Plasma Metabolic Outliers Identified in Estonian Human Knockouts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Description
2.2. Variant Annotation and Gene Selection
2.3. Metabolomics Profiling and Data Processing
2.4. Variant-Metabolite Association Tests
2.5. Variant-Disease Association Tests
3. Results
3.1. Identification of Variant-Metabolite Associations
3.2. Insights into Pyrimidine Degradation Pathway
3.3. Identification of Variant-Disease Associations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shin, S.-Y.; Fauman, E.B.; Petersen, A.-K.; Krumsiek, J.; Santos, R.; Huang, J.; Arnold, M.; Erte, I.; Forgetta, V.; Yang, T.-P.; et al. An Atlas of Genetic Influences on Human Blood Metabolites. Nat. Genet. 2014, 46, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Suhre, K.; Shin, S.-Y.; Petersen, A.-K.; Mohney, R.P.; Meredith, D.; Wägele, B.; Altmaier, E.; CARDIoGRAM; Deloukas, P.; Erdmann, J.; et al. Human Metabolic Individuality in Biomedical and Pharmaceutical Research. Nature 2011, 477, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Chan, L.S.; Bose, D.; Jackson, A.U.; VandeHaar, P.; Locke, A.E.; Fuchsberger, C.; Stringham, H.M.; Welch, R.; Yu, K.; et al. Genome-Wide Association Studies of Metabolites in Finnish Men Identify Disease-Relevant Loci. Nat. Commun. 2022, 13, 1644. [Google Scholar] [CrossRef]
- Bomba, L.; Walter, K.; Guo, Q.; Surendran, P.; Kundu, K.; Nongmaithem, S.; Karim, M.A.; Stewart, I.D.; Langenberg, C.; Danesh, J.; et al. Whole-Exome Sequencing Identifies Rare Genetic Variants Associated with Human Plasma Metabolites. Am. J. Hum. Genet. 2022, 109, 1038–1054. [Google Scholar] [CrossRef]
- Long, T.; Hicks, M.; Yu, H.-C.; Biggs, W.H.; Kirkness, E.F.; Menni, C.; Zierer, J.; Small, K.S.; Mangino, M.; Messier, H.; et al. Whole-Genome Sequencing Identifies Common-to-Rare Variants Associated with Human Blood Metabolites. Nat. Genet. 2017, 49, 568–578. [Google Scholar] [CrossRef]
- Surendran, P.; Stewart, I.D.; Au Yeung, V.P.W.; Pietzner, M.; Raffler, J.; Wörheide, M.A.; Li, C.; Smith, R.F.; Wittemans, L.B.L.; Bomba, L.; et al. Rare and Common Genetic Determinants of Metabolic Individuality and Their Effects on Human Health. Nat. Med. 2022, 28, 2321–2332. [Google Scholar] [CrossRef]
- Yousri, N.A.; Fakhro, K.A.; Robay, A.; Rodriguez-Flores, J.L.; Mohney, R.P.; Zeriri, H.; Odeh, T.; Kader, S.A.; Aldous, E.K.; Thareja, G.; et al. Whole-Exome Sequencing Identifies Common and Rare Variant Metabolic QTLs in a Middle Eastern Population. Nat. Commun. 2018, 9, 333. [Google Scholar] [CrossRef]
- Saleheen, D.; Natarajan, P.; Armean, I.M.; Zhao, W.; Rasheed, A.; Khetarpal, S.A.; Won, H.-H.; Karczewski, K.J.; O’Donnell-Luria, A.H.; Samocha, K.E.; et al. Human Knockouts and Phenotypic Analysis in a Cohort with a High Rate of Consanguinity. Nature 2017, 544, 235–239. [Google Scholar] [CrossRef]
