Exploring UVA1-Induced Metabolic Effects in Different In Vitro, Ex Vivo, and In Vivo Systems
Abstract
1. Introduction
2. Materials and Methods
- Determining UVA1 irradiation dose for microdialysis probands
- Microdialysis and irradiation of probands
- Cell culture
- Primary Human Fibroblasts (Re5)
- Immortalized Keratinocytes (HaCaT)
- Skin explant culture ex vivo
- Irradiation protocol and sample collection in vitro and ex vivo
- Skin explants
- Skin cells
- Nuclear magnetic resonance (NMR) measurement of skin and cell culture supernatants
- GC–TOF-MS measurement of microdialysates
- Cell count and viability measurement
- Nitroblue tetrazolium chloride (NBTC) staining
- Statistical analysis
3. Results
3.1. Comparing the Cutaneous Metabolic Profiles of Three Volunteers Before and After UVA1 Irradiation
3.2. Comparing the Metabolic Profiles of Lactic Acid, Glutamic Acid, and Pyruvic Acid Between In Vitro, Ex Vivo, and In Vivo Systems
3.3. Comparing the Results of In Vitro and Ex Vivo Metabolic Screenings with the Data Obtained from In Vivo Skin Microdialysis
3.4. Influence of Culture Type and Culture Medium on Data Reproducibility Between In Vitro, Ex Vivo, and In Vivo Systems
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| BSTFA | N,O-Bis[trimethylsilyl]trifluoroacetamide |
| CPMG | Carr-Purcell-Meiboom-Gill |
| DMEM | Dulbecco’s Modified Eagle Medium |
| ECM | Extracellular matrix |
| FCS | Fetal calf serum |
| GC–TOF-MS | Gas chromatography coupled to time-of-flight mass spectrometry |
| HS | Human skin |
| MED | Minimal erythema dose |
| MMP | Matrix metalloproteinase |
| NBTC | Nitroblue tetrazolium chloride |
| NMR | Nuclear magnetic resonance |
| PBS | Phosphate-buffered saline |
| pyr | Pyruvate |
| ROS | Reactive oxygen species |
| TCA | Tricarboxylic acid |
| UV | Ultraviolet |
References
- Ivanova, I.; Bogner, C.; Gronwald, W.; Kreutz, M.; Kurz, B.; Maisch, T.; Kamenisch, Y.; Berneburg, M. UVA-induced metabolic changes in non-malignant skin cells and the potential role of pyruvate as antioxidant. Photochem. Photobiol. Sci. 2023, 22, 1889–1899. [Google Scholar] [CrossRef]
- Kremslehner, C.; Miller, A.; Nica, R.; Nagelreiter, I.-M.; Narzt, M.-S.; Golabi, B.; Vorstandlechner, V.; Mildner, M.; Lachner, J.; Tschachler, E.; et al. Imaging of metabolic activity adaptations to UV stress, drugs and differentiation at cellular resolution in skin and skin equivalents—Implications for oxidative UV damage. Redox Biol. 2020, 37, 101583. [Google Scholar] [CrossRef]
- Dayan, A. Solar and ultraviolet radiation. IARC monographs on the evaluation of carcinogenic risks to humans. Vol 55. J. Clin. Pathol. 1993, 46, 880. [Google Scholar] [CrossRef]
- Lyon, F. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organization, International Agency for Research on Cancer: Lyon, France, 2014. [Google Scholar]
- Barba, F.J.; Roohinejad, S.; Ishikawa, K.; Leong, S.Y.; A Bekhit, A.E.-D.; Saraiva, J.A.; Lebovka, N. Electron spin resonance as a tool to monitor the influence of novel processing technologies on food properties. Trends Food Sci. Technol. 2020, 100, 77–87. [Google Scholar] [CrossRef]
- Kamenisch, Y.; Baban, T.S.; Schuller, W.; von Thaler, A.-K.; Sinnberg, T.; Metzler, G.; Bauer, J.; Schittek, B.; Garbe, C.; Rocken, M.; et al. UVA-Irradiation Induces Melanoma Invasion via the Enhanced Warburg Effect. J. Investig. Dermatol. 2016, 136, 1866–1875. [Google Scholar] [CrossRef]
- Brand, A.; Singer, K.; Koehl, G.E.; Kolitzus, M.; Schoenhammer, G.; Thiel, A.; Matos, C.; Bruss, C.; Klobuch, S.; Peter, K.; et al. LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells. Cell Metab. 2016, 24, 657–671. [Google Scholar] [CrossRef]
- Fatima, F.; Das, A.; Kumar, P.; Datta, D. Skin and Metabolic Syndrome: An Evidence Based Comprehensive Review. Indian J. Dermatol. 2021, 66, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhu, Y.; Lian, N.; Chen, M.; Bartke, A.; Yuan, R. Metabolic Syndrome and Skin Diseases. Front. Endocrinol. 2019, 10, 788. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Liu, M.; Wang, Y.; Xin, C.; Zhang, H.; Chen, S.; Zheng, X.; Zhang, X.; Xiao, F.; Yang, S. Quantitative proteomics analysis of young and elderly skin with DIA mass spectrometry reveals new skin aging-related proteins. Aging 2020, 12, 13529–13554. [Google Scholar] [CrossRef] [PubMed]
- Proksch, E.; Schunck, M.; Zague, V.; Segger, D.; Degwert, J.; Oesser, S. Oral intake of specific bioactive collagen peptides reduces skin wrinkles and increases dermal matrix synthesis. Skin. Pharmacol. Physiol. 2014, 27, 113–119. [Google Scholar] [CrossRef]
- Cibrian, D.; de la Fuente, H.; Sánchez-Madrid, F. Metabolic Pathways That Control Skin Homeostasis and Inflammation. Trends Mol. Med. 2020, 26, 975–986. [Google Scholar] [CrossRef]
- Kotronoulas, A.; de Lomana, A.L.G.; Einarsdóttir, H.K.; Kjartansson, H.; Stone, R.; Rolfsson, Ó. Fish Skin Grafts Affect Adenosine and Methionine Metabolism during Burn Wound Healing. Antioxidants 2023, 12, 2076. [Google Scholar] [CrossRef] [PubMed]
- Elpa, D.P.; Chiu, H.-Y.; Wu, S.-P.; Urban, P.L. Skin Metabolomics. Trends Endocrinol. Metab. 2021, 32, 66–75. [Google Scholar] [CrossRef]
- Lei, B.U.W.; Prow, T.W. A review of microsampling techniques and their social impact. Biomed. Microdevices 2019, 21, 81. [Google Scholar] [CrossRef]
- Baumann, K.Y.; Church, M.K.; Clough, G.F.; Quist, S.R.; Schmelz, M.; Skov, P.S.; Anderson, C.D.; Tannert, L.K.; Giménez-Arnau, A.M.; Frischbutter, S.; et al. Skin microdialysis: Methods, applications and future opportunities—An EAACI position paper. Clin. Transl. Allergy 2019, 9, 24. [Google Scholar] [CrossRef]
- Fröhlich, E.; Salar-Behzadi, S. Toxicological Assessment of Inhaled Nanoparticles: Role of in Vivo, ex Vivo, in Vitro, and in Silico Studies. Int. J. Mol. Sci. 2014, 15, 4795–4822. [Google Scholar] [CrossRef]
- National Research Council (US) Committee on Methods of Producing Monoclonal Antibodies. Summary of Advantages and Disadvantages of in vitro and in vivo methods. In Monoclonal Antibody Production; National Academies Press: Washington, DC, USA, 1999; pp. 22–24.
