1H-NMR Lipidomics, Comparing Fatty Acids and Lipids in Cow, Goat, Almond, Cashew, Soy, and Coconut Milk Using NMR and Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Solvents
2.2. Extraction of Lipids from Milk and NMR Analysis
2.3. NMR Data Collection and Analysis
2.4. Multivariate Statistical Analysis of NMR Data
2.5. Transesterification and Preparation of the Lipid Samples for Fatty Acid Analysis
2.6. Gas Chromatography Mass Spectrometry (GC-MS) of the Fatty Acid Methyl Esters
2.7. Liquid Chromatography Mass Spectrometry (LC-MS) of the Lipids
3. Results
3.1. Milk Composition, and Lipid Weights
3.2. 1H NMR of Lipids and Comparison of Lipid Profiles
3.3. Fatty Acid (FA) Identification and Comparison Among the Different Milk Varieties
3.4. Lipid Group Identification Using LC-MS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramsing, R.; Santo, R.; Kim, B.F.; Altema-Johnson, D.; Wooden, A.; Chang, K.B.; Semba, R.D.; Love, D.C. Dairy and plant-based milks: Implications for nutrition and planetary health. Curr. Environ. Health Rep. 2023, 10, 291–302. [Google Scholar] [CrossRef]
- Blasi, F.; Pellegrino, R.M.; Alabed, H.B.; Ianni, F.; Emiliani, C.; Cossignani, L. Lipidomics of coconut, almond and soybean milks-Comprehensive characterization of triacylglycerol class and comparison with bovine milk. Food Res. Int. 2023, 172, 113147. [Google Scholar] [CrossRef]
- Lagutin, K.; MacKenzie, A.; Bloor, S.; Scott, D.; Vyssotski, M. HPLC-MS, GC and NMR profiling of bioactive lipids of human milk and milk of dairy animals (cow, sheep, goat, buffalo, camel, red deer). Separations 2022, 9, 145. [Google Scholar] [CrossRef]
- Clulow, A.J.; Salim, M.; Hawley, A.; Boyd, B.J. A closer look at the behaviour of milk lipids during digestion. Chem. Phys. Lipids 2018, 211, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Rochfort, S.; Cocks, B. Milk lipidomics: What we know and what we don’t. Prog. Lipid Res. 2018, 71, 70–85. [Google Scholar] [CrossRef]
- Sundekilde, U.K.; Larsen, L.B.; Bertram, H.C. NMR-based milk metabolomics. Metabolites 2013, 3, 204–222. [Google Scholar] [CrossRef]
- John, G.K.; Mullin, G.E. The gut microbiome and obesity. Curr. Oncol. Rep. 2016, 18, 45. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhao, Y.; Zhu, D.; Pang, X.; Liu, Y.; Frew, R.; Chen, G. Lipidomics profiling of goat milk, soymilk and bovine milk by UPLC-Q-Exactive Orbitrap Mass Spectrometry. Food Chem. 2017, 224, 302–309. [Google Scholar] [CrossRef]
- Kaur, N.; Chugh, V.; Gupta, A.K. Essential fatty acids as functional components of foods-a review. J. Food Sci. Technol. 2014, 51, 2289–2303. [Google Scholar] [CrossRef] [PubMed]
- Contarini, G.; Povolo, M. Phospholipids in milk fat: Composition, biological and technological significance, and analytical strategies. Int. J. Mol. Sci. 2013, 14, 2808–2831. [Google Scholar] [CrossRef] [PubMed]
- Righetti, L.; Rubert, J.; Galaverna, G.; Hurkova, K.; Dall’Asta, C.; Hajslova, J.; Stranska-Zachariasova, M. A novel approach based on untargeted lipidomics reveals differences in the lipid pattern among durum and common wheat. Food Chem. 2018, 240, 775–783. [Google Scholar] [CrossRef]
- Clish, C.B. Metabolomics: An emerging but powerful tool for precision medicine. Mol. Case Stud. 2015, 1, a000588. [Google Scholar] [CrossRef] [PubMed]