- Leitsalu, L.; Haller, T.; Esko, T.; Tammesoo, M.-L.; Alavere, H.; Snieder, H.; Perola, M.; Ng, P.C.; Mägi, R.; Milani, L.; et al. Cohort Profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. Int. J. Epidemiol. 2015, 44, 1137–1147. [Google Scholar] [CrossRef]
- Loh, P.-R.; Palamara, P.F.; Price, A.L. Fast and Accurate Long-Range Phasing in a UK Biobank Cohort. Nat. Genet. 2016, 48, 811–816. [Google Scholar] [CrossRef]
- Browning, B.L.; Browning, S.R. Genotype Imputation with Millions of Reference Samples. Am. J. Hum. Genet. 2016, 98, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Mitt, M.; Kals, M.; Pärn, K.; Gabriel, S.B.; Lander, E.S.; Palotie, A.; Ripatti, S.; Morris, A.P.; Metspalu, A.; Esko, T.; et al. Improved Imputation Accuracy of Rare and Low-Frequency Variants Using Population-Specific High-Coverage WGS-Based Imputation Reference Panel. Eur. J. Hum. Genet. 2017, 25, 869–876. [Google Scholar] [CrossRef] [PubMed]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The Mutational Constraint Spectrum Quantified from Variation in 141,456 Humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Amberger, J.S.; Bocchini, C.A.; Scott, A.F.; Hamosh, A. OMIM.Org: Leveraging Knowledge across Phenotype-Gene Relationships. Nucleic Acids Res. 2019, 47, D1038–D1043. [Google Scholar] [CrossRef]
- Ochoa, D.; Hercules, A.; Carmona, M.; Suveges, D.; Gonzalez-Uriarte, A.; Malangone, C.; Miranda, A.; Fumis, L.; Carvalho-Silva, D.; Spitzer, M.; et al. Open Targets Platform: Supporting Systematic Drug–Target Identification and Prioritisation. Nucleic Acids Res. 2021, 49, D1302–D1310. [Google Scholar] [CrossRef]
- Evans, A.; Bridgewater, B.; Liu, Q.; Mitchell, M.; Robinson, R.; Dai, H.; Stewart, S.; Dehaven, C.; Miller, L. High Resolution Mass Spectrometry Improves Data Quantity and Quality as Compared to Unit Mass Resolution Mass Spectrometry in High-Throughput Profiling Metabolomics. Metabolomics 2014, 4, 1. [Google Scholar] [CrossRef]
- Narasimhan, V.M.; Xue, Y.; Tyler-Smith, C. Human Knockout Carriers: Dead, Diseased, Healthy, or Improved? Trends Mol. Med. 2016, 22, 341–351. [Google Scholar] [CrossRef]
- Alkuraya, F.S. Natural Human Knockouts and the Era of Genotype to Phenotype. Genome Med. 2015, 7, 48. [Google Scholar] [CrossRef]
- Belkadi, A.; Thareja, G.; Abbaszadeh, F.; Badii, R.; Fauman, E.; Albagha, O.M.E.; Suhre, K. Identification of PCSK9-like Human Gene Knockouts Using Metabolomics, Proteomics, and Whole-Genome Sequencing in a Consanguineous Population. Cell Genom. 2023, 3, 100218. [Google Scholar] [CrossRef]
- Pankratov, V.; Montinaro, F.; Kushniarevich, A.; Hudjashov, G.; Jay, F.; Saag, L.; Flores, R.; Marnetto, D.; Seppel, M.; Kals, M.; et al. Differences in Local Population History at the Finest Level: The Case of the Estonian Population. Eur. J. Hum. Genet. 2020, 28, 1580–1591. [Google Scholar] [CrossRef] [PubMed]