- Saeidnia, S.; Manayi, A.; Abdollahi, M. From in vitro Experiments to in vivo and Clinical Studies; Pros and Cons. Curr. Drug Discov. Technol. 2015, 12, 218–224. [Google Scholar] [CrossRef]
- Quantin, P.; Stricher, M.; Catoire, S.; Ficheux, H.; Egles, C. Dermatokinetics: Advances and Experimental Models, Focus on Skin Metabolism. Curr. Drug Metab. 2022, 23, 340–354. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-J.; Lee, H.-A. Trends in the development of human stem cell-based non-animal drug testing models. Korean J. Physiol. Pharmacol. 2020, 24, 441–452. [Google Scholar] [CrossRef] [PubMed]
- Eberlin, S.; da Silva, M.S.; Facchini, G.; da Silva, G.H.; Pinheiro, A.L.T.A.; Pinheiro, A.d.S. The Ex Vivo Skin Model as an Alternative Tool for the Efficacy and Safety Evaluation of Topical Products. Altern. Lab. Anim. 2020, 48, 10–22. [Google Scholar] [CrossRef]
- Neves, L.M.G.; Wilgus, T.A.; Bayat, A. In Vitro, Ex Vivo, and In Vivo Approaches for Investigation of Skin Scarring: Human and Animal Models. Adv. Wound Care 2021, 12, 97–116. [Google Scholar] [CrossRef]
- Ghosh, K.; Pan, Z.; Guan, E.; Ge, S.; Liu, Y.; Nakamura, T.; Ren, X.-D.; Rafailovich, M.; Clark, R.A. Cell adaptation to a physiologically relevant ECM mimic with different viscoelastic properties. Biomaterials 2007, 28, 671–679. [Google Scholar] [CrossRef]
- Babich, H.; Liebling, E.J.; Burger, R.F.; Zuckerbraun, H.L.; Schuck, A.G. Choice of DMEM, formulated with or without pyruvate, plays an important role in assessing the in vitro cytotoxicity of oxidants and prooxidant nutraceuticals. In Vitro Cell. Dev. Biol. Anim. 2009, 45, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Olar, T.T.; Potts, A.S. Effects of medium composition on murine and human blastocyst formation and hatching rate. J. Assist. Reprod. Genet. 1993, 10, 192–196. [Google Scholar] [CrossRef]
- O’Donnell-Tormey, J.; Nathan, C.F.; Lanks, K.; DeBoer, C.J.; de la Harpe, J. Secretion of pyruvate. An antioxidant defense of mammalian cells. J. Exp. Med. 1987, 165, 500–514. [Google Scholar] [CrossRef]
- Constantopoulos, G.; Barranger, J.A. Nonenzymatic decarboxylation of pyruvate. Anal. Biochem. 1984, 139, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Kolundzic, N.; Khurana, P.; Crumrine, D.; Celli, A.; Mauro, T.M.; Ilic, D. Epidermal Basement Membrane Substitutes for Bioengineering of Human Epidermal Equivalents. JID Innov. 2022, 2, 100083. [Google Scholar] [CrossRef] [PubMed]
- Atwood, S.X.; Plikus, M.V. Fostering a healthy culture: Biological relevance of in vitro and ex vivo skin models. Exp. Dermatol. 2021, 30, 298–303. [Google Scholar] [CrossRef]
- Hofmann, E.; Schwarz, A.; Fink, J.; Kamolz, L.-P.; Kotzbeck, P. Modelling the Complexity of Human Skin In Vitro. Biomedicines 2023, 11, 794. [Google Scholar] [CrossRef]
- Hruza, L.L.; Pentland, A.P. Mechanisms of UV-Induced Inflammation. J. Investig. Dermatol. 1993, 100, S35–S41. [Google Scholar] [CrossRef]
- Losada-Fernández, I.; Martín, A.S.; Moreno-Nombela, S.; Suárez-Cabrera, L.; Valencia, L.; Pérez-Aciego, P.; Velasco, D. In Vitro Skin Models for Skin Sensitisation: Challenges and Future Directions. Cosmetics 2025, 12, 173. [Google Scholar] [CrossRef]
- Tfayli, A.; Bonnier, F.; Farhane, Z.; Libong, D.; Byrne, H.J.; Baillet-Guffroy, A. Comparison of structure and organization of cutaneous lipids in a reconstructed skin model and human skin: Spectroscopic imaging and chromatographic profiling. Exp. Dermatol. 2014, 23, 441–443. [Google Scholar] [CrossRef] [PubMed]
- Battie, C.; Verschoore, M. Cutaneous solar ultraviolet exposure and clinical aspects of photodamage. Indian J. Dermatol. Venereol. Leprol. 2012, 78, S9–S14. [Google Scholar] [CrossRef] [PubMed]
- Quílez, C.; Bebiano, L.B.; Jones, E.; Maver, U.; Meesters, L.; Parzymies, P.; Petiot, E.; Rikken, G.; Risueño, I.; Zaidi, H.; et al. Targeting the Complexity of In Vitro Skin Models: A Review of Cutting-Edge Developments. J. Investig. Dermatol. 2024, 144, 2650–2670. [Google Scholar] [CrossRef]
- Choudhury, S.; Das, A. Advances in generation of three-dimensional skin equivalents: Pre-clinical studies to clinical therapies. Cytotherapy 2021, 23, 1–9. [Google Scholar] [CrossRef]
- Wurbs, A.; Karner, C.; Vejzovic, D.; Singer, G.; Pichler, M.; Liegl-Atzwanger, B.; Rinner, B. A human ex vivo skin model breaking boundaries. Sci. Rep. 2024, 14, 24054. [Google Scholar] [CrossRef]
- Monteiro-Riviere, N.A.; Inman, A.O.; Snider, T.H.; Blank, J.A.; Hobson, D.W. Comparison of an in vitro skin model to normal human skin for dermatological research. Microsc. Res. Tech. 1997, 37, 172–179. [Google Scholar] [CrossRef]
- Zhou, L.; Ji, W.; Dicolandrea, T.; Finlay, D.; Supp, D.; Boyce, S.; Wei, K.; Kadekaro, A.L.; Zhang, Y. An improved human skin explant culture method for testing and assessing personal care products. J. Cosmet. Dermatol. 2023, 22, 1585–1594. [Google Scholar] [CrossRef]
- Cullati, S.; Courvoisier, D.S.; Gayet-Ageron, A.; Haller, G.; Irion, O.; Agoritsas, T.; Rudaz, S.; Perneger, T.V. Patient enrollment and logistical problems top the list of difficulties in clinical research: A cross-sectional survey. BMC Med. Res. Methodol. 2016, 16, 50. [Google Scholar] [CrossRef]
- Greene, N.M. Metabolic Effects of Anesthetics. In Modern Inhalation Anesthetics; Chenoweth, M.B., Ed.; Springer: Berlin/Heidelberg, Germany, 1972; pp. 271–287. [Google Scholar]
- Schlosser, S.; Spanholtz, T.; Merz, K.; Dennler, C.; Banic, A.; Erni, D.; Plock, J.A. The Choice of Anesthesia Influences Oxidative Energy Metabolism and Tissue Survival in Critically Ischemic Murine Skin. J. Surg. Res. 2010, 162, 308–313. [Google Scholar] [CrossRef]
- Tan, X.; Liu, R.; Dan, L.; Huang, H.; Duan, C. Effects of anesthetics on mitochondrial quality control: Mechanisms and clinical implications. Anesthesiol. Perioper. Sci. 2024, 2, 31. [Google Scholar] [CrossRef]
- Demetrius, L. Of mice and men. When it comes to studying ageing and the means to slow it down, mice are not just small humans. EMBO Rep. 2005, 6, S39–S44. [Google Scholar] [CrossRef]
- Géniès, C.; Jamin, E.L.; Debrauwer, L.; Zalko, D.; Person, E.N.; Eilstein, J.; Grégoire, S.; Schepky, A.; Lange, D.; Ellison, C.; et al. Comparison of the metabolism of 10 chemicals in human and pig skin explants. J. Appl. Toxicol. 2019, 39, 385–397. [Google Scholar] [CrossRef]
- Otberg, N.; Richter, H.; Schaefer, H.; Blume-Peytavi, U.; Sterry, W.; Lademann, J. Variations of hair follicle size and distribution in different body sites. J. Investig. Dermatol. 2004, 122, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Pomaville, M.B.; Wright, K.M. Follicle-innervating Aδ-low threshold mechanoreceptive neurons form receptive fields through homotypic competition. Neural Dev. 2023, 18, 2. [Google Scholar] [CrossRef] [PubMed]
- Ye, H.; Rinkevich, Y. Fascia Layer—A Novel Target for the Application of Biomaterials in Skin Wound Healing. Int. J. Mol. Sci. 2023, 24, 2936. [Google Scholar] [CrossRef]
- Rittié, L. Cellular mechanisms of skin repair in humans and other mammals. J. Cell Commun. Signal. 2016, 10, 103–120. [Google Scholar] [CrossRef]
- Iyengar, B. The hair follicle: A specialised UV receptor in the human skin? Biol. Signals Recept. 1998, 7, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Benavides, F.; Oberyszyn, T.M.; VanBuskirk, A.M.; Reeve, V.E.; Kusewitt, D.F. The hairless mouse in skin research. J. Dermatol. Sci. 2009, 53, 10–18. [Google Scholar] [CrossRef]
- Waterston, K.; Naysmith, L.; Rees, J.L. Physiological variation in the erythemal response to ultraviolet radiation and photoadaptation. J. Investig. Dermatol. 2004, 123, 958–964. [Google Scholar] [CrossRef]
- Clough, G.F.; Jackson, C.L.; Lee, J.J.; Jamal, S.C.; Church, M.K. What can microdialysis tell us about the temporal and spatial generation of cytokines in allergen-induced responses in human skin in vivo? J. Investig. Dermatol. 2007, 127, 2799–2806. [Google Scholar] [CrossRef]
- Oharazawa, A.; Maimaituxun, G.; Watanabe, K.; Nishiyasu, T.; Fujii, N. Metabolome analyses of skin dialysate: Insights into skin interstitial fluid biomarkers. J. Dermatol. Sci. 2024, 114, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Islam, R.K.; Tong, V.T.; Robicheaux, C.; Tageant, H.; Haas, C.J.; Kline, R.J.; Islam, K.N. The Impact of Anesthesia on Dermatological Outcomes: A Narrative Review. Cureus 2024, 16, e72321. [Google Scholar] [CrossRef]
- Anderson, C.; Andersson, T.; Andersson, R.G. In vivo microdialysis estimation of histamine in human skin. Ski. Pharmacol. 1992, 5, 177–183. [Google Scholar] [CrossRef]
- Anderson, C.; Andersson, T.; Wårdell, K. Changes in skin circulation after insertion of a microdialysis probe visualized by laser Doppler perfusion imaging. J. Investig. Dermatol. 1994, 102, 807–811. [Google Scholar] [CrossRef]
- Ng, K.W.; Pearton, M.; Coulman, S.; Anstey, A.; Gateley, C.; Morrissey, A.; Allender, C.; Birchall, J. Development of an ex vivo human skin model for intradermal vaccination: Tissue viability and Langerhans cell behaviour. Vaccine 2009, 27, 5948–5955. [Google Scholar] [CrossRef]
- Cappellozza, E.; Zanzoni, S.; Malatesta, M.; Calderan, L. Integrated Microscopy and Metabolomics to Test an Innovative Fluid Dynamic System for Skin Explants In Vitro. Microsc. Microanal. 2021, 27, 923–934. [Google Scholar] [CrossRef]
- Pulsoni, I.; Lubda, M.; Aiello, M.; Fedi, A.; Marzagalli, M.; von Hagen, J.; Scaglione, S. Comparison Between Franz Diffusion Cell and a novel Micro-physiological System for In Vitro Penetration Assay Using Different Skin Models. SLAS Technol. 2022, 27, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Erban, A.; Schauer, N.; Fernie, A.R.; Kopka, J. Nonsupervised construction and application of mass spectral and retention time index libraries from time-of-flight gas chromatography-mass spectrometry metabolite profiles. Methods Mol. Biol. 2007, 358, 19–38. [Google Scholar] [PubMed]
- Roessner, U.; Luedemann, A.; Brust, D.; Fiehn, O.; Linke, T.; Willmitzer, L.; Fernie, A.R. Metabolic Profiling Allows Comprehensive Phenotyping of Genetically or Environmentally Modified Plant Systems. Plant Cell 2001, 13, 11–29. [Google Scholar] [CrossRef]
