Human Plasma Metabolomics in Age-Related Macular Degeneration: Meta-Analysis of Two Cohorts
Abstract
:1. Introduction
2. Results
2.1. Study Population and Identified Plasma Metabolites
2.2. Comparison between AMD Patients and Controls
2.3. Comparison Across All Stages of Disease
2.4. Pathway Analysis
2.5. Pathway Analysis
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Eligibility Criteria
4.3. Study Protocol
4.4. AMD Diagnosis and Staging
4.5. Sample Collection and Mass Spectrometry Analysis
4.6. Descriptive Statistics and Data Clustering
4.7. Statistical Methods for Associations between Metabolites and AMD vs. Controls
4.8. Statistical Methods for Associations Between Metabolites and Stages of Disease
4.9. Pathway Analyses
4.10. Performance Analysis
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Heal 2014, 2, e106–e116. [Google Scholar] [CrossRef]
- Yonekawa, Y.; Miller, J.W.; Kim, I.K. Age-Related Macular Degeneration: Advances in Management and Diagnosis. J. Clin. Med. 2015, 4, 343–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.W. Age-related macular degeneration revisited–piecing the puzzle: The LXIX Edward Jackson memorial lecture. Am. J. Ophthalmol. 2013, 155. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, P.J.; Brown, D.M.; Heier, J.S.; Boyer, D.S.; Kaiser, P.K.; Chung, C.Y.; Kim, R.Y.; MARINA Study Group. Ranibizumab for Neovascular Age-Related Macular Degeneration. N. Engl. J. Med. 2006, 355, 1419–1431. [Google Scholar] [CrossRef] [PubMed]
- Chew, E.Y.; Clemons, T.E.; SanGiovanni, J.P.; Danis, R.; Ferris, F.L.; Elman, M.; Antoszyk, A.; Ruby, A.; Orth, D.; Bressler, S.; et al. Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: The Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial. JAMA 2013, 309, 2005–2015. [Google Scholar]
- Spaide, R.F. Improving the age-related macular degeneration construct. Retina 2018. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Ohkubo, Y.; Sato, A.; Sato, A.; Takezawa, M.; Fujino, Y.; Yanagi, Y.; Kawashima, H. Relationship between visual prognosis and delay of intravitreal injection of ranibizumab when treating age-related macular degeneration. Retina 2015, 35, 1331–1338. [Google Scholar] [CrossRef]
- Kersten, E.; Paun, C.C.; Schellevis, R.L.; Hoyng, C.B.; Delcourt, C.; Lengyel, I.; Peto, T.; Ueffing, M.; Klaver, C.C.W.; Dammeier, S.; et al. Systemic and ocular fluid compounds as potential biomarkers in age-related macular degeneration. Surv. Ophthalmol. 2018, 63, 9–39. [Google Scholar] [CrossRef] [Green Version]
- Klein, R.; Myers, C.E.; Buitendijk, G.H.S.; Rochtchina, E.; Gao, X.; de Jong, P.T.; Sivakumaran, T.A.; Burlutsky, G.; McKean-Cowdin, R.; Hofman, A.; et al. Lipids, Lipid Genes, and Incident Age-Related Macular Degeneration: The Three Continent Age-Related Macular Degeneration Consortium. Am. J. Ophthalmol. 2014, 158, 513–524. [Google Scholar] [CrossRef]
- Laíns, I.; Gantner, M.; Murinello, S.; Lasky-Su, J.A.; Miller, J.W.; Friedlander, M.; Husain, D. Metabolomics in the study of retinal health and disease. Prog. Retin. Eye Res. 2018. [Google Scholar] [CrossRef]
- Nicholson, J.; Holmes, E.; Kinross, J.M.; Darzi, A.W.; Takats, Z.; Lindon, J.C. Metabolic phenotyping in clinical and surgical environments. Nature 2012, 491, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Barnes, S.; Benton, H.P.; Casazza, K.; Cooper, S.J.; Cui, X.; Du, X.; Engler, J.A.; Kabarowski, J.H.; Li, S.; Pathmasiri, W.; et al. Training in metabolomics research. I. Designing the experiment, collecting and extracting samples and generating metabolomics data. J. Mass Spectrom. 2016, 51, 461–475. [Google Scholar] [CrossRef] [Green Version]
