A Review of Axion Lasing in Astrophysics
Abstract
1. Introduction
2. Axion Masers
2.1. Maser Luminosity
2.2. Parametric Resonance
3. Lasing Axions as Particles
3.1. Spontaneous Emission
3.2. Stimulated Emission Rate Equations
3.3. A Simple Axion Cluster Model
3.4. Parameters and Conditions
3.5. Discussion
3.6. Application—Superradiant Clouds
3.7. Non-Spherical Cluster and Static Spacetime Modification
4. Comments
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
KSVZ | Kim, Shifman, Vainshtein, Zakharov |
DFSZ | Dine, Fischler, Srednicki, Zhitnitsky |
BH | black hole |
BLASTs | black hole lasers powered by axion superradiant instabilities |
pBHs | primordial black holes |
FRB | fast radio burst |
IGRB | isotropic gamma-ray background |
References
- Peccei, R.D.; Quinn, H.R. CP Conservation in the Presence of Instantons. Phys. Rev. Lett. 1977, 38, 1440–1443. [Google Scholar] [CrossRef]
- Weinberg, S. A New Light Boson? Phys. Rev. Lett. 1978, 40, 223–226. [Google Scholar] [CrossRef]
- Barshay, S.; Faissner, H.; Rodenberg, R.; De Witt, H. Coherent Conversion of Very Light Pseudoscalar Bosons. Phys. Rev. Lett. 1981, 46, 1361–1364. [Google Scholar] [CrossRef]
- Barroso, A.; Mukhopadhyay, N.C. Axions: To be or not to be? Phys. Lett. B 1981, 106, 91–94. [Google Scholar] [CrossRef]
- Kim, J.E. Weak Interaction Singlet and Strong CP Invariance. Phys. Rev. Lett. 1979, 43, 103. [Google Scholar] [CrossRef]
- Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I. Can Confinement Ensure Natural CP Invariance of Strong Interactions? Nucl. Phys. B 1980, 166, 493–506. [Google Scholar] [CrossRef]
- Dine, M.; Fischler, W.; Srednicki, M. A Simple Solution to the Strong CP Problem with a Harmless Axion. Phys. Lett. B 1981, 104, 199–202. [Google Scholar] [CrossRef]
- Zhitnitsky, A.R. On Possible Suppression of the Axion Hadron Interactions. Sov. J. Nucl. Phys. 1980, 31, 260. (In Russian) [Google Scholar]
- di Cortona, G.G.; Hardy, E.; Vega, J.P.; Villadoro, G. The QCD axion, precisely. JHEP 2016, 2016, 34. [Google Scholar] [CrossRef]
- Cheng, S.L.; Geng, C.Q.; Ni, W.T. Axion—Photon couplings in invisible axion models. Phys. Rev. D 1995, 52, 3132–3135. [Google Scholar] [CrossRef]
- Sikivie, P. Experimental Tests of the Invisible Axion. Phys. Rev. Lett. 1983, 51, 1415–1417, Erratum in Phys. Rev. Lett. 1984, 52, 695. [Google Scholar] [CrossRef]
- Kim, J.E. Light Pseudoscalars, Particle Physics and Cosmology. Phys. Rept. 1987, 150, 1–177. [Google Scholar] [CrossRef]
- Raffelt, G.G. Astrophysical methods to constrain axions and other novel particle phenomena. Phys. Rept. 1990, 198, 1–113. [Google Scholar] [CrossRef]
- Marsh, D.J.E. Axion Cosmology. Phys. Rept. 2016, 643, 1–79. [Google Scholar] [CrossRef]
- Braaten, E.; Zhang, H. Colloquium: The physics of axion stars. Rev. Mod. Phys. 2019, 91, 041002. [Google Scholar] [CrossRef]
- Sikivie, P. Invisible Axion Search Methods. Rev. Mod. Phys. 2021, 93, 015004. [Google Scholar] [CrossRef]
- Kolb, E.W.; Tkachev, I.I. Axion miniclusters and Bose stars. Phys. Rev. Lett. 1993, 71, 3051–3054. [Google Scholar] [CrossRef] [PubMed]
- Kolb, E.W.; Tkachev, I.I. Nonlinear axion dynamics and formation of cosmological pseudosolitons. Phys. Rev. D 1994, 49, 5040–5051. [Google Scholar] [CrossRef]
- Braaten, E.; Mohapatra, A.; Zhang, H. Dense Axion Stars. Phys. Rev. Lett. 2016, 117, 121801. [Google Scholar] [CrossRef]
- Tkachev, I.I. Coherent scalar field oscillations forming compact astrophysical objects. Sov. Astron. Lett. 1986, 12, 305–308. [Google Scholar]
- Kephart, T.W.; Weiler, T.J. Luminous axion clusters. Phys. Rev. Lett. 1987, 58, 171. [Google Scholar] [CrossRef] [PubMed]
- Rosa, J.G.; Kephart, T.W. Stimulated Axion Decay in Superradiant Clouds around Primordial Black Holes. Phys. Rev. Lett. 2018, 120, 231102. [Google Scholar] [CrossRef]
- Kibble, T.W.B. Topology of Cosmic Domains and Strings. J. Phys. A 1976, 9, 1387–1398. [Google Scholar] [CrossRef]
- Tkachev, I.I. An Axionic Laser in the Center of a Galaxy? Phys. Lett. B 1987, 191, 41–45. [Google Scholar] [CrossRef]
- Sato, H. Cosmic Strings and Rotation Velocity of Spiral Galaxies. Mod. Phys. Lett. A 1986, 1, 9. [Google Scholar] [CrossRef]
- Silk, J.; Vilenkin, A. Cosmic Strings and Galaxy Formation. Phys. Rev. Lett. 1984, 53, 1700–1703. [Google Scholar] [CrossRef]
- Braaten, E.; Mohapatra, A.; Zhang, H. Emission of Photons and Relativistic Axions from Axion Stars. Phys. Rev. D 2017, 96, 031901. [Google Scholar] [CrossRef]
- Tkachev, I.I. Fast Radio Bursts and Axion Miniclusters. JETP Lett. 2015, 101, 1–6. [Google Scholar] [CrossRef]
- Guendelman, E.I. Localized Axion Photon States in a Strong Magnetic Field. Phys. Lett. B 2008, 662, 227–230. [Google Scholar] [CrossRef]
- Levkov, D.G.; Panin, A.G.; Tkachev, I.I. Radio-emission of axion stars. Phys. Rev. D 2020, 102, 023501. [Google Scholar] [CrossRef]
- Sikivie, P.; Yang, Q. Bose-Einstein Condensation of Dark Matter Axions. Phys. Rev. Lett. 2009, 103, 111301. [Google Scholar] [CrossRef] [PubMed]
- Erken, O.; Sikivie, P.; Tam, H.; Yang, Q. Cosmic axion thermalization. Phys. Rev. D 2012, 85, 063520. [Google Scholar] [CrossRef]
- Hertzberg, M.P.; Schiappacasse, E.D. Dark Matter Axion Clump Resonance of Photons. JCAP 2018, 11, 004. [Google Scholar] [CrossRef]
- Schiappacasse, E.D.; Hertzberg, M.P. Analysis of Dark Matter Axion Clumps with Spherical Symmetry. JCAP 2018, 01, 037, Erratum in JCAP 2018, 03, E01. [Google Scholar] [CrossRef]
- Hertzberg, M.P.; Schiappacasse, E.D. Scalar dark matter clumps with angular momentum. JCAP 2018, 08, 028. [Google Scholar] [CrossRef]
- Kephart, T.W.; Weiler, T.J. Stimulated radiation from axion cluster evolution. Phys. Rev. D 1995, 52, 3226–3238. [Google Scholar] [CrossRef]
- Kephart, T.W.; Weiler, T.J. A model of lasing axion clusters. Nucl. Phys. B Proc. Suppl. 1999, 72, 54–57. [Google Scholar] [CrossRef]
- Fridman, A.M.; Polyachenko, V.L. Physics of Gravitating Systems; Springer Science+Business Media: New York, NY, USA, 1984. [Google Scholar] [CrossRef]
- Kaplan, D.B. Opening the Axion Window. Nucl. Phys. B 1985, 260, 215–226. [Google Scholar] [CrossRef]
- Brito, R.; Cardoso, V.; Pani, P. Superradiance: New Frontiers in Black Hole Physics; Lecture Notes in Physics; Springer Nature: Cham, Switzerland, 2020; Volume 906, pp. 1–237. ISBN 978-3-319-18999-4/978-3-319-19000-6/978-3-030-46621-3/978-3-030-46622-0. [Google Scholar] [CrossRef]
- Rosa, J.G. Testing black hole superradiance with pulsar companions. Phys. Lett. B 2015, 749, 226–230. [Google Scholar] [CrossRef]
- Rosa, J.G. Superradiance in the sky. Phys. Rev. D 2017, 95, 064017. [Google Scholar] [CrossRef]
- Leite, L.C.S.; Dolan, S.R.; Crispino, L.C.B. Absorption of electromagnetic and gravitational waves by Kerr black holes. Phys. Lett. B 2017, 774, 130–134. [Google Scholar] [CrossRef]
- Carr, B.J.; Hawking, S.W. Black holes in the early Universe. Mon. Not. Roy. Astron. Soc. 1974, 168, 399–415. [Google Scholar] [CrossRef]