- Lisec, J.; Schauer, N.; Kopka, J.; Willmitzer, L.; Fernie, A.R. Gas chromatography mass spectrometry–based metabolite profiling in plants. Nat. Protoc. 2006, 1, 387–396. [Google Scholar] [CrossRef]
- Luedemann, A.; Strassburg, K.; Erban, A.; Kopka, J. TagFinder for the quantitative analysis of gas chromatography—Mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics 2008, 24, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Pundir, C.S.; Malik, M.; Chaudhary, R. Quantification of pyruvate with special emphasis on biosensors: A review. Microchem. J. 2019, 146, 1102–1112. [Google Scholar] [CrossRef]
- Solano, F. Metabolism and Functions of Amino Acids in the Skin. Adv. Exp. Med. Biol. 2020, 1265, 187–199. [Google Scholar]
- Ivanova, I.E. UVA-Induced Metabolic Changes in Non-Malignant Skin Cells and Ex Vivo Cultured Murine Skin. Ph.D. Thesis, University of Regensburg, Regensburg, Germany, 2024. [Google Scholar]
- Llibre, A.; Kucuk, S.; Gope, A.; Certo, M.; Mauro, C. Lactate: A key regulator of the immune response. Immunity 2025, 58, 535–554. [Google Scholar] [CrossRef] [PubMed]
- Barding, G.A., Jr.; Béni, S.; Fukao, T.; Bailey-Serres, J.; Larive, C.K. Comparison of GC-MS and NMR for metabolite profiling of rice subjected to submergence stress. J. Proteome Res. 2013, 12, 898–909. [Google Scholar] [CrossRef] [PubMed]
- Emwas, A.H. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol. Biol. 2015, 1277, 161–193. [Google Scholar]
- Letertre, M.P.M.; Giraudeau, P.; de Tullio, P. Nuclear Magnetic Resonance Spectroscopy in Clinical Metabolomics and Personalized Medicine: Current Challenges and Perspectives. Front. Mol. Biosci. 2021, 8, 698337. [Google Scholar] [CrossRef]
- Liu, D.; Fernandez, B.O.; Hamilton, A.; Lang, N.N.; Gallagher, J.M.; Newby, D.E.; Feelisch, M.; Weller, R.B. UVA irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase. J. Investig. Dermatol. 2014, 134, 1839–1846. [Google Scholar] [CrossRef]
- Gralka, E.; Luchinat, C.; Tenori, L.; Ernst, B.; Thurnheer, M.; Schultes, B. Metabolomic fingerprint of severe obesity is dynamically affected by bariatric surgery in a procedure-dependent manner12. Am. J. Clin. Nutr. 2015, 102, 1313–1322. [Google Scholar] [CrossRef]
- Leija, R.G.; Curl, C.C.; Arevalo, J.A.; Osmond, A.D.; Duong, J.J.; Huie, M.J.; Masharani, U.; Brooks, G.A. Enteric and systemic postprandial lactate shuttle phases and dietary carbohydrate carbon flow in humans. Nat. Metab. 2024, 6, 670–677. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, E.K.; Adamski, J.; Zahn, G.; Gaumann, A.; Flores-Borja, F.; Ziegler, C.; Mycielska, M.E. Extracellular citrate and metabolic adaptations of cancer cells. Cancer Metastasis Rev. 2021, 40, 1073–1091. [Google Scholar] [CrossRef] [PubMed]
- Hornig-Do, H.-T.; von Kleist-Retzow, J.-C.; Lanz, K.; Wickenhauser, C.; Kudin, A.P.; Kunz, W.S.; Wiesner, R.J.; Schauen, M. Human Epidermal Keratinocytes Accumulate Superoxide Due to Low Activity of Mn-SOD, Leading to Mitochondrial Functional Impairment. J. Investig. Dermatol. 2007, 127, 1084–1093. [Google Scholar] [CrossRef]
- Gopalan, C.; Kirk, E. Chapter 9—Cellular metabolism. In Biology of Cardiovascular and Metabolic Diseases; Gopalan, C., Kirk, E., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 157–179. [Google Scholar]
- He, H.; Xiong, L.; Jian, L.; Li, L.; Wu, Y.; Qiao, S. Role of mitochondria on UV-induced skin damage and molecular mechanisms of active chemical compounds targeting mitochondria. J. Photochem. Photobiol. B Biol. 2022, 232, 112464. [Google Scholar] [CrossRef]