- Matyash, V.; Liebisch, G.; Kurzchalia, T.V.; Shevchenko, A.; Schwudke, D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008, 49, 1137–1146. [Google Scholar] [CrossRef]
- Fernando, H.; Kondraganti, S.; Bhopale, K.K.; Volk, D.E.; Neerathilingam, M.; Kaphalia, B.S.; Luxon, B.A.; Boor, P.J.; Shakeel Ansari, G. 1H and 31P NMR Lipidome of Ethanol-Induced Fatty Liver. Alcohol. Clin. Exp. Res. 2010, 34, 1937–1947. [Google Scholar] [CrossRef] [PubMed]
- Fernando, H.; Bhopale, K.K.; Kondraganti, S.; Kaphalia, B.S.; Ansari, G.S. Lipidomic changes in rat liver after long-term exposure to ethanol. Toxicol. Appl. Pharmacol. 2011, 255, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Fernando, H.; Bhopale, K.K.; Boor, P.J.; Ansari, G.S.; Kaphalia, B.S. Hepatic lipid profiling of deer mice fed ethanol using 1H and 31P NMR spectroscopy: A dose-dependent subchronic study. Toxicol. Appl. Pharmacol. 2012, 264, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Castañar, L. Pure shift 1H NMR: What is next? Magn. Reson. Chem. 2017, 55, 47–53. [Google Scholar] [CrossRef]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinform. 2019, 68, e86. [Google Scholar] [CrossRef] [PubMed]
- Chong, J.; Liu, P.; Zhou, G.; Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 2020, 15, 799–821. [Google Scholar] [CrossRef]
- Jain, S.; Sekhar, A. Elucidating the mechanisms underlying protein conformational switching using NMR spectroscopy. J. Magn. Reson. Open 2022, 10, 100034. [Google Scholar] [CrossRef]
- HUANG, X.-M.; Sheng-Tao, M.; Jun-Tao, C.; Pei, L.; Xiang-Ying, Z.; Zhi-Qiang, Y. Simultaneous determination of multiple persistent halogenated compounds in human breast milk. Chin. J. Anal. Chem. 2017, 45, 593–600. [Google Scholar] [CrossRef]
- Trenerry, V.C.; Akbaridoust, G.; Plozza, T.; Rochfort, S.; Wales, W.J.; Auldist, M.; Ajlouni, S. Ultra-high-performance liquid chromatography–ion trap mass spectrometry characterisation of milk polar lipids from dairy cows fed different diets. Food Chem. 2013, 141, 1451–1460. [Google Scholar] [CrossRef]
- Maev, I.V.; Samsonov, A.A.; Palgova, L.K.; Pavlov, C.S.; Vovk, E.I.; Shirokova, E.N.; Starostin, K.M. Effectiveness of phosphatidylcholine in alleviating steatosis in patients with non-alcoholic fatty liver disease and cardiometabolic comorbidities (MANPOWER study). BMJ Open Gastroenterol. 2020, 7, e000341. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.; Costa, A.; Pozza, M.; Vamerali, T.; Niero, G.; Censi, S.; De Marchi, M. How animal milk and plant-based alternatives diverge in terms of fatty acid, amino acid, and mineral composition. Npj Sci. Food 2023, 7, 50. [Google Scholar] [CrossRef]
- Vargas-Bello-Pérez, E.; Toro-Mujica, P.; Enriquez-Hidalgo, D.; Fellenberg, M.A.; Gómez-Cortés, P. Discrimination between retail bovine milks with different fat contents using chemometrics and fatty acid profiling. J. Dairy Sci. 2017, 100, 4253–4257. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Liu, L.; da Zhang, H.; Zhang, Y.; Chang, Y.H.; Zhu, Q.P. Comparative lipidomics analysis of human, bovine and caprine milk by UHPLC-Q-TOF-MS. Food Chem. 2020, 310, 125865. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, C.; Pryce, J.; Rochfort, S. Comprehensive characterization of bovine milk lipids: Triglycerides. ACS Omega 2020, 5, 12573–12582. [Google Scholar] [CrossRef] [PubMed]
- Lindmark Månsson, H. