The Utilization Value of Condensate Water from the Drying Process of Lonicera japonica via Metabolomics Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Sample Preparation for Metabolite Extraction
2.2.1. Preparation of ‘JYHC’ Test Material
2.2.2. Preparation of ‘JYHG’ Test Material
2.2.3. Preparation of ‘JYHX’ Test Material
2.3. Secondary Metabolites Analysis by UPLC-ESI-MS/MS
2.4. Volatile Analysis by GC-MS
2.5. Multivariate Statistical Analysis
2.6. KEGG Pathway Analysis
3. Results
3.1. Overview of the Metabolites in ‘JYHC’
3.2. PCA and OPLS-DA Analysis
3.3. Differential Metabolites Screening
3.4. KEGG Pathway Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LJF | Lonicerae japonicae flos |
JYHC | Condensate water during the drying of Lonicerae japonicae flos |
JYHX | Fresh Lonicerae japonicae flos |
JYHG | Dry Lonicerae japonicae flos |
UPLC-MS/MS | Ultra-Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry |
GC-MS | Gas Chromatography-Mass Spectrometry |
PCA | Principal component analysis |
OPLS-DA | Orthogonal partial least-squares discrimination analysis |
VIP | Variable importance in projection |
FC | Fold Change |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
References
- Ma, P.; Yuan, L.; Jia, S.; Zhou, Z.; Xu, D.; Huang, S.; Meng, F.; Zhang, Z.; Nan, Y. Lonicerae japonicae flos With the Homology of Medicine and Food: A Review of Active Ingredients, Anticancer Mechanisms, Pharmacokinetics, Quality Control, Toxicity and Applications. Front. Oncol. 2024, 14, 1446328. [Google Scholar] [CrossRef]
- Zheng, S.; Liu, S.; Hou, A.; Wang, S.; Na, Y.; Hu, J.; Jiang, H.; Yang, L. Systematic Review of Lonicerae japonicae Flos: A Significant Food and Traditional Chinese Medicine. Front. Pharmacol. 2022, 13, 1013992. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, B.; Hu, X.; Dong, S.; Hong, M.; Wang, J.; Chen, J.; Zhang, J.; Zhang, Q.; Li, X.; et al. Deciphering the Formulation Secret Underlying Chinese Huo-Clearing Herbal Drink. Front. Pharmacol. 2021, 12, 654699. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, Q.; Hu, J.; Zhang, Y.; Li, J. Research Progress on Chemical Constituents of Lonicerae japonicae Flos. Biomed. Res. Int. 2016, 2016, 8968940. [Google Scholar]
- Li, Y.; Li, W.; Fu, C.; Song, Y.; Fu, Q. Lonicerae japonicae flos and Lonicerae flos: A Systematic Review of Ethnopharmacology, Phytochemistry, and Pharmacology. Phytochem. Rev. 2020, 19, 1–61. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cai, W.; Weng, X.; Li, Q.; Wang, Y.; Chen, Y.; Zhang, W.; Yang, Q.; Guo, Y.; Zhu, X.; et al. Lonicerae japonicae flos and Lonicerae flos: A Systematic Pharmacology Review. Evid. Based Complement. Alternat. Med. 2015, 2015, 905063. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zeng, S.; Chen, L.; Sun, Q.; Liu, M.; Yang, H.; Ren, S.; Ming, T.; Meng, X.; Xu, H. Updated Pharmacological Effects of Lonicerae japonicae flos, With a Focus on Its Potential Efficacy on Coronavirus Disease-2019 (COVID-19). Curr. Opin. Pharmacol. 2021, 60, 200–207. [Google Scholar] [CrossRef]
- Farmanpour Kalalagh, K.; Mohebodini, M.; Fattahi, R.; Beyraghdar Kashkooli, A.; Davarpanah Dizaj, S.; Salehifar, F.; Mokhtari, A.M. Drying Temperatures Affect the Qualitative-Quantitative Variation of Aromatic Profiling in Anethum graveolens L. Ecotypes as an Industrial-Medicinal-Vegetable Plant. Front. Plant. Sci. 2023, 14, 1137840. [Google Scholar] [CrossRef]
- Hazrati, S.; Lotfi, K.; Govahi, M.; Ebadi, M.T. A Comparative Study: Influence of Various Drying Methods on Essential Oil Components and Biological Properties of Stachys lavandulifolia. Food Sci. Nutr. 2021, 9, 2612–2619. [Google Scholar] [CrossRef]
- Chiocchio, I.; Mandrone, M.; Tacchini, M.; Guerrini, A.; Poli, F. Phytochemical Profile and In Vitro Bioactivities of Plant-Based By-Products in View of a Potential Reuse and Valorization. Plants 2023, 12, 795. [Google Scholar] [CrossRef]
- Kaur, S.; Panesar, P.S.; Chopra, H.K. Citrus Processing By-Products: An Overlooked Repository of Bioactive Compounds. Crit. Rev. Food Sci. Nutr. 2023, 63, 67–86. [Google Scholar] [CrossRef]
- Asma, U.; Morozova, K.; Ferrentino, G.; Scampicchio, M. Apples and Apple By-Products: Antioxidant Properties and Food Applications. Antioxidants 2023, 12, 1456. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Silva, P. The Wine Industry By-Products: Applications for Food Industry and Health Benefits. Antioxidants 2022, 11, 2025. [Google Scholar] [CrossRef]
- López-Fernández-Sobrino, R.; Torres-Fuentes, C.; Bravo, F.I.; Muguerza, B. Winery By-Products as a Valuable Source for Natural Antihypertensive Agents. Crit. Rev. Food Sci. Nutr. 2023, 63, 7708–7721. [Google Scholar] [CrossRef]