- Laíns, I.; Duarte, D.; Barros, A.S.; Martins, A.S.; Gil, J.; Miller, J.B.; Marques, M.; Mesquita, T.; Kim, I.K.; Cachulo, M.D.L.; et al. Human plasma metabolomics in age-related macular degeneration (AMD) using nuclear magnetic resonance spectroscopy. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [PubMed]
- Laíns, I.; Kelly, R.S.; Miller, J.B.; Silva, R.; Vavvas, D.G.; Kim, I.K.; Murta, J.N.; Lasky-Su, J.; Miller, J.W.; Husain, D. Human Plasma Metabolomics Study across All Stages of Age-Related Macular Degeneration Identifies Potential Lipid Biomarkers. Ophthalmology 2017. [Google Scholar] [CrossRef] [PubMed]
- Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; et al. The human serum metabolome. PLoS ONE 2011, 6, e16957. [Google Scholar] [CrossRef] [PubMed]
- Suhre, K.; Gieger, C. Genetic variation in metabolic phenotypes: Study designs and applications. Nat. Rev. Genet. 2012, 13, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Patti, G.J.; Yanes, O.; Siuzdak, G. Innovation: Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012, 13, 263–269. [Google Scholar] [CrossRef]
- van Leeuwen, E.M.; Emri, E.; Merle, B.M.J.; Colijn, J.M.; Kersten, E.; Cougnard-Gregoire, A.; Dammeier, S.; Meester-Smoor, M.; Pool, F.M.; de Jong, E.K.; et al. A new perspective on lipid research in age-related macular degeneration. Prog. Retin. Eye Res. 2018. [Google Scholar] [CrossRef]
- Farooqui, A.A.; Horrocks, L.A.; Farooqui, T. Glycerophospholipids in brain: Their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 2000, 106, 1–29. [Google Scholar] [CrossRef]
- Hopiavuori, B.R.; Agbaga, M.-P.; Brush, R.S.; Sullivan, M.T.; Sonntag, W.E.; Anderson, R.E. Regional changes in CNS and retinal glycerophospholipid profiles with age: A molecular blueprint. J. Lipid Res. 2017, 58, 668–680. [Google Scholar] [CrossRef]
- Farooqui, A.A.; Horrocks, L.A.; Farooqui, T. Interactions between neural membrane glycerophospholipid and sphingolipid mediators: A recipe for neural cell survival or suicide. J. Neurosci. Res. 2007, 85, 1834–1850. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Meng, Y.-F.; Xing, Q.; Tao, J.J.; Lu, J.; Wu, Y. Identification of lncRNAs involved in biological regulation in early age-related macular degeneration. Int. J. Nanomed. 2017, 12, 7589–7602. [Google Scholar] [CrossRef] [PubMed]
- Reichenbach, A.; Bringmann, A. Purinergic signaling in retinal degeneration and regeneration. Neuropharmacology 2016, 104, 194–211. [Google Scholar] [CrossRef] [PubMed]
- Guha, S.; Baltazar, G.C.; Coffey, E.E.; Tu, L.A.; Lim, J.C.; Beckel, J.M.; Patel, S.; Eysteinsson, T.; Lu, W.; O’Brien-Jenkins, A.; et al. Lysosomal alkalinization, lipid oxidation, and reduced phagosome clearance triggered by activation of the P2X7 receptor. FASEB J. 2013, 27, 4500–4509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carver, K.A.; Lin, C.M.; Bowes Rickman, C.; Yang, D. Lack of the P2X7 receptor protects against AMD-like defects and microparticle accumulation in a chronic oxidative stress-induced mouse model of AMD. Biochem. Biophys. Res. Commun. 2017, 482, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.J.; Baird, P.N.; Vessey, K.A.; Skarratt, K.K.; Fletcher, E.L.; Fuller, S.J.; Richardson, A.J.; Guymer, R.H.; Wiley, J.S. A rare functional haplotype of the P2RX4 and P2RX7 genes leads to loss of innate phagocytosis and confers increased risk of age-related macular degeneration. FASEB J. 2013, 27, 1479–1487. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Elner, S.G.; Clark, A.J.; Hughes, B.A.; Petty, H.R.; Elner, V.M. Activation of P2X receptors induces apoptosis in human retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 2011, 52, 1522–1530. [Google Scholar] [CrossRef] [PubMed]