- Van Kuilenburg, A.B.P.; Meinsma, R.; Beke, E.; Assmann, B.; Ribes, A.; Lorente, I.; Busch, R.; Mayatepek, E.; Abeling, N.G.G.M.; van Cruchten, A.; et al. β-Ureidopropionase Deficiency: An Inborn Error of Pyrimidine Degradation Associated with Neurological Abnormalities. Hum. Mol. Genet. 2004, 13, 2793–2801. [Google Scholar] [CrossRef] [PubMed]
- Van Kuilenburg, A.B.; Vreken, P.; Abeling, N.G.; Bakker, H.D.; Meinsma, R.; Van Lenthe, H.; De Abreu, R.A.; Smeitink, J.A.; Kayserili, H.; Apak, M.Y.; et al. Genotype and Phenotype in Patients with Dihydropyrimidine Dehydrogenase Deficiency. Hum. Genet. 1999, 104, 1–9. [Google Scholar] [CrossRef] [PubMed]
- NHS England. Clinical Commissioning Urgent Policy Statement Pharmacogenomic Testing for DPYD Polymorphisms with Fluoropyrimidine Therapies [URN 1869] (200603P); NHS England: Leeds, UK, 2020. [Google Scholar]
- Shu, J.; Zhi, X.; Chen, J.; Lei, M.; Zheng, J.; Sheng, W.; Zhang, C.; Li, D.; Cai, C. Case Report: A Case of β-Ureidopropionase Deficiency Complicated With MELAS Syndrome Caused by UPB1 Variant and Mitochondrial Gene Variant. Front. Pediatr. 2022, 10, 838341. [Google Scholar] [CrossRef]
- Fang, Y.; Cai, C.; Wang, C.; Sun, B.; Zhang, X.; Fan, W.; Hu, W.; Meng, Y.; Lin, S.; Zhang, C.; et al. Clinical and Genetic Analysis of 7 Chinese Patients with β-Ureidopropionase Deficiency. Medicine 2019, 98, e14021. [Google Scholar] [CrossRef]
- Kittel, A.; Müller, F.; König, J.; Mieth, M.; Sticht, H.; Zolk, O.; Kralj, A.; Heinrich, M.R.; Fromm, M.F.; Maas, R. Alanine-Glyoxylate Aminotransferase 2 (AGXT2) Polymorphisms Have Considerable Impact on Methylarginine and β-Aminoisobutyrate Metabolism in Healthy Volunteers. PLoS ONE 2014, 9, e88544. [Google Scholar] [CrossRef]
- Kittel, A.; Maas, R.; König, J.; Mieth, M.; Weiss, N.; Jarzebska, N.; Hohenstein, B.; Martens-Lobenhoffer, J.; Bode-Böger, S.M.; Rodionov, R.N. In Vivo Evidence That Agxt2 Can Regulate Plasma Levels of Dimethylarginines in Mice. Biochem. Biophys. Res. Commun. 2013, 430, 84–89. [Google Scholar] [CrossRef]
- Suhre, K.; Wallaschofski, H.; Raffler, J.; Friedrich, N.; Haring, R.; Michael, K.; Wasner, C.; Krebs, A.; Kronenberg, F.; Chang, D.; et al. A Genome-Wide Association Study of Metabolic Traits in Human Urine. Nat. Genet. 2011, 43, 565–569. [Google Scholar] [CrossRef]
- Crumpler, H.R.; Dent, C.E.; Harris, H.; Westall, R.G. β-Aminoisobutyric Acid (α-Methyl-β-Alanine): A New Amino-Acid Obtained from Human Urine. Nature 1951, 167, 307–308. [Google Scholar] [CrossRef]
- Tanianskii, D.A.; Jarzebska, N.; Birkenfeld, A.L.; O’Sullivan, J.F.; Rodionov, R.N. Beta-Aminoisobutyric Acid as a Novel Regulator of Carbohydrate and Lipid Metabolism. Nutrients 2019, 11, 524. [Google Scholar] [CrossRef]
- Audzeyenka, I.; Szrejder, M.; Rogacka, D.; Angielski, S.; Saleem, M.A.; Piwkowska, A. β-Aminoisobutyric Acid (L-BAIBA) Is a Novel Regulator of Mitochondrial Biogenesis and Respiratory Function in Human Podocytes. Sci. Rep. 2023, 13, 766. [Google Scholar] [CrossRef]