- Reguengo, L.M.; Salgaço, M.K.; Sivieri, K.; Maróstica Júnior, M.R. Agro-Industrial By-Products: Valuable Sources of Bioactive Compounds. Food Res. Int. 2022, 152, 110871. [Google Scholar] [CrossRef] [PubMed]
- Santorelli, L.; Caterino, M.; Costanzo, M. Proteomics and Metabolomics in Biomedicine. Int. J. Mol. Sci. 2023, 24, 16913. [Google Scholar] [CrossRef]
- Pereira, P.R.; Carrageta, D.F.; Oliveira, P.F.; Rodrigues, A.; Alves, M.G.; Monteiro, M.P. Metabolomics as a Tool for the Early Diagnosis and Prognosis of Diabetic Kidney Disease. Med. Res. Rev. 2022, 42, 1518–1544. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, D. Plant Metabolomics and Metabolic Biology. J. Integr. Plant Biol. 2014, 56, 814–815. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kumar Patel, M.; Kumar, N.; Bajpai, A.B.; Siddique, K.H.M. Metabolomics and Molecular Approaches Reveal Drought Stress Tolerance in Plants. Int. J. Mol. Sci. 2021, 22, 9108. [Google Scholar] [CrossRef]
- Fraga-Corral, M.; Carpena, M.; Garcia-Oliveira, P.; Pereira, A.G.; Prieto, M.A.; Simal-Gandara, J. Analytical Metabolomics and Applications in Health, Environmental and Food Science. Crit. Rev. Anal. Chem. 2022, 52, 712–734. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Liu, Y.; Xu, Y.J. MS based foodomics: An Edge Tool Integrated Metabolomics and Proteomics for Food Science. Food Chem. 2024, 446, 138852. [Google Scholar] [CrossRef]
- Xiong, Y.; Ma, P.; Yan, Y.; Huang, L.; Li, Y.; Wang, X. Widely Targeted Metabolomics Analysis Reveals the Differences in Nonvolatile Compounds of Citronella Before and After Drying. Biomed. Chromatogr. 2023, 37, e5620. [Google Scholar] [CrossRef]
- Xue, G.; Su, S.; Yan, P.; Shang, J.; Wang, J.; Yan, C.; Li, J.; Wang, Q.; Xiong, X.; Xu, H. Integrative Analyses of Widely Targeted Metabolomic Profiling and Derivatization-Based LC-MS/MS Reveals Metabolic Changes of Zingiberis Rhizoma and Its Processed Products. Food Chem. 2022, 389, 133068. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.J.; Chen, J.B.; Cao, J.P.; Li, X.; Sun, C.D. Citrus Flavonoids and Their Antioxidant Evaluation. Crit. Rev. Food Sci. Nutr. 2022, 62, 3833–3854. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.C.; Pinto, D.; Silva, A.M.S. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef] [PubMed]
- Rakha, A.; Umar, N.; Rabail, R.; Butt, M.S.; Kieliszek, M.; Hassoun, A.; Aadil, R.M. Anti-Inflammatory and Anti-Allergic Potential of Dietary Flavonoids: A Review. Biomed. Pharmacother. 2022, 156, 113945. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, L.; Ran, W.; Zhong, K.; Zhao, Y.; Gao, H. Antimicrobial Activities of Natural Flavonoids Against Foodborne Pathogens and Their Application in Food Industry. Food Chem. 2024, 460, 140476. [Google Scholar] [CrossRef]
- Sharma, A.; Biharee, A.; Kumar, A.; Jaitak, V. Antimicrobial Terpenoids as a Potential Substitute in Overcoming Antimicrobial Resistance. Curr. Drug Targets 2020, 21, 1476–1494. [Google Scholar] [CrossRef]
- Ge, J.; Liu, Z.; Zhong, Z.; Wang, L.; Zhuo, X.; Li, J.; Jiang, X.; Ye, X.Y.; Xie, T.; Bai, R. Natural Terpenoids with Anti-Inflammatory Activities: Potential Leads for Anti-Inflammatory Drug Discovery. Bioorg. Chem. 2022, 124, 105817. [Google Scholar] [CrossRef] [PubMed]
- Grassmann, J. Terpenoids as Plant Antioxidants. Vitam. Horm. 2005, 72, 505–535. [Google Scholar]
- Solórzano-Santos, F.; Miranda-Novales, M.G. Essential Oils from Aromatic Herbs as Antimicrobial Agents. Curr. Opin. Biotechnol. 2012, 23, 136–141. [Google Scholar] [CrossRef]
- Falleh, H.; Ben Jemaa, M.; Saada, M.; Ksouri, R. Essential Oils: A Promising Eco-Friendly Food Preservative. Food Chem. 2020, 330, 127268. [Google Scholar] [CrossRef]
- Li, Y.; He, L.; Song, Y.; Zhang, P.; Chen, D.; Guan, L.; Liu, S. Comprehensive Study of Volatile Compounds and Transcriptome Data Providing Genes for Grape Aroma. BMC Plant Biol. 2023, 23, 171. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Zhao, W.; Xiao, Z.; Zhu, J.; Xiong, W.; Chen, F. Characterization of Aroma Compounds and Effects of Amino Acids on the Release of Esters in Laimao Baijiu. J. Sci. Food Agric. 2023, 103, 1784–1799. [Google Scholar] [CrossRef]
- Wu, C.; Wang, F.; Liu, J.; Zou, Y.; Chen, X. A comparison of volatile fractions obtained from Lonicera macranthoides via different extraction processes: Ultrasound, microwave, Soxhlet extraction, hydrodistillation, and cold maceration. Integr. Med. Res. 2015, 4, 171–177. [Google Scholar] [CrossRef]
- Li, S.-F.; Guo, X.-M.; Hao, X.-F.; Feng, S.-H.; Hu, Y.-J.; Yang, Y.-Q.; Wang, H.-F.; Yu, Y.-J. Untargeted metabolomics study of Lonicerae japonicae flos processed with different drying methods via GC-MS and UHPLC-HRMS in combination with chemometrics. Ind. Crops Prod. 2022, 186, 115179. [Google Scholar] [CrossRef]