- Ming, D.; Jangam, S.; Gowers, S.A.; Wilson, R.; Freeman, D.M.; Boutelle, M.G.; Cass, A.E.G.; O’Hare, D.; Holmes, A.H. Real-time Continuous Measurement of Lactate through a Minimally-invasive Microneedle Biosensor: A Phase I Clinical Study. medRxiv 2021. [Google Scholar] [CrossRef]
- Wang, X.; Perez, E.; Liu, R.; Yan, L.-J.; Mallet, R.T.; Yang, S.-H. Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res. 2007, 1132, 1–9. [Google Scholar] [CrossRef]
- Izumi, Y.; Katsuki, H.; Zorumski, C.F. Monocarboxylates (pyruvate and lactate) as alternative energy substrates for the induction of long-term potentiation in rat hippocampal slices. Neurosci. Lett. 1997, 232, 17–20. [Google Scholar] [CrossRef]
- Park, A.; Kim, W.K.; Bae, K.H. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J. Stem Cells 2014, 6, 33–42. [Google Scholar] [CrossRef]
- van Diepen, J.A.; Robben, J.H.; Hooiveld, G.J.; Carmone, C.; Alsady, M.; Boutens, L.; Bekkenkamp-Grovenstein, M.; Hijmans, A.; Engelke, U.F.H.; Wevers, R.A.; et al. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes. Diabetologia 2017, 60, 1304–1313. [Google Scholar] [CrossRef] [PubMed]
- Genever, P.G.; Maxfield, S.J.; Skerry, T.M.; Kennovin, G.D.; Maltman, J.; Bowgen, C.J.; Raxworthy, M.J. Evidence for a novel glutamate-mediated signaling pathway in keratinocytes. J. Investig. Dermatol. 1999, 112, 337–342. [Google Scholar] [CrossRef]
- Fischer, M.; Glanz, D.; Urbatzka, M.; Brzoska, T.; Abels, C. Keratinocytes: A source of the transmitter l-glutamate in the epidermis. Exp. Dermatol. 2009, 18, 1064–1066. [Google Scholar] [CrossRef]
- Liss, D.B.; Paden, M.S.; Schwarz, E.S.; Mullins, M.E. What is the clinical significance of 5-oxoproline (pyroglutamic acid) in high anion gap metabolic acidosis following paracetamol (acetaminophen) exposure? Clin. Toxicol. 2013, 51, 817–827. [Google Scholar] [CrossRef]
- Gamarra, Y.; Santiago, F.C.; Molina-López, J.; Castaño, J.; Herrera-Quintana, L.; Domínguez, Á.; Planells, E. Pyroglutamic acidosis by glutathione regeneration blockage in critical patients with septic shock. Crit. Care 2019, 23, 162. [Google Scholar] [CrossRef]
- Zou, Y.; Cao, M.; Tao, L.; Wu, S.; Zhou, H.; Zhang, Y.; Chen, Y.; Ge, Y.; Ju, Z.; Luo, S. Lactate triggers KAT8-mediated LTBP1 lactylation at lysine 752 to promote skin rejuvenation by inducing collagen synthesis in fibroblasts. Int. J. Biol. Macromol. 2024, 277, 134482. [Google Scholar] [CrossRef] [PubMed]
- Christner, P.; Carpousis, A.; Harsch, M.; Rosenbloom, J. Inhibition of the assembly and secretion of procollagen by incorporation of a threonine analogue, hydroxynorvaline. J. Biol. Chem. 1975, 250, 7623–7630. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Tobin, D.J.; Shibahara, S.; Wortsman, J. Melanin Pigmentation in Mammalian Skin and Its Hormonal Regulation. Physiol. Rev. 2004, 84, 1155–1228. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Zmijewski, M.A.; Pawelek, J. L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment. Cell Melanoma Res. 2012, 25, 14–27. [Google Scholar] [CrossRef]
- Smit, N.P.M.; van der Meulen, H.; Koerten, H.K.; Kolb, R.M.; Mommaas, A.M.; Lentjes, E.G.; Pavel, S. Melanogenesis in Cultured Melanocytes can be Substantially Influenced by L-Tyrosine and L-Cysteine. J. Investig. Dermatol. 1997, 109, 796–800. [Google Scholar] [CrossRef] [PubMed]