- Jiang, D.; LaGory, E.L.; Kenzelmann Brož, D.; Bieging, K.T.; Brady, C.A.; Link, N.; Abrams, J.M.; Giaccia, A.J.; Attardi, L.D. Analysis of P53 Transactivation Domain Mutants Reveals Acad11 as a Metabolic Target Important for P53 Pro-Survival Function. Cell Rep. 2015, 10, 1096–1109. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Variant ID | Metabolite Name | # of Controls | # of Carriers | # of Carriers 3 SD Outlier | Direction | p-Value | Drug | OMIM Disorder Associated with Gene | Strategy |
---|---|---|---|---|---|---|---|---|---|---|
ACAD11 * | rs41272317 | 2-aminoheptanoate | 257 | 12 | 1 | + | 5.94 × 10−9 | bioactive compound | - | 1 |
ACAD11 * | rs41272317 | 2-aminooctanoate | 196 | 11 | 3 | + | 2.15 × 10−14 | bioactive compound | - | 1 |
ACAD11 * | rs41272317 | 2-hydroxylaurate | 254 | 11 | 1 | + | 7.45 × 10−7 | bioactive compound | - | 1 |
ACAD11 * | rs41272317 | 2-hydroxyoctanoate | 257 | 12 | 2 | + | 1.32 × 10−11 | bioactive compound | - | 1 |
ACAD11 * | rs41272317 | 2-ketocaprylate | 257 | 12 | 0 | + | 1.43 × 10−9 | bioactive compound | - | 1 |
AGXT2 ** | rs114286107 | 3-aminoisobutyrate | 258 | 12 | 1 | + | 1.61 × 10−15 | - | urinary excretion of beta-aminoisobutyric acid | 1 |
DPYD *,** | rs3918290 | 3-aminoisobutyrate | 258 | 8 | 8 | - | 1.79 × 10−15 | Phase III | dihydropyrimidine dehydrogenase deficiency; 5-fluorouracil toxicity | 1 |
UPB1 ** | rs143493067 | 3-aminoisobutyrate | 258 | 6 | 6 | - | 2.25 × 10−12 | - | beta-ureidopropionase deficiency | 1 |
PDE11A *,** | rs781747963 | 3-hydroxybutyrate (BHBA) | 258 | 10 | 0 | - | 1.47 × 10−7 | bioactive compound | pigmented nodular adrenocortical disease, primary, 2 | 1 |
A2ML1 ** | rs202067416 | 3-hydroxylaurate | 258 | 12 | 1 | - | 3.66 × 10−7 | - | susceptibility to otitis media | 1 |
PTH2R * | rs61742329 | 3-ureidopropionate | 235 | 12 | 0 | + | 6.52 × 10−7 | bioactive compound | - | 1 |
UPB1 ** | rs143493067 | 3-ureidopropionate | 235 | 8 | 8 | + | 3.73 × 10−15 | - | beta-ureidopropionase deficiency | 1 |
UPB1 ** | rs143493067 | 5,6-dihydrothymine | 258 | 8 | 8 | + | 1.79 × 10−15 | - | beta-ureidopropionase deficiency | 1 |
FGGY * | rs41287704 | arabitol/xylitol | 258 | 3 | 3 | + | 3.41 × 10−7 | bioactive compound | - | 1 |
COL23A1 | rs2973744 | asparagine | 204 | 3 | 2 | + | 6.86 × 10−7 | - | - | 1 |
PTH2R * | rs61742329 | branched-chain, straight-chain, or cyclopropyl 12:1 fatty acid * | 258 | 12 | 1 | - | 4.36 × 10−7 | bioactive compound | - | 1 |
ABCG5 *,** | rs199689137 | campesterol | 138 | 8 | 1 | + | 1.12 × 10−8 | bioactive compound | sitosterolemia 2 | 2 |
NPC2 ** | rs140130028 | cysteine s-sulfate | 258 | 11 | 2 | + | 2.15 × 10−10 | - | Niemann-pick disease, type C2 | 1 |
MPO *,** | rs35897051 | fructose | 258 | 10 | 3 | + | 3.58 × 10−7 | Phase III | myeloperoxidase deficiency; susceptibility to Alzheimer disease | 1 |