- Lorimer, D.R.; Bailes, M.; McLaughlin, M.A.; Narkevic, D.J.; Crawford, F. A bright millisecond radio burst of extragalactic origin. Science 2007, 318, 777. [Google Scholar] [CrossRef] [PubMed]
- Thornton, D.; Stappers, B.; Bailes, M.; Barsdell, B.R.; Bates, S.D.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Champion, D.J.; Coster, P.; et al. A Population of Fast Radio Bursts at Cosmological Distances. Science 2013, 341, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Petroff, E.; Barr, E.D.; Jameson, A.; Keane, E.F.; Bailes, M.; Kramer, M.; Morello, V.; Tabbara, D.; van Straten, W. FRBCAT: The Fast Radio Burst Catalogue. Publ. Astron. Soc. Austral. 2016, 33, e045. [Google Scholar] [CrossRef]
- Spitler, L.G.; Scholz, P.; Hessels, J.W.T.; Bogdanov, S.; Brazier, A.; Camilo, F.; Chatterjee, S.; Cordes, J.M.; Crawford, F.; Deneva, J.; et al. A Repeating Fast Radio Burst. Nature 2016, 531, 202. [Google Scholar] [CrossRef]
- Chatterjee, S.; Law, C.J.; Wharton, R.S.; Burke-Spolaor, S.; Hessels, J.W.T.; Bower, G.C.; Cordes, J.M.; Tendulkar, S.P.; Bassa, C.G.; Demorest, P.; et al. The direct localization of a fast radio burst and its host. Nature 2017, 541, 58. [Google Scholar] [CrossRef] [PubMed]
- Marcote, B.; Paragi, Z.; Hessels, J.W.T.; Keimpema, A.; van Langevelde, H.J.; Huang, Y.; Bassa, C.G.; Bogdanov, S.; Bower, G.C.; Burke-Spolaor, S.; et al. The Repeating Fast Radio Burst FRB 121102 as Seen on Milliarcsecond Angular Scales. Astrophys. J. Lett. 2017, 834, L8. [Google Scholar] [CrossRef]
- Tendulkar, S.P.; Bassa, C.; Cordes, J.M.; Bower, G.C.; Law, C.J.; Chatterjee, S.; Adams, E.A.K.; Bogdanov, S.; Burke-Spolaor, S.; Butler, B.J.; et al. The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102. Astrophys. J. Lett. 2017, 834, L7. [Google Scholar] [CrossRef]
- Ferraz, P.B.; Kephart, T.W.; Rosa, J.G. Superradiant pion clouds around primordial black holes. JCAP 2022, 07, 026. [Google Scholar] [CrossRef]
- Spieksma, T.F.M.; Cannizzaro, E.; Ikeda, T.; Cardoso, V.; Chen, Y. Superradiance: Axionic couplings and plasma effects. Phys. Rev. D 2023, 108, 063013. [Google Scholar] [CrossRef]
- Chen, L.; Kephart, T.W. Photon directional profile from stimulated decay of axion clouds with arbitrary momentum distributions. Phys. Rev. D 2020, 101, 103033. [Google Scholar] [CrossRef]
- Chen, L.; Kephart, T.W. Photon directional profile from stimulated decay of axion clouds with nonspherical axion spatial distributions. Phys. Rev. D 2020, 102, 096010. [Google Scholar] [CrossRef]
- Chen, L.; Huang, D.; Geng, C.Q. Effects of stimulated emission and superradiant growth of non-spherical axion cluster. arXiv 2023, arXiv:2311.01819. [Google Scholar]
- Chen, L.; Kephart, T.W. Stimulated radiation from axion cluster evolution in static spacetimes. JCAP 2021, 09, 034. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Kephart, T.W. A Review of Axion Lasing in Astrophysics. Universe 2024, 10, 24. https://doi.org/10.3390/universe10010024
Chen L, Kephart TW. A Review of Axion Lasing in Astrophysics. Universe. 2024; 10(1):24. https://doi.org/10.3390/universe10010024
Chicago/Turabian StyleChen, Liang, and Thomas W. Kephart. 2024. "A Review of Axion Lasing in Astrophysics" Universe 10, no. 1: 24. https://doi.org/10.3390/universe10010024
APA StyleChen, L., & Kephart, T. W. (2024). A Review of Axion Lasing in Astrophysics. Universe, 10(1), 24. https://doi.org/10.3390/universe10010024