- Song, J.; Han, J.; Fu, L.; Shang, H.; Yang, L. Assessment of characteristics aroma of heat pump drying (HPD) jujube based on HS-SPME/GC–MS and e-nose. J. Food Compos. Anal. 2022, 110, 104402. [Google Scholar] [CrossRef]
- Bezerra Rodrigues Dantas, L.; Silva, A.L.M.; da Silva Júnior, C.P.; Alcântara, I.S.; Correia de Oliveira, M.R.; Oliveira Brito Pereira Bezerra Martins, A.; Ribeiro-Filho, J.; Coutinho, H.D.M.; Rocha Santos Passos, F.; Quintans-Junior, L.J.; et al. Nootkatone Inhibits Acute and Chronic Inflammatory Responses in Mice. Molecules 2020, 25, 2181. [Google Scholar] [CrossRef] [PubMed]
- Galisteo Pretel, A.; Pérez del Pulgar, H.; Olmeda, A.S.; Gonzalez-Coloma, A.; Barrero, A.F.; Quílez del Moral, J.F. Novel Insect Antifeedant and Ixodicidal Nootkatone Derivatives. Biomolecules 2019, 9, 742. [Google Scholar] [CrossRef]
- Yong, Z.; Zibao, H.; Zhi, Z.; Ning, M.; Ruiqi, W.; Mimi, C.; Xiaowen, H.; Lin, D.; Zhixuan, X.; Qiang, L.; et al. Nootkatone, a Sesquiterpene Ketone From Alpiniae oxyphyllae Fructus, Ameliorates Metabolic-Associated Fatty Liver by Regulating AMPK and MAPK Signaling. Front. Pharmacol. 2022, 13, 909280. [Google Scholar] [CrossRef]
- Norris, E.J.; Chen, R.; Li, Z.; Geldenhuys, W.; Bloomquist, J.R.; Swale, D.R. Mode of Action and Toxicological Effects of the Sesquiterpenoid, Nootkatone, in Insects. Pestic. Biochem. Physiol. 2022, 183, 105085. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Beng, H.; Su, H.; Han, F.; Fan, Z.; Lv, N.; Jovanović, A.; Tan, W. Isosteviol Prevents the Development of Isoprenaline-Induced Myocardial Hypertrophy. Int. J. Mol. Med. 2019, 44, 1932–1942. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Song, L.; Lu, Z.; Sun, T.; Lun, J.; Zhou, C.; Sun, X.; Tan, W.; Zhao, H. Isosteviol Improves Cardiac Function and Promotes Angiogenesis After Myocardial Infarction in Rats. Cell Tissue Res. 2022, 387, 275–285. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, B.; Xu, G.; Xu, C.; Ou, E.; Liu, J.; Sun, X.; Zhao, Y. Synthesis and In Vivo Screening of Isosteviol Derivatives as New Cardioprotective Agents. Eur. J. Med. Chem. 2021, 219, 113396. [Google Scholar] [CrossRef]
- Ji, X.Y.; Feng, J.T.; Zhou, Z.Y.; Zhang, Y.Y.; Ma, S.Z.; Wang, X.Q.; Zhang, B. Catalpol Alleviates Heat Stroke-Induced Liver Injury in Mice by Downregulating the JAK/STAT Signaling Pathway. Phytomedicine 2024, 132, 155853. [Google Scholar] [CrossRef] [PubMed]
- Ni, H.; Rui, Q.; Kan, X.; Gao, R.; Zhang, L.; Zhang, B. Catalpol Ameliorates Oxidative Stress and Neuroinflammation after Traumatic Brain Injury in Rats. Neurochem. Res. 2023, 48, 681–695. [Google Scholar] [CrossRef]
- Savova, M.S.; Mihaylova, L.V.; Tews, D.; Wabitsch, M.; Georgiev, M.I. Targeting PI3K/AKT Signaling Pathway in Obesity. Biomed. Pharmacother. 2023, 159, 114244. [Google Scholar] [CrossRef]
- She, Y.; Shao, C.Y.; Liu, Y.F.; Huang, Y.; Yang, J.; Wan, H.T. Catalpol Reduces LPS-Induced BV2 Immunoreactivity Through NF-κB/NLRP3 Pathways: An In Vitro and In Silico Study. Front. Pharmacol. 2024, 15, 1415445. [Google Scholar] [CrossRef]
- Sun, S.; Xu, Y.; Yu, N.; Zhang, M.; Wang, J.; Wan, D.; Tian, Z.; Zhu, H. Catalpol Alleviates Ischemic Stroke Through Promoting Angiogenesis and Facilitating Proliferation and Differentiation of Neural Stem Cells via the VEGF-A/KDR Pathway. Mol. Neurobiol. 2023, 60, 6227–6247. [Google Scholar] [CrossRef]
- Magiera, A.; Kołodziejczyk-Czepas, J.; Olszewska, M.A. Antioxidant and Anti-Inflammatory Effects of Vanillic Acid in Human Plasma, Human Neutrophils, and Non-Cellular Models In Vitro. Molecules 2025, 30, 467. [Google Scholar] [CrossRef]
- Ziadlou, R.; Barbero, A.; Martin, I.; Wang, X.; Qin, L.; Alini, M.; Grad, S. Anti-Inflammatory and Chondroprotective Effects of Vanillic Acid and Epimedin C in Human Osteoarthritic Chondrocytes. Biomolecules 2020, 10, 932. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, Z.; Li, C.; Liu, D.; Li, X.; Xu, J.; Chen, N.; Wang, X.; Li, Q.; Li, Y. Multiple Beneficial Effects of Aloesone from Aloe vera on LPS-Induced RAW264.7 Cells, Including the Inhibition of Oxidative Stress, Inflammation, M1 Polarization, and Apoptosis. Molecules 2023, 28, 1617. [Google Scholar] [CrossRef]
- Egner, P.; Pavlačková, J.; Sedlaříková, J.; Pleva, P.; Mokrejš, P.; Janalíková, M. Non-Alcohol Hand Sanitiser Gels with Mandelic Acid and Essential Oils. Int. J. Mol. Sci. 2023, 24, 3855. [Google Scholar] [CrossRef]
- Wu, Q.; Zhao, D.; Leng, Y.; Chen, C.; Xiao, K.; Wu, Z.; Chen, F. Identification of the Hypoglycemic Active Components of Lonicera japonica Thunb. and Lonicera hypoglauca Miq. by UPLC-Q-TOF-MS. Molecules 2024, 29, 4848. [Google Scholar] [CrossRef]