- Ripps, H.; Shen, W. Review: Taurine: A “very essential” amino acid. Mol. Vis. 2012, 18, 2673–2686. [Google Scholar]
- Hadj-Saïd, W.; Froger, N.; Ivkovic, I.; Jiménez-López, M.; Dubus, É.; Dégardin-Chicaud, J.; Simonutti, M.; Quénol, C.; Neveux, N.; Villegas-Pérez, M.P.; et al. Quantitative and Topographical Analysis of the Losses of Cone Photoreceptors and Retinal Ganglion Cells Under Taurine Depletion. Investig. Opthalmol. Vis. Sci. 2016, 57, 4692. [Google Scholar] [CrossRef] [PubMed]
- Gaucher, D.; Arnault, E.; Husson, Z.; Froger, N.; Dubus, E.; Gondouin, P.; Dherbécourt, D.; Degardin, J.; Simonutti, M.; Fouquet, S.; et al. Taurine deficiency damages retinal neurones: Cone photoreceptors and retinal ganglion cells. Amino Acids 2012, 43, 1979–1993. [Google Scholar] [CrossRef]
- Tomi, M.; Terayama, T.; Isobe, T.; Egami, F.; Morito, A.; Kurachi, M.; Ohtsuki, S.; Kang, Y.S.; Terasaki, T.; Hosoya, K. Function and regulation of taurine transport at the inner blood–retinal barrier. Microvasc. Res. 2007, 73, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Ando, D.; Kubo, Y.; Akanuma, S.; Egami, F.; Morito, A.; Kurachi, M.; Ohtsuki, S.; Kang, Y.S.; Terasaki, T.; Hosoya, K. Function and regulation of taurine transport in Müller cells under osmotic stress. Neurochem. Int. 2012, 60, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Pasantes-Morales, H.; Cruz, C. Taurine: A physiological stabilizer of photoreceptor membranes. Prog. Clin. Biol. Res. 1985, 179, 371–381. [Google Scholar] [PubMed]
- Pasantes-Morales, H.; Cruz, C. Taurine and hypotaurine inhibit light-induced lipid peroxidation and protect rod outer segment structure. Brain Res. 1985, 330, 154–157. [Google Scholar] [CrossRef]
- Ishikawa, M. Abnormalities in Glutamate Metabolism and Excitotoxicity in the Retinal Diseases. Scientifica 2013. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, H. Diabetic retinopathy--biomolecules and multiple pathophysiology. Diabetes Metab. Syndr. 2015, 9, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Boldyrev, A.; Bulygina, E.; Makhro, A. Glutamate receptors modulate oxidative stress in neuronal cells. A mini-review. Neurotox. Res. 2004, 6, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Coyle, J.T.; Puttfarcken, P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993, 262, 689–695. [Google Scholar] [CrossRef]
- George, A.K.; Singh, M.; Homme, R.P.; Majumder, A.; Sandhu, H.S.; Tyagi, S.C. A hypothesis for treating inflammation and oxidative stress with hydrogen sulfide during age-related macular degeneration. Int. J. Ophthalmol. 2018, 11, 881–887. [Google Scholar] [CrossRef]
- Zinkernagel, M.S.; Zysset-Burri, D.C.; Keller, I.; Berger, L.E.; Leichtle, A.B.; Largiadèr, C.R.; Fiedler, G.M.; Wolf, S. Association of the Intestinal Microbiome with the Development of Neovascular Age-Related Macular Degeneration. Sci. Rep. 2017, 7, 40826. [Google Scholar] [CrossRef] [Green Version]
- Farooqui, A.A. Lipid mediators and their metabolism in the nucleous: Implications for Alzheimer’s disease. J. Alzheimers Dis. 2012, 30 (Suppl. 2), S163–S178. [Google Scholar] [CrossRef] [PubMed]
- Frisardi, V.; Panza, F.; Seripa, D.; Farooqui, T.; Farooqui, A.A. Glycerophospholipids and glycerophospholipid-derived lipid mediators: A complex meshwork in Alzheimer’s disease pathology. Prog. Lipid Res. 2011, 50, 313–330. [Google Scholar] [CrossRef] [PubMed]
