Molecular Characterization, Identification of the Volatile Organic Compounds by GC–MS, and Assessment of the Cytotoxic Activity of Leaves of Pimenta dioica L. Merrill Trees from Mexico
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material Sampling
2.2. Molecular Characterization
2.2.1. DNA Extraction
2.2.2. DNA Quantification and Quality Assessment
2.2.3. ISSR PCR Reaction
2.2.4. Electrophoresis
2.3. Extraction Procedure
2.4. Chromatography–Mass Spectrometer Analysis
2.5. Evaluation of the Extract Toxicity in Artemia salina
2.6. Statistical Analysis
3. Results
3.1. Molecular Characterization
3.2. Yield and Chemical Profile of Leaf Extracts by GC–MS
3.3. Evaluation of the Extract Toxicity in Artemia salina
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pennington, T.; Sarukhán, J. Árboles Tropicales de México. Manual para la Identificación de las Principales Especies; Universidad Nacional Autónoma de México: Ciudad de México, México; Fondo de Cultura Económica: Ciudad de México, México, 2005; pp. 414–415. [Google Scholar]
- Martínez, D.; Hernández, M.A.; Martínez, E.G. La Pimienta Gorda en México (Pimenta dioica L. Merrill): Avances y Retos en la Gestión de la Innovación; CIESTAAM, Universidad Autónoma Chapingo: Texcoco, México, 2013; pp. 17–18. [Google Scholar]
- Montalvo-López, I.; Montalvo-Hernández, D.; Molina-Torres, J. Diversity of volatile organic compounds in leaves of Pimenta dioica L. Merrill at different developmental stages from fruiting and no-fruiting trees. J. Mex. Chem. Soc. 2021, 65, 405–415. [Google Scholar] [CrossRef]
- SIACON (Sistema de Información Agroalimentaria de Consulta). Available online: https://www.gob.mx/siap/documentos/siacon-ng-161430 (accessed on 1 June 2023).
- Santos-Vazquez, C.; Valdivia-Alcalá, R.; Reyna-Izaguirre, D.A.; Márquez-Berber, S.R.; Montalvo-Hernández, D. Technological gap in allspice (Pimenta dioica L. Merr) production. Agroproductividad 2021, 14, 93–99. [Google Scholar] [CrossRef]
- Meghwal, M.; Goswami, T.K. Piper nigrum and piperine: An update. Phytother. Res. 2013, 27, 1121–1130. [Google Scholar] [CrossRef]
- Rao, P.S.; Navinchandra, S.; Jayaveera, K.N. An important spice, Pimenta dioica (Linn.) Merill: A review. Int. Curr. Pharm. J. 2012, 1, 221–225. [Google Scholar] [CrossRef]
- Martínez, M.Á.; Evangelista, V.; Mendoza, M.; Basurto, F.; Mapes, C. Allspice [Pimenta dioica (L.) Merrill], A Non-timber Forest Product of Sierra Norte de Puebla, Mexico. In Forest Products, Livelihoods and Conservation: Case Studies of Non-Timber Forest Product Systems; Alexiades, M.N., Shanley, P., Eds.; Center for International Forestry Research: Bogor, Indonesia, 2004; Volume 3, pp. 23–42. Available online: https://www.jstor.org/stable/resrep02086.7 (accessed on 1 June 2025).