- Manca, M.L.; Matricardi, P.; Cencetti, C.; Peris, J.E.; Melis, V.; Carbone, C.; Escribano, E.; Zaru, M.; Fadda, A.M.; Manconi, M. Combination of Argan Oil and Phospholipids for the Development of an Effective Liposome-Like Formulation Able to Improve Skin Hydration and Allantoin Dermal Delivery. Int. J. Pharm. 2016, 505, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Nokoorani, Y.D.; Shamloo, A.; Bahadoran, M.; Moravvej, H. Fabrication and Characterization of Scaffolds Containing Different Amounts of Allantoin for Skin Tissue Engineering. Sci. Rep. 2021, 11, 16164. [Google Scholar] [CrossRef] [PubMed]
- Saucedo-Acuña, R.A.; Meza-Valle, K.Z.; Cuevas-González, J.C.; Ordoñez-Casanova, E.G.; Castellanos-García, M.I.; Zaragoza-Contreras, E.A.; Tamayo-Pérez, G.F. Characterization and In Vivo Assay of Allantoin-Enriched Pectin Hydrogel for the Treatment of Skin Wounds. Int. J. Mol. Sci. 2023, 24, 7377. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, N.; Imtiaz, F.; Shafiq, N.; Rehman, S.; Munir, H.; Bourhia, M.; Almaary, K.S.; Nafidi, H.A. Oleogels for the Promotion of Healthy Skin Care Products: Synthesis and Characterization of Allantoin-Containing Moringa-Based Oleogel. Curr. Pharm. Biotechnol. 2024, 25, 2326–2336. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, S.; Zhu, G.; Huang, R.; Yin, Y.; Ren, W. Betaine Inhibits Interleukin-1β Production and Release: Potential Mechanisms. Front. Immunol. 2018, 9, 2670. [Google Scholar] [CrossRef]
- Zhao, G.; He, F.; Wu, C.; Li, P.; Li, N.; Deng, J.; Zhu, G.; Ren, W.; Peng, Y. Betaine in Inflammation: Mechanistic Aspects and Applications. Front. Immunol. 2018, 9, 1070. [Google Scholar] [CrossRef]
- Zhao, N.; Yang, Y.; Chen, C.; Jing, T.; Hu, Y.; Xu, H.; Wang, S.; He, Y.; Liu, E.; Cui, J. Betaine Supplementation Alleviates Dextran Sulfate Sodium-Induced Colitis via Regulating the Inflammatory Response, Enhancing the Intestinal Barrier, and Altering Gut Microbiota. Food Funct. 2022, 13, 12814–12826. [Google Scholar] [CrossRef]
- Li, L.; Sun, L.; Qiu, Y.; Zhu, W.; Hu, K.; Mao, J. Protective Effect of Stachydrine Against Cerebral Ischemia-Reperfusion Injury by Reducing Inflammation and Apoptosis Through P65 and JAK2/STAT3 Signaling Pathway. Front. Pharmacol. 2020, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhang, M.; Li, W.; Zhu, S.; Zhang, D. Stachydrine Attenuates IL-1β-Induced Inflammatory Response in Osteoarthritis Chondrocytes Through the NF-κB Signaling Pathway. Chem. Biol. Interact. 2020, 326, 109136. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, A.; Wu, Y.; Guan, W.; Xiong, B.; Peng, X.; Wei, X.; Chen, C.; Liu, Z. Stachydrine Ameliorates Carbon Tetrachloride-Induced Hepatic Fibrosis by Inhibiting Inflammation, Oxidative Stress, and Regulating MMPs/TIMPs System in Rats. Biomed. Pharmacother. 2018, 97, 1586–1594. [Google Scholar] [CrossRef] [PubMed]
- Machado Querido, M.; Paulo, I.; Hariharakrishnan, S.; Rocha, D.; Pereira, C.C.; Barbosa, N.; Bordado, J.M.; Teixeira, J.P.; Galhano Dos Santos, R. Auto-Disinfectant Acrylic Paints Functionalised with Triclosan and Isoborneol-Antibacterial Assessment. Polymers 2021, 13, 2197. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Zhao, X.; Luo, Y.; Zheng, K.; Wu, M. Highly Effective Antibacterial AgNPs@Hinokitiol Grafted Chitosan for Construction of Durable Antibacterial Fabrics. Int. J. Biol. Macromol. 2022, 209, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Rebia, R.A.; Binti Sadon, N.S.; Tanaka, T. Natural Antibacterial Reagents (Centella, Propolis, and Hinokitiol) Loaded into Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] Composite Nanofibers for Biomedical Applications. Nanomaterials 2019, 9, 1665. [Google Scholar] [CrossRef]
- Do Nascimento, A.L.; Guedes, J.B.; Costa, W.K.; de Veras, B.O.; de Aguiar, J.; Navarro, D.; Correia, M.; Napoleão, T.H.; de Oliveira, A.M.; da Silva, M.V. Essential Oil from the Leaves of Eugenia pohliana DC. (Myrtaceae) Alleviates Nociception and Acute Inflammation in Mice. Inflammopharmacology 2022, 30, 2273–2284. [Google Scholar] [CrossRef]
- Dos Santos de Moraes, P.G.; da Silva Santos, I.B.; Silva, V.B.G.; Dede Oliveira FariasAguiar, J.C.R.; do Amaral Ferraz Navarro, D.M.; de Oliveira, A.M.; Dos Santos Correia, M.T.; Costa, W.K.; da Silva, M.V. Essential Oil from Leaves of Myrciaria floribunda (H. West ex Willd.) O. Berg Has Antinociceptive and Anti-Inflammatory Potential. Inflammopharmacology 2023, 31, 3143–3151. [Google Scholar] [CrossRef]
- Hasni, M.; Belboukhari, N.; Sekkoum, K.; Stefan-van Staden, R.I.; Alothman, Z.A.; Demir, E.; Ali, I. Heliotropium bacciferum Essential Oil Extraction: Composition Determination by GC-MS and Anti-Inflammatory and Antibacterial Activities Evaluation. Anal. Biochem. 2023, 683, 115366. [Google Scholar] [CrossRef]