- Mapstone, M.; Cheema, A.K.; Fiandaca, M.S.; Zhong, X.; Mhyre, T.R.; MacArthur, L.H.; Hall, W.J.; Fisher, S.G.; Peterson, D.R.; Haley, J.M.; et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat. Med. 2014, 20, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Jové, M.; Portero-Otín, M.; Naudí, A.; Ferrer, I.; Pamplona, R. Metabolomics of Human Brain Aging and Age-Related Neurodegenerative Diseases. J. Neuropathol. Exp. Neurol. 2014, 73, 640–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaddurah-Daouk, R.; Zhu, H.; Sharma, S.; Ferrer, I.; Pamplona, R. Alterations in metabolic pathways and networks in Alzheimer’s disease. Transl. Psychiatry 2013, 3, e244. [Google Scholar] [CrossRef] [PubMed]
- Kori, M.; Aydın, B.; Unal, S.; Arga, K.Y.; Kazan, D. Metabolic Biomarkers and Neurodegeneration: A Pathway Enrichment Analysis of Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis. Omics J. Integr. Biol. 2016, 20, 645–661. [Google Scholar] [CrossRef] [PubMed]
- Trushina, E.; Dutta, T.; Persson, X.-M.T.; Mielke, M.M.; Petersen, R.C. Identification of Altered Metabolic Pathways in Plasma and CSF in Mild Cognitive Impairment and Alzheimer’s Disease Using Metabolomics. PLoS ONE 2013, 8, e63644. [Google Scholar] [CrossRef] [PubMed]
- Fritsche, L.G.; Igl, W.; Bailey, J.N.C.; Grassmann, F.; Sengupta, S.; Bragg-Gresham, J.L.; Burdon, K.P.; Hebbring, S.J.; Wen, C.; Gorski, M.; et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet. 2016, 48, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Fritsche, L.G.; Chen, W.; Schu, M.; Yaspan, B.L.; Yu, Y.; Thorleifsson, G.; Zack, D.J.; Arakawa, S.; Cipriani, V.; Ripke, S.; et al. Seven new loci associated with age-related macular degeneration. Nat. Genet. 2013, 45, 433–439, 439e1-2. [Google Scholar] [CrossRef]
- Kraus, W.E.; Muoio, D.M.; Stevens, R.; Craig, D.; Bain, J.R.; Grass, E.; Haynes, C.; Kwee, L.; Qin, X.; Slentz, D.H. Metabolomic Quantitative Trait Loci (mQTL) Mapping Implicates the Ubiquitin Proteasome System in Cardiovascular Disease Pathogenesis. PLoS Genet. 2015, 11, e1005553. [Google Scholar] [CrossRef]
- Miller, J.W.; Bagheri, S.; Vavvas, D.G. Advances in Age-related Macular Degeneration Understanding and Therapy. US Ophthalmic Rev. 2017, 10, 119–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaide, R.F. Disease expression in nonexudative age-related macular degeneration varies with choroidal thickness. Retina 2017. [Google Scholar] [CrossRef] [PubMed]
- Neely, D.C.; Bray, K.J.; Huisingh, C.E.; Clark, M.E.; McGwin, G.; Owsley, C. Prevalence of Undiagnosed Age-Related Macular Degeneration in Primary Eye Care. JAMA Ophthalmol. 2017, 135, 570. [Google Scholar] [CrossRef] [PubMed]
- Sobrin, L.; Seddon, J.M. Nature and nurture- genes and environment- predict onset and progression of macular degeneration. Prog. Retin. Eye Res. 2013. [Google Scholar] [CrossRef] [PubMed]
- Do, K.T.; Pietzner, M.; Rasp, D.J.; Friedrich, N.; Nauck, M.; Kocher, T.; Suhre, K.; Mook-Kanamori, D.O.; Kastenmüller, G.; Krumsiek, J. Phenotype-driven identification of modules in a hierarchical map of multifluid metabolic correlations. NPJ Syst. Biol. Appl. 2017, 3, 28. [Google Scholar] [CrossRef]