- El-Nashar, H.A.S.; Ali, A.M.; Salem, Y.H. Genus Pimenta: An updated comprehensive review on botany, distribution, ethnopharmacology, phytochemistry and biological approaches. Chem. Biodivers. 2023, 20, 1–17. [Google Scholar] [CrossRef]
- Resha, H.K.; Nafila, P.P.; Servin, W.P.; Akhila, P.K. Phytochemical Analysis of Leaf Extracts of Pimenta dioica (L.) and their in vitro Antioxidant and Cytotoxic Activity. Res. J. Biotech. 2022, 17, 87–96. [Google Scholar] [CrossRef]
- Minott, A.D.; Brown, A.A. Differentiation of Fruiting and Non-fruiting Pimenta dioica (L.) Merr. Trees Based on Composition of Leaf Volatiles. J. Essent. Oil Res. 2007, 19, 354–357. [Google Scholar] [CrossRef]
- Meyer, B.N.; Ferrigni, N.R.; Putnam, J.E.; Jacobsen, L.B.; Nichols, D.E.; McLaughlin, J.L. Brine shrimp: A convenient general bioassay for active plant constituents. Planta Med. 1982, 45, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.H.V.; Martínez, G.C.R.; Uribe, C.T.B. Extracción de DNA. Cursos Básicos Sobre Biotecnología; Laboratorio de Biotecnología y Patología de Semillas, Producción de semillas, Postgrado en Recursos Genéticos y Producti-vidad; Colegio de Postgraduados, Campus Montecillo: Texcoco, México, 2015. [Google Scholar]
- Detcharoen, M.; Bumrungsri, S.; Voravuthikunchai, S.P. Complete Genome of Rose Myrtle, Rhodomyrtus tomentosa, and Its Population Genetics in Thai Peninsula. Plants 2023, 12, 1582. [Google Scholar] [CrossRef]
- Hien, P.T.T.; Le Thi, T.C.; Hang, V.T.T. Genetic diversity of Guava varieties (Psidium guajava L.) based on morphology and ISSR molecular markers. Biodiversitas 2024, 25, 1037–1045. [Google Scholar] [CrossRef]
- Hotelling, H. A generalized T test and measure of multivariate dispersion. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 31 July–12 August 2015; pp. 23–41. Available online: https://projecteuclid.org/euclid.bsmsp/1200500217 (accessed on 15 May 2025).
- Johnson, E.D. Discriminant analysis. In Applied Multivariate Methods for data Analysts; Johnson, E.D., Ed.; Duxbury Press Brookes: Pacific Grove, CA, USA; Cole Publishing Company: Eagle River, WI, USA, 1998. [Google Scholar]
- Betancurt, D.C.P.; Barrera, M.G.; Palacios, L.E.C. Actividad antibacteriana, determinación de polifenoles totales por Folin-Ciocalteu y toxicidad en Artemia salina de la especie vegetal Bauhinia variegata. Hechos Microbiológicos 2014, 5, 69–76. Available online: https://revistas.udea.edu.co/index.php/hm/article/view/323251 (accessed on 8 June 2025). [CrossRef]
- Nemera, B.; Kebede, M.; Enyew, M.; Feyissa, T. Genetic diversity and population structure of sorghum [Sorghum bicolor (L.) Moench] in Ethiopia as revealed by microsatellite markers. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2022, 72, 873–884. [Google Scholar] [CrossRef]
- Raichand, N.; Vensious, B.; Nguru, M. Phylogenetic Diversity of Allspice (Pimenta dioica) Collections from Tanzania Using Chloroplast (cp) rbcL Gene. Int. J. Clin. Ski. 2023, 17, 177–185. Available online: https://www.ijocs.org/clinical-journal/phylogenetic-diversity-of-allspice-pimenta-dioica-collections-from-tanzania-using--chloroplast-cp-rbcl-gene.pdf (accessed on 13 June 2025).