OBSL1 ** | rs140825693 | gamma-glutamylphenylalanine | 257 | 11 | 0 | + | 7.86 × 10−8 | - | 3-M syndrome 2 | 1 |
OBSL1 ** | rs140825693 | gamma-glutamyltyrosine | 257 | 11 | 1 | + | 6.75 × 10−8 | - | 3-M syndrome 2 | 1 |
CFHR3 ** | rs138839071 | glycochenodeoxycholate | 253 | 10 | 0 | + | 4.34 × 10−7 | - | susceptibility to the development of atypical hemolytic uremic syndrome-1 | 1 |
CFHR3 ** | rs138839071 | glycocholate | 258 | 11 | 0 | + | 2.37 × 10−7 | - | susceptibility to the development of atypical hemolytic uremic syndrome-1 | 1 |
A2ML1 ** | rs202067416 | isoleucine | 257 | 11 | 1 | + | 2.00 × 10−8 | - | susceptibility to otitis media | 1 |
A2ML1 ** | rs202067416 | leucine | 257 | 11 | 1 | + | 1.02 × 10−7 | - | susceptibility to otitis media | 1 |
OBSL1 ** | rs140825693 | methionine | 205 | 8 | 1 | + | 6.57 × 10−7 | - | 3-M syndrome 2 | 1 |
ACAD11 * | rs41272317 | N-acetyl-2-aminooctanoate * | 257 | 12 | 3 | + | 2.32 × 10−12 | bioactive compound | - | 1 |
NPC2 ** | rs140130028 | ornithine | 258 | 11 | 0 | + | 8.95 × 10−11 | - | Niemann-pick disease, type C2 | 1 |
A2ML1 ** | rs202067416 | pyrraline | 249 | 11 | 1 | + | 5.19 × 10−7 | - | susceptibility to otitis media | 1 |
FGGY * | rs41287704 | ribitol | 255 | 3 | 3 | + | 3.53 × 10−7 | bioactive compound | - | 1 |
CLCN1 ** | rs55960271 | taurine | 258 | 12 | 1 | + | 1.46 × 10−7 | - | myotonia congenita | 1 |
DPYD *,** | rs3918290 | uracil | 257 | 10 | 10 | + | 2.34 × 10−18 | Phase III | dihydropyrimidine dehydrogenase deficiency; 5-fluorouracil toxicity | 1 |
A2ML1 ** | rs202067416 | vanillic acid glycine | 230 | 10 | 0 | + | 3.84 × 10−7 | - | susceptibility to otitis media | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, K.; Estonian Biobank Research Team; Estrada, K.; Esko, T.; Kals, M.; Nikopensius, T.; Kronberg, J.; Võsa, U.; Wuster, A.; Bomba, L. Plasma Metabolic Outliers Identified in Estonian Human Knockouts. Metabolites 2025, 15, 323. https://doi.org/10.3390/metabo15050323
Yu K, Estonian Biobank Research Team, Estrada K, Esko T, Kals M, Nikopensius T, Kronberg J, Võsa U, Wuster A, Bomba L. Plasma Metabolic Outliers Identified in Estonian Human Knockouts. Metabolites. 2025; 15(5):323. https://doi.org/10.3390/metabo15050323
Chicago/Turabian StyleYu, Ketian, Estonian Biobank Research Team, Karol Estrada, Tõnu Esko, Mart Kals, Tiit Nikopensius, Jaanika Kronberg, Urmo Võsa, Arthur Wuster, and Lorenzo Bomba. 2025. "Plasma Metabolic Outliers Identified in Estonian Human Knockouts" Metabolites 15, no. 5: 323. https://doi.org/10.3390/metabo15050323
APA StyleYu, K., Estonian Biobank Research Team, Estrada, K., Esko, T., Kals, M., Nikopensius, T., Kronberg, J., Võsa, U., Wuster, A., & Bomba, L. (2025). Plasma Metabolic Outliers Identified in Estonian Human Knockouts. Metabolites, 15(5), 323. https://doi.org/10.3390/metabo15050323