- Do, K.T.; Kastenmüller, G.; Mook-Kanamori, D.O.; Yousri, N.A.; Theis, F.J.; Suhre, K.; Krumsiek, J. Network-Based Approach for Analyzing Intra- and Interfluid Metabolite Associations in Human Blood, Urine, and Saliva. J. Proteome Res. 2015, 14, 1183–1194. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Liu, Z.; Zhong, S.; Li, R.; Xia, H.; Jie, Z.; Wen, B.; Chen, X.; Yan, W.; Fan, Y.; et al. Integrated metabolomics and metagenomics analysis of plasma and urine identified microbial metabolites associated with coronary heart disease. Sci. Rep. 2016, 6, 22525. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. MSEA: A web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 2010, 38, W71–W77. [Google Scholar] [CrossRef]
- da Luz Cachulo, M.; Lobo, C.; Figueira, J.; Ribeiro, L.; Laíns, I.; Vieira, A.; Nunes, S.; Costa, M.; Simão, S.; Rodrigues, V.; et al. Prevalence of Age-Related Macular Degeneration in Portugal: The Coimbra Eye Study—Report 1. Ophthalmologica 2015, 233, 119–127. [Google Scholar] [CrossRef]
- Laíns, I.; Miller, J.B.; Mukai, R.; Mach, S.; Vavvas, D.; Kim, I.K.; Miller, J.W.; Husain, D. Health conditions linked to age-related macular degeneration associated with dark adaptation. Retina 2017. [Google Scholar] [CrossRef]
- The Age-Related Eye Disease Study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: The Age-Related Eye Disease Study Report Number 6. Am. J. Ophthalmol. 2001, 132, 668–681. [CrossRef]
- Danis, R.P.; Domalpally, A.; Chew, E.Y.; Clemons, T.E.; Armstrong, J.; SanGiovanni, J.P.; Ferris, F.L. Methods and reproducibility of grading optimized digital color fundus photographs in the Age-Related Eye Disease Study 2 (AREDS2 Report Number 2). Invest. Ophthalmol. Vis. Sci. 2013, 54, 4548–4554. [Google Scholar] [CrossRef] [PubMed]
- Tsikata, E.; Laíns, I.; Gil, J.Q.; Marques, M.; Brown, K.; Mesquita, T.; Melo, P.; Cachulo, M.D.L.; Kim, I.K.; Vavvas, D.; et al. Automated Brightness and Contrast Adjustment of Color Fundus Photographs for the Grading of Age-Related Macular Degeneration. Transl. Vis. Sci. Technol. 2017, 6, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Tang, J.; Yang, Q.; Cui, X.; Li, S.; Chen, S.; Cao, Q.; Xue, W.; Chen, N.; Zhu, F. Performance Evaluation and Online Realization of Data-driven Normalization Methods Used in LC/MS based Untargeted Metabolomics Analysis. Sci. Rep. 2016, 6, 38881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, S.; Benton, H.P.; Casazza, K.; Cooper, S.J.; Cui, X.; Du, X.; Engler, J.; Kabarowski, J.H.; Li, S.; Pathmasiri, W.; et al. Training in metabolomics research. II. Processing and statistical analysis of metabolomics data, metabolite identification, pathway analysis, applications of metabolomics and its future. J. Mass Spectrom. 2016, 51, 535–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, P.; Peter, A.; Franken, H.; Zhao, X.; Neukamm, S.S.; Rosenbaum, L.; Lucio, M.; Zell, A.; Haring, H.-U.; Xu, G.; et al. Preanalytical aspects and sample quality assessment in metabolomics studies of human blood. Clin. Chem. 2013, 59, 833–845. [Google Scholar] [CrossRef]
- Zaykin, D.V. Optimally weighted Z-test is a powerful method for combining probabilities in meta-analysis. J. Evol. Biol. 2011, 24, 1836–1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitlock, M. C Combining probability from independent tests: The weighted Z-method is superior to Fisher’s approach. J. Evol. Biol. 2005, 18, 1368–1373. [Google Scholar] [CrossRef]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018. [Google Scholar] [CrossRef]
Boston, US | |||||
Heading | Control | Early | Intermediate AMD | Late | p-Value |
AMD | AMD | ||||
Number of patients, n (%) | 47 (24) | 35 (18) | 64 (33) | 50 (25) | NA |
Age, mean ± SD | 67.8 ± 8.5 | 68.5 ± 7.1 | 72.4 ± 6.9 | 76.1 ± 8.2 | <0.0001 * |
BMI, mean ± SD | 26.8 ± 4.4 | 26.7 ± 4.3 | 27.6 ± 5.6 | 26.9 ± 4.5 | 0.779 |
Gender n, (%) | 0.564 | ||||