- Kaur, G.; Dufour, J.M. Cell lines: Valuable tools or useless artifacts. Spermatogenesis 2012, 2, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Aitken, G.R.; Henderson, J.R.; Chang, S.-C.; McNeil, C.J.; Birch-Machin, M.A. Direct monitoring of UV-induced free radical generation in HaCaT keratinocytes. Clin. Exp. Dermatol. 2007, 32, 722–727. [Google Scholar] [CrossRef]
- Li, Q.; Bai, D.; Qin, L.; Shao, M.; Zhang, S.; Yan, C.; Yu, G.; Hao, J. Protective effect of d-tetramannuronic acid tetrasodium salt on UVA-induced photo-aging in HaCaT cells. Biomed. Pharmacother. 2020, 126, 110094. [Google Scholar] [CrossRef] [PubMed]
- Tochio, T.; Tanaka, H.; Nakata, S. Glucose transporter member 1 is involved in UVB-induced epidermal hyperplasia by enhancing proliferation in epidermal keratinocytes. Int. J. Dermatol. 2013, 52, 300–308. [Google Scholar] [CrossRef]
- Manosalva, C.; Bahamonde, C.; Soto, F.; Leal, V.; Ojeda, C.; Cortés, C.; Alarcón, P.; Burgos, R.A. Linoleic Acid Induces Metabolic Reprogramming and Inhibits Oxidative and Inflammatory Effects in Keratinocytes Exposed to UVB Radiation. Int. J. Mol. Sci. 2024, 25, 10385. [Google Scholar] [CrossRef]
- Weihs, P.; Schmalwieser, A.; Reinisch, C.; Meraner, E.; Walisch, S.; Harald, M. Measurements of personal UV exposure on different parts of the body during various activities. Photochem. Photobiol. 2013, 89, 1004–1007. [Google Scholar] [CrossRef] [PubMed]
- Mildner, M.; Jin, J.; Eckhart, L.; Kezic, S.; Gruber, F.; Barresi, C.; Stremnitzer, C.; Buchberger, M.; Mlitz, V.; Ballaun, C.; et al. Knockdown of filaggrin impairs diffusion barrier function and increases UV sensitivity in a human skin model. J. Investig. Dermatol. 2010, 130, 2286–2294. [Google Scholar] [CrossRef] [PubMed]




| Matches with In Vivo | In Vitro | Ex Vivo | ||||
|---|---|---|---|---|---|---|
| Fibroblasts +pyr | Fibroblasts −pyr | HaCaT +pyr | HaCaT −pyr | HS +pyr | HS −pyr | |
| Same | 3 | 3 | 3 | 2 | 3 | 3 |
| Same (ns) | 0 | 2 | 4 | 0 | 4 | 4 |
| Other | 10 | 8 | 6 | 11 | 6 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ivanova, I.; Svilenska, T.; Maisch, T.; Gronwald, W.; Niebel, D.; Lehmann, M.; Eigenberger, A.; Prantl, L.; Berneburg, M.; Kamenisch, Y.; et al. Exploring UVA1-Induced Metabolic Effects in Different In Vitro, Ex Vivo, and In Vivo Systems. Metabolites 2026, 16, 102. https://doi.org/10.3390/metabo16020102
Ivanova I, Svilenska T, Maisch T, Gronwald W, Niebel D, Lehmann M, Eigenberger A, Prantl L, Berneburg M, Kamenisch Y, et al. Exploring UVA1-Induced Metabolic Effects in Different In Vitro, Ex Vivo, and In Vivo Systems. Metabolites. 2026; 16(2):102. https://doi.org/10.3390/metabo16020102
Chicago/Turabian StyleIvanova, Irina, Teodora Svilenska, Tim Maisch, Wolfram Gronwald, Dennis Niebel, Martin Lehmann, Andreas Eigenberger, Lukas Prantl, Mark Berneburg, York Kamenisch, and et al. 2026. "Exploring UVA1-Induced Metabolic Effects in Different In Vitro, Ex Vivo, and In Vivo Systems" Metabolites 16, no. 2: 102. https://doi.org/10.3390/metabo16020102
APA StyleIvanova, I., Svilenska, T., Maisch, T., Gronwald, W., Niebel, D., Lehmann, M., Eigenberger, A., Prantl, L., Berneburg, M., Kamenisch, Y., & Kurz, B. (2026). Exploring UVA1-Induced Metabolic Effects in Different In Vitro, Ex Vivo, and In Vivo Systems. Metabolites, 16(2), 102. https://doi.org/10.3390/metabo16020102