- Yang, X.; Zhou, Y.; Chen, Z.; Chen, C.; Han, C.; Li, X.; Tian, H.; Cheng, X.; Zhang, K.; Zhou, T.; et al. Curcumenol Mitigates Chondrocyte Inflammation by Inhibiting the NF-κB and MAPK Pathways and Ameliorates DMM-Induced OA in Mice. Int. J. Mol. Med. 2021, 48, 192. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Han, X.; Ma, J.; Zhang, R.; Zou, K.; Wang, X.; Yuan, W.; Qiu, M.; Chen, J.; Yang, Y.; et al. 5-Hydroxymethylfurfural Attenuates Osteoarthritis by Upregulating Glucose Metabolism in Chondrocytes. Phytomedicine 2025, 139, 156499. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, Z.; Shen, C.; Zou, H.; Zhang, Z.; Wang, K.; Bai, R.; Kang, Y.; Ye, X.Y.; Xie, T. 5-Hydroxymethylfurfural Alleviates Inflammatory Lung Injury by Inhibiting Endoplasmic Reticulum Stress and NLRP3 Inflammasome Activation. Front. Cell Dev. Biol. 2021, 9, 782427. [Google Scholar] [CrossRef]
- Arora, R.; Sawney, S.; Saini, V.; Steffi, C.; Tiwari, M.; Saluja, D. Esculetin Induces Antiproliferative and Apoptotic Responses in Pancreatic Cancer Cells by Directly Binding to KEAP1. Mol. Cancer 2016, 15, 64. [Google Scholar] [CrossRef]
- Jiang, R.; Su, G.; Chen, X.; Chen, S.; Li, Q.; Xie, B.; Zhao, Y. Esculetin Inhibits Endometrial Cancer Proliferation and Promotes Apoptosis via hnRNPA1 to Downregulate BCLXL and XIAP. Cancer Lett. 2021, 521, 308–321. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.T.; Liu, B.; Ai, Z.Z.; Hong, Z.C.; You, P.T.; Wu, H.Z.; Yang, Y.F. Esculetin Inhibits Cancer Cell Glycolysis by Binding Tumor PGK2, GPD2, and GPI. Front. Pharmacol. 2020, 11, 379. [Google Scholar] [CrossRef]
- Chen, Y.; Mai, Q.; Chen, Z.; Lin, T.; Cai, Y.; Han, J.; Wang, Y.; Zhang, M.; Tan, S.; Wu, Z.; et al. Dietary Palmitoleic Acid Reprograms Gut Microbiota and Improves Biological Therapy Against Colitis. Gut Microbes 2023, 15, 2211501. [Google Scholar] [CrossRef] [PubMed]
No | Class | Compounds | VIP | p-Value | FC |
---|---|---|---|---|---|
1 | Terpenoids | 11-acetylamarolide | 1.0314 | 0.0029 | 30.3923 |
2 | Epikatonic acid | 1.0310 | 0.0043 | 19.8401 | |
3 | Isosteviol | 1.0309 | 0.0037 | 14.8007 | |
4 | Verbenalin; Cornin | 1.0301 | 0.0037 | 5.5482 | |
5 | Ilicic acid | 1.0301 | 0.0074 | 16.6428 | |
6 | Catalpol | 1.0300 | 0.0131 | 45.3682 | |
7 | Curcumenone | 1.0284 | 0.0160 | 23.8513 | |
8 | 7-Oxodehydroabietic acid | 1.0283 | 0.0037 | 318.2749 | |
9 | Monomelittoside | 1.0283 | 0.0222 | 32.3884 | |
10 | Nootkatone | 1.0267 | 0.0189 | 15.8299 | |
11 | 26,27-Dihydroxylanosta-7,9(11),24-trien-3-one | 1.0252 | 0.0265 | 13.4889 | |
12 | Pisiferic acid | 1.0185 | 0.0561 | 17.3450 | |
13 | Oleuropeic acid | 1.0114 | 0.0246 | 7.5915 | |
14 | Phenolic acids | 4-Methylbenzoic acid | 1.0315 | 0.0020 | 25.1366 |
15 | Mandelic acid | 1.0314 | 0.0043 | 60.8357 | |
16 | 3-Methylsalicylic Acid | 1.0312 | 0.0040 | 28.0947 | |
17 | Aloesone | 1.0311 | 0.0071 | 71.9037 | |
18 | 2-Methylbenzoic acid | 1.0309 | 0.0062 | 41.9502 | |
19 | Phthalic acid | 1.0295 | 0.0058 | 33.8591 | |
20 | Propyl 4-hydroxybenzoate | 1.0295 | 0.0139 | 29.7368 | |
21 | 2-(Formylamino)benzoic acid | 1.0295 | 0.0003 | 14.3260 | |
22 | Piperonylic acid | 1.0290 | 0.0141 | 23.0521 | |
23 | 4-Hydroxybenzoic acid | 1.0255 | 0.0062 | 6.0468 | |
24 | Methyl 4-hydroxybenzoate | 1.0227 | 0.0048 | 10.3296 | |
25 | Vanillic acid | 1.0219 | 0.0010 | 3.1129 | |
26 | 3-Hydroxy-4-methoxybenzoic acid; Isovanillic Acid | 1.0165 | 0.0068 | 4.3149 | |
27 | Dihydroferulic Acid | 1.0132 | 0.0277 | 11.6718 | |
28 | Benzoic acid | 1.0092 | 0.0083 | 4.8672 | |
29 | Isochlorogenic acid B | 1.0003 | 0.0723 | 8.4708 | |
30 | Alkaloids | Allantoin | 1.0319 | 0.0001 | 70.7447 |
31 | 2,4,6,6-Tetramethyl-3(6H)-pyridinone | 1.0317 | 0.0028 | 872.5247 | |
32 | 6,7-dimethoxy-2-methyl-3,4-dihydro-1h-isoquinoline | 1.0316 | 0.0014 | 18.2081 | |
33 | Solavetivone | 1.0310 | 0.0053 | 33.1317 | |
34 | 2(3H)-Benzothiazolone | 1.0308 | 0.0078 | 44.7512 | |
35 | Hordenine | 1.0307 | 0.0060 | 22.9234 | |
36 | Aurantiamide acetate | 1.0306 | 0.0055 | 18.0396 | |
37 | Betaine | 1.0305 | 0.0030 | 15.7049 | |
38 | Candicine | 1.0304 | 0.0247 | 411.4936 | |
39 | Aurantiamide | 1.0303 | 0.0075 | 20.8872 | |
40 | Isatin | 1.0301 | 0.0148 | 79.3473 | |
41 | Stachydrine | 1.0291 | 0.0019 | 17.9690 | |
42 | Dopamine | 1.0286 | 0.0018 | 2.8634 | |
43 | N-Caffeoylputrescine | 1.0283 | 0.0147 | 16.4331 | |
44 | N-Methylserotonin | 1.0272 | 0.0209 | 17.4776 | |
45 | Cinnamamide | 1.0261 | 0.0365 | 44.7934 | |
46 | N-Isobutyl Decanamide | 1.0124 | 0.0096 | 7.1458 | |
47 | N-Butylbenzenesulfonamide | 1.0043 | 0.0101 | 20.8540 | |
48 | 3-Hydroxypyridine | 1.0009 | 0.0328 | 4.9551 | |
49 | Quinones | 2,7-Dihydroxy-4-methoxyphenanthrene | 1.0315 | 0.0016 | 18.1935 |
50 | anthraquinone-2-aldehyde | 1.0309 | 0.0046 | 18.8696 | |
51 | Hircinol(2,5-Dihydroxy-4-methoxy-9,10-dihydrophenanthrene) | 1.0282 | 0.0175 | 19.3460 | |
52 | 2-Methyl-1,3,6-trihydroxy-9,10-anthraquinone | 1.0281 | 0.0174 | 23.5978 | |
53 | 2,3-Dihydro-1,4-naphthoquinone | 1.0042 | 0.0006 | 47.7627 | |
54 | Flavonoids | 6-prenylnaringenin | 1.0280 | 0.0377 | 114.6009 |
55 | Homomangiferin | 1.0274 | 0.0351 | 50.2422 | |
56 | 4′-Hydroxy-2,4,6-trimethoxydihydrochalcone; Loureirin B | 1.0274 | 0.0274 | 35.3058 | |
57 | Herbacetin | 1.0264 | 0.0353 | 37.1602 | |
58 | Chrysin | 1.0048 | 0.0314 | 44.3305 |
No | Class | Compounds | VIP | p-Value | FC |
---|---|---|---|---|---|
1 | Terpenoids | 1-((1S,3aR,4R,7S,7aS)-4-Hydroxy-7-isopropyl-4-methyloctahydro-1H-inden-1-yl)ethanone | 1.0307 | 0.0041 | inf |
2 | Caryophyllenyl alcohol | 1.0301 | 0.0128 | inf | |
3 | 2,6-Dimethyl-2-trans-6-octadiene | 1.0309 | 0.0049 | inf | |
4 | 2,6-Octadiene, 2,6-dimethyl- | 1.0309 | 0.0049 | inf | |
5 | Agarospirol | 1.0311 | 0.0022 | inf | |
6 | 5,9-Undecadien-2-one, 6,10-dimethyl- | 1.0003 | 0.1224 | inf | |
7 | Naphthalene, 1,6-dimethyl-4-(1-methylethyl)- | 1.0304 | 0.0063 | inf | |
8 | Hexadecane, 2,6,10,14-tetramethyl- | 1.0312 | 0.0014 | inf | |
9 | 1,6,10-Dodecatriene, 7,11-dimethyl-3-methylene- | 1.0279 | 0.0597 | inf | |
10 | α-Cadinol | 1.0311 | 0.0022 | inf | |
11 | τ-Cadinol | 1.0311 | 0.0022 | inf | |
12 | cis-α-Bisabolene | 1.0310 | 0.0013 | inf | |
13 | 2,4,6-Cycloheptatrien-1-one, 2-hydroxy-4-(1-methylethyl)- | 1.0308 | 0.0058 | inf | |
14 | 1-Cyclohexene-1-carboxylic acid, 4-(1-methylethenyl)- | 1.0312 | 0.0014 | inf | |
15 | Dill ether | 1.0311 | 0.0007 | inf | |
16 | 7-epi-α-Eudesmol | 1.0312 | 0.0004 | inf | |
17 | τ-Muurolol | 1.0312 | 0.0008 | inf | |
18 | Cubenol | 1.0311 | 0.0022 | inf | |
19 | 3-Buten-2-one, 4-(2,2,6-trimethyl-7-oxabicyclo[4.1.0]hept-1-yl)- | 1.0311 | 0.0023 | inf | |
20 | Benzofuran, 4,5,6,7-tetrahydro-3,6-dimethyl- | 1.0312 | 0.0004 | inf | |
21 | Cyclohexane, 1-ethenyl-1-methyl-2,4-bis(1-methylethenyl)-, [1S-(1.alpha.,2.beta.,4.beta.)]- | 1.0303 | 0.0122 | inf | |
22 | Geranyl tiglate | 1.0306 | 0.0045 | inf | |
23 | β-sesquiphellandrene | 1.0304 | 0.0121 | inf | |
24 | (3S,3aR,3bR,4S,7R,7aR)-4-Isopropyl-3,7-dimethyloctahydro-1H-cyclopenta[1,3]cyclopropa[1,2]benzen-3-ol | 1.0301 | 0.0206 | inf | |
25 | Cyclohexene, 4-[(1E)-1,5-dimethyl-1,4-hexadien-1-yl]-1-methyl- | 1.0310 | 0.0013 | inf | |
26 | Citronellyl tiglate | 1.0312 | 0.0015 | inf | |
27 | cis-β-Farnesene | 1.0279 | 0.0597 | inf | |
28 | α-Farnesene | 1.0310 | 0.0040 | inf | |
29 | (E)-β-Farnesene | 1.0279 | 0.0597 | inf | |
30 | 2-Cyclohexen-1-ol, 2-methyl-5-(1-methylethenyl)-, cis- | 1.0312 | 0.0003 | inf | |
31 | Cyclohexanol, 5-methyl-2-(1-methylethyl)-, [1S-(1.alpha.,2.alpha.,5.beta.)]- | 1.0311 | 0.0013 | inf | |
32 | 4-Hexen-1-ol, 5-methyl-2-(1-methylethenyl)-, (R)- | 1.0312 | 0.0004 | inf | |
33 | Isoborneol | 1.0312 | 0.0003 | inf | |
34 | Bicyclo[2.2.1]heptane, 2-chloro-1,7,7-trimethyl-, (1R-endo)- | 1.0281 | 0.0223 | inf | |
35 | Cyclohexanol, 3-ethenyl-3-methyl-2-(1-methylethenyl)-6-(1-methylethyl)-, [1R-(1.alpha.,2.alpha.,3.beta.,6.alpha.)]- | 1.0304 | 0.0059 | inf | |
36 | 2-Furanmethanol, tetrahydro-.alpha.,.alpha.,5-trimethyl-5-(4-methyl-3-cyclohexen-1-yl)-, [2S-[2.alpha.,5.beta.(R*)]]- | 1.0301 | 0.0073 | inf | |
37 | Benzene, 1-(1,5-dimethyl-4-hexenyl)-4-methyl- | 1.0312 | 0.0013 | inf | |
38 | 2-Cyclohexen-1-ol, 3-methyl-6-(1-methylethyl)- | 1.0182 | 0.0940 | inf | |
39 | Curcumenol | 1.0309 | 0.0041 | inf | |
40 | β-Caryophyllene Alcohol | 1.0301 | 0.0128 | inf | |
41 | Benzene, 1-methyl-4-(1,2,2-trimethylcyclopentyl)-, (R)- | 1.0307 | 0.0062 | inf | |
42 | Salvial-4(14)-en-1-one | 1.0307 | 0.0074 | inf | |
43 | (R,1E,5E,9E)-1,5,9-Trimethyl-12-(prop-1-en-2-yl)cyclotetradeca-1,5,9-triene | 1.0301 | 0.0095 | inf | |
44 | 1,7-Dimethyl-4-(propan-2-ylidene)tricyclo[4.4.0.02,7]decan-3-one | 1.0311 | 0.0007 | inf | |
45 | (1R,5S)-1,8-Dimethyl-4-(propan-2-ylidene)spiro[4.5]dec-7-ene | 1.0308 | 0.0029 | inf | |
46 | Geranyl isobutyrate | 1.0300 | 0.0124 | inf | |
47 | Bicyclo[3.2.1]oct-2-ene, 3-methyl-4-methylene- | 1.0307 | 0.0152 | inf | |
48 | Ester | Pentanoic acid, pentyl ester | 1.0301 | 0.0108 | inf |
49 | Hexanoic acid, 3-hexenyl ester | 1.0301 | 0.0147 | inf | |
50 | 2,6-Octadien-1-ol, 3,7-dimethyl-, propanoate, (Z)- | 1.0041 | 0.1340 | inf | |
51 | Lauryl acetate | 1.0029 | 0.1300 | inf | |
52 | 2,4-Hexadienoic acid, ethyl ester, (2E,4E)- | 1.0153 | 0.1108 | inf | |
53 | 5-Azulenemethanol, 1,2,3,4,5,6,7,8-octahydro-.alpha.,.alpha.,3,8-tetramethyl-, acetate, [3S-(3.alpha.,5.alpha.,8.alpha.)]- | 1.0309 | 0.0026 | inf | |
