić, D., Knapp, A., & Šaponja-Milutinović, D. (2024). Finite Time Path Field Theory Perturbative Methods for Local Quantum Spin Chain Quenches. Universe, 10(10), 384. https://doi.org/10.3390/universe10100384