- Pino, J.A.; García, J.; Martínez, J.A. Solvent extraction and supercritical carbon dioxide extraction of Pimenta dioica Merrill leaf. J. Essent. Oil Res. 1997, 9, 689–691. [Google Scholar] [CrossRef]
- Komala, V.V.D.M. Qualitative, quantitative phytochemical analysis and in-vitro anti-mycobacterial evaluation of allspice. Int. J. Health Sci. 2022, 6, 2564–2581. [Google Scholar] [CrossRef]
- Vinhas, S.M.; Alves de Lima, A.; Gomes, S.M.; Fonseca, C.V.; Felix de Andrade, M.; Gleymir Casanova da Silva, R.; de Moraes, F.L.E.P.T.; de Lima, S.I.D.; Vinhas, G.M. Clove essential oil and eugenol: A review of their significance and uses. Food Biosci. 2024, 62, 106112. [Google Scholar] [CrossRef]
- Padovan, A.; Keszei, A.; Kulheim, C.; Foley, W. The evolution of foliar terpene diversity in Myrtaceae. Phytochem. Rev. 2014, 13, 695–716. [Google Scholar] [CrossRef]
- Zhang, H.-T.-X.; Lyu, F.-R.; He, J.-T.; Liu, C.-Y.; Zhou, Z.-Y.; Wu, R.-J.; Zhao, Z.-Q.; Li, H. Antibacterial, antioxidant and antiproliferation activities of essential oils and ethanolic extracts from Chinese mugwort (Artemisia vulgaris L.) leaf in Shanxi. Tradit. Med. Res. 2024, 9, 1–10. [Google Scholar] [CrossRef]
- Carev, I.; Gelemanović, A.; Glumac, M.; Tutek, K.; Dželalija, M.; Paiardini, A.; Prosseda, G. Centaurea triumfetii essential oil chemical composition, comparative analysis, and antimicrobial activity of selected compounds. Sci. Rep. 2023, 13, 7475. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, R.; Nurjanah, S.; Rialita, T. Antibacterial activity test of Δ-guaiene patchouli oil against bacteria Staphylococcus aureus and Staphylococcus epidermis. GASJ 2020, 6, 425–436. Available online: https://ejournal.unida.gontor.ac.id/index.php/agrotech (accessed on 13 June 2025). [CrossRef]
- Park, H.; Kim, B.; Kang, Y.; Kim, W. Study on chemical composition and biological activity of Psidium guajava leaf extracts. Curr. Issues Mol. Biol. 2024, 46, 2133–2143. [Google Scholar] [CrossRef]
- El Hajj, J.; Karam, L.; Jaber, A.; Cheble, E.; Akoury, E.; Kobeissy, P.H.; Ibrahim, J.N.; Yassin, A. Evaluation of antiproliferative potentials associated with the volatile compounds of Lantana camara flowers: Selective in vitro activity. Molecules 2024, 29, 5431. [Google Scholar] [CrossRef]
- Ajayi, O.S.; Arowosegbe, S.M.; Olawuni, I.J. GC-MS characterization and bioactivity studies of aerial part of Hilleria latifolia (Lam) extract and fractions: Antioxidant and antibacterial potentials. Ife J. Sci. 2024, 26, 569–584. [Google Scholar] [CrossRef]
- Zachariah, T.J.; Safeer, A.L.; Jayarajan, K.; Leela, N.K.; Vipin, T.M.; Saji, K.V.; Shiva, K.N.; Parthasarathy, V.A.; Mammootty, K.P. Correlation of metabolites in the leaf and berries of selected black pepper varieties. Sci. Hortic. 2010, 12, 418–422. [Google Scholar] [CrossRef]