54 | Benzoic acid, 2-hydroxy-, phenylmethyl ester | 1.0311 | 0.0009 | inf | |
55 | Bicyclo[2.2.1]heptan-2-ol, 1,7,7-trimethyl-, formate, endo- | 1.0312 | 0.0013 | inf | |
56 | cis-3-Hexenyl isovalerate | 1.0312 | 0.0001 | inf | |
57 | Isobutyl isovalerate | 1.0306 | 0.0069 | inf | |
58 | Dodecanoic acid, ethyl ester | 1.0094 | 0.2222 | inf | |
59 | (S)-4-(1-Acetoxyallyl)phenyl acetate | 1.0311 | 0.0019 | inf | |
60 | Octanedioic acid, dimethyl ester | 1.0311 | 0.0035 | inf | |
61 | 2,6,10-Dodecatrienoic acid, 3,7,11-trimethyl-, methyl ester, (E,E)- | 1.0310 | 0.0057 | inf | |
62 | Hexadecanoic acid, ethyl ester | 1.0303 | 0.0096 | inf | |
63 | Hexyl tiglate | 1.0304 | 0.0135 | inf | |
64 | Hexanoic acid, 3,7-dimethyl-2,6-octadienyl ester, (E)- | 1.0312 | 0.0005 | inf | |
65 | Butanoic acid, 2-methyl-, 2-methylpropyl ester | 1.0306 | 0.0069 | inf | |
66 | Propanoic acid, 2-methyl-, heptyl ester | 1.0312 | 0.0001 | inf | |
67 | Undecanoic acid, ethyl ester | 1.0311 | 0.0019 | inf | |
68 | Isobornyl formate | 1.0312 | 0.0013 | inf | |
69 | 2(3H)-Furanone, 5-hexyldihydro- | 1.0310 | 0.0051 | inf | |
70 | 6-Octen-1-ol, 3,7-dimethyl-, propanoate | 1.0312 | 0.0032 | inf | |
71 | Butanoic acid, 3-hexenyl ester, (Z)- | 1.0312 | 0.0007 | inf | |
72 | 2(3H)-Furanone, dihydro-5-propyl- | 1.0312 | 0.0007 | inf | |
73 | Propanoic acid, pentyl ester | 1.0310 | 0.0030 | inf | |
74 | Pentadecanoic acid, 3-methylbutyl ester | 1.0312 | 0.0007 | inf | |
75 | (Z)-Hex-3-enyl (E)-2-methylbut-2-enoate | 1.0307 | 0.0043 | inf | |
76 | Butanedioic acid, diethyl ester | 1.0312 | 0.0007 | inf | |
77 | Butanoic acid, 2-methyl-, pentyl ester | 1.0301 | 0.0108 | inf | |
78 | .delta.-Nonalactone | 1.0311 | 0.0027 | inf | |
79 | (Z)-3-Butylidene-4,5-dihydroisobenzofuran-1(3H)-one | 1.0310 | 0.0021 | inf | |
80 | Propanoic acid, heptyl ester | 1.0311 | 0.0018 | inf | |
81 | Neryl butyrate | 1.0303 | 0.0126 | inf | |
82 | (3S,3aR)-3-Butyl-3a,4,5,6-tetrahydroisobenzofuran-1(3H)-one | 1.0312 | 0.0014 | inf | |
83 | Butanoic acid, butyl ester | 1.0306 | 0.0084 | inf | |
84 | Butanoic acid, 3-hexenyl ester, (E)- | 1.0312 | 0.0007 | inf | |
85 | Alcohol | 2-Nonen-1-ol, (Z)- | 1.0312 | 0.0001 | inf |
86 | 3,7-Octadiene-2,6-diol, 2,6-dimethyl- | 1.0296 | 0.0281 | inf | |
87 | n-Pentadecanol | 1.0311 | 0.0044 | inf | |
88 | 1-Undecanol | 1.0055 | 0.2222 | inf | |
89 | 1,2-Benzenediol, 3,4,5,6-tetrachloro- | 1.0301 | 0.0070 | inf | |
90 | Benzenepropanol, 4-hydroxy-3-methoxy- | 1.0312 | 0.0004 | inf | |
91 | Benzenemethanol, 4-hydroxy- | 1.0312 | 0.0001 | inf | |
92 | 1-Tetradecanol | 1.0308 | 0.0046 | inf | |
93 | 2-Tridecen-1-ol, (E)- | 1.0223 | 0.1641 | inf | |
94 | 2-Nonen-1-ol, (E)- | 1.0312 | 0.0001 | inf | |
95 | Benzenemethanol, α-ethyl- | 1.0311 | 0.0023 | inf | |
96 | 5-Hexen-1-ol | 1.0312 | 0.0008 | inf | |
97 | 3-Nonanol | 1.0312 | 0.0002 | inf | |
98 | 1-Decanol | 1.0306 | 0.0110 | inf | |
99 | 1-Hexanol, 2-ethyl- | 1.0306 | 0.0061 | inf | |
100 | 2-Nonanol | 1.0312 | 0.0003 | inf | |
101 | Bicyclo[3.1.1]hept-2-ene-2-ethanol, 6,6-dimethyl- | 1.0201 | 0.0666 | inf | |
102 | 1-Naphthalenemethanol | 1.0266 | 0.0257 | inf | |
103 | n-Tridecan-1-ol | 1.0288 | 0.0195 | inf | |
104 | 4a(2H)-Naphthalenol, octahydro-4,8a-dimethyl-,(4.alpha.,4a.alpha.,8a.beta.)- | 1.0065 | 0.1917 | inf | |
105 | 2-Octanol | 1.0292 | 0.0259 | inf | |
106 | 2-Octanol, (S)- | 1.0292 | 0.0259 | inf | |
107 | Cyclohexanol, 5-methyl-2-(1-methylethyl)-, (1.alpha.,2.beta.,5.beta.)- | 1.0311 | 0.0017 | inf | |
108 | (E)-2,6-Dimethylocta-3,7-diene-2,6-diol | 1.0296 | 0.0281 | inf | |
109 | Triethylene glycol | 1.0312 | 0.0001 | inf | |
110 | Ketone | 5,9-Undecadien-2-one, 6,10-dimethyl-, (E)- | 1.0003 | 0.1224 | inf |
111 | 5,9-Undecadien-2-one, 6,10-dimethyl-, (Z)- | 1.0003 | 0.1224 | inf | |
112 | Ethanone, 1-(2,4,6-trihydroxyphenyl)- | 1.0204 | 0.1003 | inf | |
113 | 2-Piperidinone | 1.0161 | 0.2222 | inf | |
114 | 9-Decen-2-one | 1.0022 | 0.2222 | inf | |
115 | 2-Nonanone | 1.0312 | 0.0000 | inf | |
116 | 2H-Pyran-2-one, tetrahydro- | 1.0312 | 0.0002 | inf | |
117 | 4-(N-Nitroso-N-methylamino)-1-(3-pyridyl)-1-butanone | 1.0311 | 0.0023 | inf | |
118 | 2-Cyclohexen-1-one, 4-(3-hydroxy-1-butenyl)-3,5,5-trimethyl- | 1.0312 | 0.0009 | inf | |
119 | Tropinone | 1.0312 | 0.0001 | inf | |
120 | 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione | 1.0312 | 0.0006 | inf | |
121 | Acetophenone, 4′-hydroxy- | 1.0312 | 0.0004 | inf | |
122 | 2H-1-Benzopyran-2-one, 4-hydroxy- | 1.0312 | 0.0005 | inf | |
123 | 2,4-Imidazolidinedione, 1-methyl- | 1.0312 | 0.0001 | inf | |
124 | 3-Butylisobenzofuran-1(3H)-one | 1.0312 | 0.0018 | inf | |
125 | 2H-Pyran-2-one, 6-pentyl- | 1.0312 | 0.0009 | inf | |
126 | Furaneol | 1.0311 | 0.0045 | inf | |
127 | 2-Undecanone | 1.0307 | 0.0038 | inf | |
128 | 2-Butanone, 4-(4-methoxyphenyl)- | 1.0312 | 0.0001 | inf | |
129 | 1-Pentanone, 1-(2-furanyl)- | 1.0312 | 0.0005 | inf | |
130 | 3,5,9-Undecatrien-2-one, 6,10-dimethyl- | 1.0296 | 0.0136 | inf | |
131 | Ethanone, 2-hydroxy-1-phenyl- | 1.0312 | 0.0004 | inf | |
132 | 1-Propanone, 1-(4-methoxyphenyl)- | 1.0308 | 0.0075 | inf | |
133 | Aldehyde | 2-octenal | 1.0306 | 0.0071 | inf |
134 | (E)-Tetradec-2-enal | 1.0308 | 0.0038 | inf | |
135 | 2-Undecenal, E- | 1.0291 | 0.0122 | inf | |
136 | 2-Nonenal | 1.0312 | 0.0007 | inf | |
137 | 2-Nonenal, (Z)- | 1.0312 | 0.0007 | inf | |
138 | 5-Hydroxymethylfurfural | 1.0312 | 0.0001 | inf | |
139 | Pentadecanal- | 1.0311 | 0.0009 | inf | |
140 | 3-p-Menthen-7-al | 1.0312 | 0.0005 | inf | |
141 | 2-Undecenal | 1.0291 | 0.0122 | inf | |
142 | Isoneral | 1.0312 | 0.0003 | inf | |
143 | 2,6-Nonadienal, (E,Z)- | 1.0312 | 0.0008 | inf | |
144 | 2-Nonenal, (E)- | 1.0312 | 0.0007 | inf | |
145 | Tridecanal | 1.0310 | 0.0020 | inf | |
146 | cis-4-Decenal | 1.0310 | 0.0044 | inf | |
147 | 2-Octenal, (E)- | 1.0306 | 0.0071 | inf | |
148 | Acid | 2-Octenoic acid, (E)- | 1.0308 | 0.0041 | inf |
149 | 2,3,4-Trihydroxybenzoic acid | 1.0302 | 0.0084 | inf | |
150 | 2-Octenoic acid | 1.0308 | 0.0041 | inf | |
151 | Homovanillic acid | 1.0312 | 0.0009 | inf | |
152 | Benzenepropanoic acid, 4-hydroxy- | 1.0312 | 0.0010 | inf | |
153 | Propanoic acid, 3-(methylthio)- | 1.0311 | 0.0014 | inf | |
154 | Palmitoleic acid | 1.0309 | 0.0029 | inf | |
155 | 4-Methyloctanoic acid | 1.0312 | 0.0002 | inf | |
156 | Benzeneacetic acid, α-hydroxy-, (R)- | 1.0312 | 0.0010 | inf | |
157 | 3,7,11-Trimethyl-dodeca-2,6,10-trienoic acid | 1.0308 | 0.0070 | inf | |
158 | Heterocyclic compound | Thiophene, 2-ethyl- | 1.0312 | 0.0010 | inf |
159 | 1,3,5-Triazine-2,4,6-triamine | 1.0310 | 0.0022 | inf | |
160 | Pyrazine, 2-ethyl-3,5-dimethyl- | 1.0312 | 0.0001 | inf | |
161 | Pyrazine, 3-ethyl-2,5-dimethyl- | 1.0312 | 0.0001 | inf | |
162 | 5,6-Dihydro-5-methyluracil | 1.0294 | 0.0221 | inf | |
163 | 1H-Pyrazole | 1.0310 | 0.0025 | inf | |
164 | 2-n-Butyl furan | 1.0302 | 0.0063 | inf | |
165 | Esculetin | 1.0311 | 0.0023 | inf | |
166 | 2,3-Dimethyl-5-ethylpyrazine | 1.0312 | 0.0001 | inf | |
167 | 2-Acetyl-3-methylpyrazine | 1.0311 | 0.0022 | inf | |
168 | 7-Oxabicyclo[4.1.0]heptane | 1.0312 | 0.0014 | inf | |
169 | Quinoline, 2,4-dimethyl- | 1.0312 | 0.0024 | inf | |
170 | Hydrocarbons | 1-Heptadecene | 1.0291 | 0.0207 | inf |
171 | Dodecane | 1.0305 | 0.0117 | inf | |
172 | Fucoserratene | 1.0311 | 0.0023 | inf | |
173 | Hexadecane, 2-methyl- | 1.0305 | 0.0048 | inf | |
174 | Heptadecane, 7-methyl- | 1.0309 | 0.0021 | inf | |
175 | Heptadecane, 2-methyl- | 1.0312 | 0.0011 | inf | |
176 | Phenol | 2-Methoxy-5-methylphenol | 1.0311 | 0.0015 | inf |
177 | trans-Isoeugenol | 1.0312 | 0.0006 | inf | |
178 | Phenol, 2-methoxy-4-(1-propenyl)- | 1.0312 | 0.0006 | inf | |
179 | Creosol | 1.0311 | 0.0015 | inf | |
180 | Phenol, 4-(3-hydroxy-1-propenyl)-2-methoxy- | 1.0312 | 0.0021 | inf | |
181 | 1-Naphthalenol | 1.0309 | 0.0057 | inf | |
182 | Ether | Benzene, 1,3-dimethoxy- | 1.0312 | 0.0005 | inf |
183 | Benzene, 1,1′-[oxybis(methylene)]bis- | 1.0312 | 0.0007 | inf | |
184 | 1,3-Benzodioxole, 4-methoxy-6-(2-propenyl)- | 1.0305 | 0.0200 | inf | |
185 | Asarone | 1.0311 | 0.0019 | inf | |
186 | Benzene, 1-ethenyl-4-methoxy- | 1.0312 | 0.0016 | inf |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Zhang, J.; Sun, Y.; Chai, C.; Wang, F.; Fan, B.; Li, L.; Gao, S.; Wang, H.; Yang, C.; et al. The Utilization Value of Condensate Water from the Drying Process of Lonicera japonica via Metabolomics Analysis. Metabolites 2025, 15, 569. https://doi.org/10.3390/metabo15090569
Li D, Zhang J, Sun Y, Chai C, Wang F, Fan B, Li L, Gao S, Wang H, Yang C, et al. The Utilization Value of Condensate Water from the Drying Process of Lonicera japonica via Metabolomics Analysis. Metabolites. 2025; 15(9):569. https://doi.org/10.3390/metabo15090569
Chicago/Turabian StyleLi, Da, Jiaqi Zhang, Yining Sun, Chongchong Chai, Fengzhong Wang, Bei Fan, Long Li, Shuqi Gao, Hui Wang, Chunmei Yang, and et al. 2025. "The Utilization Value of Condensate Water from the Drying Process of Lonicera japonica via Metabolomics Analysis" Metabolites 15, no. 9: 569. https://doi.org/10.3390/metabo15090569
APA StyleLi, D., Zhang, J., Sun, Y., Chai, C., Wang, F., Fan, B., Li, L., Gao, S., Wang, H., Yang, C., & Sun, J. (2025). The Utilization Value of Condensate Water from the Drying Process of Lonicera japonica via Metabolomics Analysis. Metabolites, 15(9), 569. https://doi.org/10.3390/metabo15090569