Female | 29 (62) | 23 (66) | 45 (70) | 29 (58) | |
Male | 18 (38) | 12 (34) | 19 (30) | 21 (42) | |
Smoking n, (%) | 0.107 | ||||
Non-smoker | 24 (52) | 21 (60) | 27 (42) | 17 (35) | |
Ex-smoker | 20 (43) | 14 (40) | 34 (53) | 31 (66) | |
Current smoker | 2 (4) | 0 (0) | 3 (5) | 0 (0) | |
Race n, (%) | 0.127 | ||||
White | 39 (95) | 30 (91) | 63 (98) | 44 (94) | |
Black | 1 (2) | 0 (0) | 0 (0) | 0 (0) | |
Asian | 0 (0) | 1 (3) | 1 (2) | 0 (0) | |
Hispanic | 1 (2) | 2 (6) | 0 (0) | 3 (6) | |
Coimbra, Portugal | |||||
Heading | Control | Early | Intermediate AMD | Late | p-Value |
AMD | AMD | ||||
Number of patients, n (%) | 53 (18) | 58 (20) | 130 (44) | 54 (18) | NA |
Age, mean ± SD | 68.6 ± 5.0 | 71.2 ± 6.1 | 76.6 ± 7.5 | 81.8 ± 6.9 | <0.0001 * |
BMI, mean ± SD | 27.1 ± 4.7 | 27.1 ± 4.3 | 27.4 ± 4.5 | 26.5 ± 4.3 | 0.712 |
Gender n, (%) | 0.497 | ||||
Female | 35 (66) | 35 (60) | 90 (69) | 32 (59) | |
Male | 18 (34) | 23 (40) | 40 (31) | 22 (41) | |
Smoking n, (%) | 0.044 * | ||||
Non-smoker | 43 (81) | 50 (86) | 116 (89) | 39 (72) | |
Ex-smoker | 10 (19) | 8 (14) | 14 (11) | 14 (26) | |
Current smoker | 0 (0) | 0 (0) | 0 (0) | 1 (2) | |
Race n, (%) | 0.601 | ||||
White | 53 (100) | 58 (100) | 128 (98) | 53 (98) | |
Black | 0 (0) | 0 (0) | 2 (2) | 1 (2) | |
Asian | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Hispanic | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Super Pathway | Sub Pathway | Metabolite | OR PT | Pval PT | OR US | Pval US | OR Meta | Pval Meta | Qval Meta |
---|---|---|---|---|---|---|---|---|---|
Amino Acid | Methionine, Cysteine, SAM, and Taurine Metabolism | Taurine | 3.70 | 1.19 × 10−7 | 1.26 | 2.46 × 10−1 | 2.04 | 9.59 × 10−7 | 6.52 × 10−5 |
Amino Acid | Glutamate Metabolism | Beta−citrylglutamate | 2.87 | 1.37 × 10−5 | 1.52 | 5.40 × 10−2 | 2.06 | 3.86 × 10−6 | 2.05 × 10−4 |
Amino Acid | Tryptophan Metabolism | Serotonin | 2.00 | 6.20 × 10−4 | 1.58 | 2.67 × 10−2 | 1.82 | 4.84 × 10−5 | 1.65 × 10−3 |
Amino Acid | Methionine, Cysteine, SAM, and Taurine Metabolism | N−acetylmethionine | 2.55 | 1.85 × 10−5 | 1.20 | 4.05 × 10−1 | 1.75 | 9.74 × 10−5 | 2.92 × 10−3 |
Amino Acid | Alanine and Aspartate Metabolism | Aspartate | 2.37 | 6.69 × 10−5 | 1.28 | 2.32 × 10−1 | 1.80 | 1.02 × 10−4 | 2.92 × 10−3 |
Amino Acid | Methionine, Cysteine, SAM, and Taurine Metabolism | Hypotaurine | 2.32 | 4.69 × 10−4 | 1.36 | 1.47 × 10−1 | 1.85 | 2.57 × 10−4 | 6.99 × 10−3 |
Amino Acid | Alanine and Aspartate Metabolism | N−acetylasparagine | 1.55 | 1.96 × 10−2 | 2.00 | 4.21 × 10−3 | 1.69 | 3.22 × 10−4 | 7.96 × 10−3 |
Amino Acid | Methionine, Cysteine, SAM, and Taurine Metabolism | S−adenosylhomocysteine (SAH) | 2.10 | 3.91 × 10−4 | 1.24 | 3.21 × 10−1 | 1.67 | 6.43 × 10−4 | 1.52 × 10−2 |
Carbohydrate | Glycogen Metabolism | Maltotriose | 3.79 | 2.44 × 10−7 | 1.49 | 5.12 × 10−2 | 2.47 | 1.31 × 10−7 | 1.75 × 10−5 |
Carbohydrate | Glycogen Metabolism | Maltose | 3.32 | 1.62 × 10−6 | 1.29 | 1.86 × 10−1 | 2.14 | 4.14 × 10−6 | 2.05 × 10−4 |
Cofactors and Vitamins | Nicotinate and Nicotinamide Metabolism | Nicotinamide | 2.34 | 1.91 × 10−4 | 1.15 | 5.08 × 10−1 | 1.68 | 7.87 × 10−4 | 1.78 × 10−2 |
Lipid | Phosphatidylserine (PS) | 1−stearoyl−2−oleoyl−GPS (18:0/18:1) | 5.74 | 2.94 × 10−10 | 1.23 | 2.92 × 10−1 | 2.35 | 1.80 × 10−8 | 6.64 × 10−6 |
Lipid | Phospholipid Metabolism | Phosphoethanolamine | 3.97 | 2.36 × 10−8 | 1.44 | 5.79 × 10−2 | 2.49 | 2.44 × 10−8 | 6.64 × 10−6 |
Lipid | Phospholipid Metabolism | Choline phosphate | 4.95 | 4.01 × 10−9 | 1.21 | 3.21 × 10−1 | 2.38 | 1.42 × 10−7 | 1.75 × 10−5 |