- Barata, L.M.; Andrade, E.H.; Ramos, A.R.; de Lemos, O.F.; Setzer, W.N.; Byler, K.G.; Maia, J.G.S.; da Silva, J.K.R. Secondary metabolic profile as a tool for distinction and characterization of cultivars of black pepper (Piper nigrum L.) cultivated in Pará state, Brazil. Int. J. Mol. Sci. 2021, 22, 890. [Google Scholar] [CrossRef]
- Eggersdorfer, M.; Schmidt, K.; Péter, S.; Richards, J.; Winklhofer-Roob, B.; Hahn, A.; Obermüller-Jevic, U. Vitamin E: Not only a single stereoisomer. Free Radic. Biol. Med. 2024, 215, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Ji, T.; Zhang, M.; Fang, B. Recent advances in squalene: Biological activities, sources, extraction, and delivery systems. Trends Food Sci. Technol. 2024, 146, 104392. [Google Scholar] [CrossRef]
- Razak, R.A.; Shariff, M.; Yusoff, F.M.; Ismail, I.S. Bactericidal efficacy of selected medicinal plant crude extracts and their fractions against common fish pathogens. Sains Malays. 2019, 48, 1601–1608. [Google Scholar] [CrossRef]
- Hassiotis, C.N.; Vlachonasios, K.E. How biological and environmental factors affect the quality of lavender essential oils. Physiologia 2025, 5, 11. [Google Scholar] [CrossRef]
Primer | Sequence 5′–3′ | Annealing Temperature |
---|---|---|
ISSR 1 | (CA)8AAGG | 60 °C |
ISSR 2 | (CA)8AAGCT | 62 °C |
ISSR 3 | (GA)8CTC | 58 °C |
ISSR 4 | (AG)8CTC | 58 °C |
ISSR 5 | (AC)8CTA | 56 °C |
ISSR 6 | (AC)8CTG | 58 °C |
ISSR 7 | (AG)8CTG | 58 °C |
ISSR 8 | (AC)8CTT | 56 °C |
ISSR 9 | (AG)8C | 52 °C |
ISSR 10 | (GA)8 T | 50 °C |
Source of Variation | Degrees of Freedom | Sum of Squares | Mean Squares | p-Value | Variance Components | % |
---|---|---|---|---|---|---|
Between accessions | 5 | 97.67 | 19.53 | 0.9325 | 1.26 | 100.0 |
Within accessions | 0 | 0.0 | 0.0 | <0.0001 | 0 | 0 |
Total | 5 | 97.67 | 19.53 | 1.26 | 100.0 |
No. | RT | Compound | Male (%) | Female (%) |
---|---|---|---|---|
1 | 3.747 | p-xylene † | 0.77 ± 0.12 | 1.17 ± 0.23 |
2 | 3.819 | Nonane | 0.37 ± 0.59 | 0.27 ± 0.11 |
3 | 3.953 | 4-Octen-3-one | nd | 0.07 ± 0.01 |
4 | 4.238 | Cumene | 0.13 ± 0.1 | 0.16 ± 0.03 |
5 | 4.773 | Isocumene | 0.03 ± 0.00 | 0.04 ± 0.01 |
6 | 4.901 | 2-Methylnonane | nd | 0.04 ± 0.01 |
7 | 4.999 | Artemisia ketone | 0.06 ± 0.02 | 0.09 ± 0.7 |
8 | 5.117 | β-Thujene | 0.01 ± 0.01 | 0.03 ± 0.02 * |
9 | 5.420 | β-Myrcene | 1.89 ± 0.74 | 1.26 ± 0.73 |
10 | 5.586 | Decane | 0.38 ± 0.18 | 0.55 ± 0.05 |
11 | 6.044 | 5-Ethyl-2-methyl-heptane | nd | 0.04 ± 0.03 |
12 | 6.235 | Eucalyptol | 1.02 ± 0.26 | 0.77 ± 0.23 |
13 | 6.621 | β-Ocimene | 0.34 ± 0.06 | 0.35 ± 0.17 |
14 | 7.060 | 3-Methyl-decane | 0.03 ± 0.02 | 0.05 ± 0.03 |
15 | 7.497 | (+)-4-Carene | 0.07 ± 0.01 | 0.08 ± 0.02 |
16 | 7.710 | Undecane | 0.10 ± 0.02 | 0.21 ± 0.24 |
17 | 9.289 | 3-Methyl-undecane | nd | 0.05 ± 0.04 |
18 | 9.517 | 1-Terpinen-4-ol | 0.22 ± 0.06 | 0.21 ± 0.09 |
19 | 9.856 | α-Terpineol † | 0.25 ± 0.19 | 0.12 ± 0.08 |
20 | 9.958 | Dodecane | nd | 0.15 ± 0.11 |
21 | 13.028 | α-Fenchene | nd | 0.02 ± 0.01 |
22 | 13.673 | Eugenol † | 17.66 ± 35.17 | nd |
23 | 13.879 | Copaene | 0.68 ± 0.83 | 0.73 ± 0.43 |
24 | 14.220 | (-)-β-Elemene | 0.47 ± 0.29 | 0.93 ± 0.37 |
25 | 14.548 | Methyl eugenol | 59.20 ± 34.67 | 68.93 ± 2.75 |
26 | 14.821 | β-Caryophyllene † | 6.50 ± 1.55 | 6.65 ± 1.11 |
27 | 15.014 | β-Cubebene | nd | 0.56 ± 0.23 |
28 | 15.525 | α-Caryophyllene | 0.84 ± 0.14 | 0.75 ± 0.16 |
29 | 16.088 | Germacrene D | 0.22 ± 0.07 | 0.19 ± 0.10 |
30 | 16.199 | β-Selinene | 0.20 ± 0.09 | 0.11 ± 0.04 |
31 | 16.390 | α-Selinene | 0.19 ± 0.08 | 0.13 ± 0.05 |
32 | 16.613 | α-Farnesene | 0.08 ± 0.04 | 0.11 ± 0.05 |
33 | 16.747 | (+)-Epi-bicyclosesquiphellandrene | 0.03 ± 0.00 | nd |
34 | 16.919 | (+)-δ-Cadinene | 0.16 ± 0.01 | 0.13 ± 0.06 |
35 | 18.129 | Caryophyllene oxide | 0.44 ± 0.21 | 0.22 ± 0.05 |
36 | 19.599 | δ-Guaiene | nd | 0.25 ± 0.12 |
37 | 20.905 | 5-Methyl-1-undecene | 0.05 ± 0.01 | nd |
38 | 22.762 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | nd | 0.12 ± 0.03 |
39 | 33.528 | Vitamin E | 3.53 ± 1.47 | 9.18 ± 3.23 |
40 | 34.942 | Heptacosane | 0.77 ± 0.54 | 0.69 ± 0.71 |
41 | 36.079 | 1-Docosene | nd | 1.25 ± 1.25 |
42 | 36.496 | Squalene | 3.32 ± 0.60 | 3.31 ± 3.40 |
Leaf | b | p-Value | e | p-Value |
---|---|---|---|---|
Male | −1.2653 | 1.355 × 10−10 | 222.872 | 6.550 × 10−12 |
Female | −1.5747 | 2.536 × 10−6 | 282.000 | 1.191 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montalvo-López, I.; García-Mateos, M.d.R.; Martínez-Solís, J.; Soto-Hernández, R.M.; Ybarra-Moncada, M.C. Molecular Characterization, Identification of the Volatile Organic Compounds by GC–MS, and Assessment of the Cytotoxic Activity of Leaves of Pimenta dioica L. Merrill Trees from Mexico. Metabolites 2025, 15, 617. https://doi.org/10.3390/metabo15090617
Montalvo-López I, García-Mateos MdR, Martínez-Solís J, Soto-Hernández RM, Ybarra-Moncada MC. Molecular Characterization, Identification of the Volatile Organic Compounds by GC–MS, and Assessment of the Cytotoxic Activity of Leaves of Pimenta dioica L. Merrill Trees from Mexico. Metabolites. 2025; 15(9):617. https://doi.org/10.3390/metabo15090617
Chicago/Turabian StyleMontalvo-López, Isis, María del Rosario García-Mateos, Juan Martínez-Solís, Ramón Marcos Soto-Hernández, and Ma Carmen Ybarra-Moncada. 2025. "Molecular Characterization, Identification of the Volatile Organic Compounds by GC–MS, and Assessment of the Cytotoxic Activity of Leaves of Pimenta dioica L. Merrill Trees from Mexico" Metabolites 15, no. 9: 617. https://doi.org/10.3390/metabo15090617
APA StyleMontalvo-López, I., García-Mateos, M. d. R., Martínez-Solís, J., Soto-Hernández, R. M., & Ybarra-Moncada, M. C. (2025). Molecular Characterization, Identification of the Volatile Organic Compounds by GC–MS, and Assessment of the Cytotoxic Activity of Leaves of Pimenta dioica L. Merrill Trees from Mexico. Metabolites, 15(9), 617. https://doi.org/10.3390/metabo15090617