Lipid | Sphingosines | Sphingosine | 16.67 | 1.89 × 10−9 | 0.99 | 9.68 × 10−1 | 1.75 | 2.26 × 10−6 | 1.36 × 10−4 |
Lipid | Lysoplasmalogen | 1-(1-enyl-palmitoyl)-GPE (P-16:0) * | 1.70 | 5.86 × 10−3 | 2.47 | 2.98 × 10−4 | 1.97 | 1.12 × 10−5 | 4.69 × 10−4 |
Lipid | Fatty Acid, Monohydroxy | 14-HDoHE/17-HDoHE | 5.02 | 8.02 × 10−9 | 0.87 | 4.63 × 10−1 | 1.73 | 3.87 × 10−5 | 1.46 × 10−3 |
Lipid | Eicosanoid | 12-HETE | 4.77 | 2.61 × 10−8 | 0.91 | 6.26 × 10−1 | 1.64 | 4.03 × 10−5 | 1.46 × 10−3 |
Lipid | Sphingolipid Synthesis | Sphinganine | 5.33 | 6.18 × 10−7 | 0.90 | 5.85 × 10−1 | 1.44 | 3.05 × 10−4 | 7.91 × 10−3 |
Lipid | Lysoplasmalogen | 1-(1-enyl-oleoyl)-GPE (P-18:1) * | 1.35 | 9.20 × 10−2 | 2.01 | 2.36 × 10−3 | 1.60 | 1.41 × 10−3 | 2.95 × 10−2 |
Lipid | Lysoplasmalogen | 1-(1-enyl-stearoyl)-GPE (P-18:0) * | 1.25 | 1.89 × 10−1 | 2.24 | 6.67 × 10−4 | 1.58 | 1.81 × 10−3 | 3.65 × 10−2 |
Nucleotide | Purine Metabolism, Adenine containing | Adenosine | 2.58 | 6.33 × 10−5 | 2.15 | 6.90 × 10−4 | 2.39 | 1.60 × 10−7 | 1.75 × 10−5 |
Nucleotide | Pyrimidine Metabolism, Cytidine containing | Cytidine | 2.55 | 6.24 × 10−5 | 2.12 | 1.35 × 10−3 | 2.37 | 2.93 × 10−7 | 2.66 × 10−5 |
Nucleotide | Purine Metabolism, Guanine containing | Guanine | 3.70 | 5.99 × 10−7 | 1.39 | 1.08 × 10−1 | 2.40 | 8.16 × 10−7 | 6.34 × 10−5 |
Nucleotide | Purine Metabolism, (Hypo)Xanthine/Inosine containing | Inosine | 2.29 | 1.54 × 10−4 | 1.65 | 9.69 × 10−3 | 2.02 | 4.74 × 10−6 | 2.15 × 10−4 |
Nucleotide | Purine Metabolism, (Hypo)Xanthine/Inosine containing | Hypoxanthine | 2.52 | 3.58 × 10−5 | 1.24 | 2.79 × 10−1 | 1.80 | 8.43 × 10−5 | 2.70 × 10−3 |
Nucleotide | Purine Metabolism, Adenine containing | adenine | 1.63 | 2.02 × 10−2 | 1.54 | 4.38 × 10−2 | 1.58 | 2.13 × 10−3 | 4.14 × 10−2 |
Peptide | Dipeptide | isoleucylglycine | 2.15 | 1.25 × 10−4 | 1.07 | 7.26 × 10−1 | 1.58 | 1.15 × 10−3 | 2.51 × 10−2 |
Super Pathway | Sub Pathway | Metabolite | OR PT | Pval PT | OR US | Pval US | OR Meta | Pval Meta | Qval Meta |
---|---|---|---|---|---|---|---|---|---|
Amino Acid | Alanine and Aspartate Metabolism | N-acetylasparagine | 1.23 | 1.16 × 10−2 | 1.74 | 1.00 × 10−6 | 1.37 | 6.10 × 10−7 | 1.65 × 10−4 |
Amino Acid | Methionine, Cysteine, SAM, and Taurine Metabolism | Hypotaurine | 1.49 | 1.00 × 10−6 | 1.19 | 1.08 × 10−1 | 1.37 | 1.21 × 10−6 | 1.65 × 10−4 |
Amino Acid | Glutamate Metabolism | Beta−citrylglutamate | 1.26 | 3.40 × 10−3 | 1.46 | 3.50 × 10−4 | 1.32 | 6.67 × 10−6 | 4.21 × 10−4 |
Amino Acid | Leucine, Isoleucine, and Valine Metabolism | N-acetylleucine | 1.18 | 4.62 × 10−2 | 1.43 | 7.30 × 10−4 | 1.27 | 2.69 × 10−4 | 7.80 × 10−3 |
Carbohydrate | Glycogen Metabolism | Maltotriose | 1.43 | 1.00 × 10−6 | 1.11 | 2.88 × 10−1 | 1.31 | 6.19 × 10−6 | 4.21 × 10−4 |
Carbohydrate | Glycogen Metabolism | Maltose | 1.38 | 3.00 × 10−5 | 1.15 | 1.60 × 10−1 | 1.29 | 3.17 × 10−5 | 1.72 × 10−3 |
Lipid | Lysoplasmalogen | 1-(1-enyl-palmitoyl)-GPE (P-16:0) * | 1.21 | 1.62 × 10−2 | 1.95 | 1.00 × 10−6 | 1.48 | 9.86 × 10−7 | 1.65 × 10−4 |
Lipid | Phospholipid Metabolism | Phosphoethanolamine | 1.39 | 2.00 × 10−5 | 1.26 | 2.01 × 10−2 | 1.32 | 1.62 × 10−6 | 1.67 × 10−4 |
Lipid | Diacylglycerol | Oleoyl-oleoyl-glycerol (18:1/18:1) [2] * | 0.86 | 5.74 × 10−2 | 0.62 | 1.00 × 10−6 | 0.76 | 6.96 × 10−6 | 4.21 × 10−4 |
Lipid | Diacylglycerol | Oleoyl−linoleoyl-glycerol (18:1/18:2) [1] | 0.87 | 7.56 × 10−2 | 0.64 | 1.00 × 10−5 | 0.76 | 4.01 × 10−5 | 1.98 × 10−3 |
Lipid | Fatty Acid Metabolism(Acyl Carnitine) | Myristoleoylcarnitine (C14:1) * | 0.90 | 2.06 × 10−1 | 0.62 | 1.00 × 10−6 | 0.78 | 6.54 × 10−5 | 2.97 × 10−3 |
Lipid | Phosphatidylserine (PS) | 1−stearoyl-2-oleoyl-GPS (18:0/18:1) | 1.50 | 1.00 × 10−6 | 1.01 | 9.33 × 10−1 | 1.33 | 8.78 × 10−5 | 3.54 × 10−3 |
Lipid | Fatty Acid Metabolism(Acyl Carnitine) | Laurylcarnitine (C12) | 0.91 | 2.78 × 10−1 | 0.61 | 1.00 × 10−6 | 0.78 | 1.18 × 10−4 | 4.29 × 10−3 |
Lipid | Diacylglycerol | Oleoyl-linoleoyl-glycerol (18:1/18:2) [2] | 0.89 | 1.44 × 10−1 | 0.63 | 2.00 × 10−5 | 0.76 | 1.68 × 10−4 | 5.67 × 10−3 |
Lipid | Fatty Acid Metabolism(Acyl Carnitine) | Decanoylcarnitine (C10) | 0.86 | 5.97 × 10−2 | 0.69 | 2.20 × 10−4 | 0.79 | 1.77 × 10−4 | 5.67 × 10−3 |
Lipid | Lysoplasmalogen | 1-(1-enyl-oleoyl)-GPE (P-18:1) * | 1.06 | 4.19 × 10−1 | 1.75 | 1.00 × 10−6 | 1.32 | 2.83 × 10−4 | 7.80 × 10−3 |
Lipid | Diacylglycerol | Oleoyl−oleoyl-glycerol (18:1/18:1) [1] * | 0.86 | 5.14 × 10−2 | 0.70 | 6.50 × 10−4 | 0.79 | 2.87 × 10−4 | 7.80 × 10−3 |
Nucleotide | Pyrimidine Metabolism, Cytidine containing | Cytidine | 1.31 | 9.10 × 10−4 | 1.69 | 1.00 × 10−6 | 1.40 | 1.96 × 10−8 | 1.06 × 10−5 |
Nucleotide | Purine Metabolism, Adenine containing | Adenosine | 1.25 | 3.12 × 10−3 | 1.47 | 7.00 × 10−5 | 1.32 | 1.84 × 10−6 | 1.67 × 10−4 |
Nucleotide | Pyrimidine Metabolism, Orotate containing | Dihydroorotate | 0.71 | 1.00 × 10−6 | 0.99 | 9.44 × 10−1 | 0.80 | 9.11 × 10−5 | 3.54 × 10−3 |
Data | Model | AUC | AUC_CI_L | AUC_CI_U | Nz_Sig | Nz_Final | Pval |
---|---|---|---|---|---|---|---|
Boston, | Baseline | 0.645 | 0.540 | 0.749 | 4.0 | . | |
US | All-Met+EN | 0.703 | 0.602 | 0.803 | 544.0 | 17.2 | 2.87 × 10−2 |
AMD/Control | 0.691 | 0.596 | 0.786 | 53.0 | 17.7 | 2.44 × 10−1 | |
Stage+2Eye | 0.747 | 0.665 | 0.829 | 169.5 | 14.2 | 1.06 × 10−2 | |
Coimbra, | Baseline | 0.759 | 0.697 | 0.821 | 4.0 | . | |
Portugal | All-Met+EN | 0.810 | 0.758 | 0.862 | 544.0 | 15.3 | 2.27 × 10−4 |
AMD/Control | 0.826 | 0.775 | 0.878 | 57.8 | 15.1 | 7.79 × 10−3 | |
Stage+2Eye | 0.850 | 0.803 | 0.898 | 87.1 | 18.6 | 2.70 × 10−4 | |
Combined | Baseline | 0.725 | 0.671 | 0.779 | 4.0 | . | |
All-Met+EN | 0.745 | 0.692 | 0.797 | 544.0 | 25.5 | 1.36 × 10−1 | |
AMD/Control | 0.789 | 0.738 | 0.840 | 63.7 | 11.8 | 2.07 × 10−4 | |
Stage+2Eye | 0.815 | 0.771 | 0.860 | 140.6 | 16.8 | 3.74 × 10−6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laíns, I.; Chung, W.; Kelly, R.S.; Gil, J.; Marques, M.; Barreto, P.; Murta, J.N.; Kim, I.K.; Vavvas, D.G.; Miller, J.B.; et al. Human Plasma Metabolomics in Age-Related Macular Degeneration: Meta-Analysis of Two Cohorts. Metabolites 2019, 9, 127. https://doi.org/10.3390/metabo9070127
Laíns I, Chung W, Kelly RS, Gil J, Marques M, Barreto P, Murta JN, Kim IK, Vavvas DG, Miller JB, et al. Human Plasma Metabolomics in Age-Related Macular Degeneration: Meta-Analysis of Two Cohorts. Metabolites. 2019; 9(7):127. https://doi.org/10.3390/metabo9070127
Chicago/Turabian StyleLaíns, Inês, Wonil Chung, Rachel S. Kelly, João Gil, Marco Marques, Patrícia Barreto, Joaquim N. Murta, Ivana K. Kim, Demetrios G. Vavvas, John B. Miller, and et al. 2019. "Human Plasma Metabolomics in Age-Related Macular Degeneration: Meta-Analysis of Two Cohorts" Metabolites 9, no. 7: 127. https://doi.org/10.3390/metabo9070127
APA StyleLaíns, I., Chung, W., Kelly, R. S., Gil, J., Marques, M., Barreto, P., Murta, J. N., Kim, I. K., Vavvas, D. G., Miller, J. B., Silva, R., Lasky-Su, J., Liang, L., Miller, J. W., & Husain, D. (2019). Human Plasma Metabolomics in Age-Related Macular Degeneration: Meta-Analysis of Two Cohorts. Metabolites, 9(7), 127. https://doi.org/10.3390/metabo9070127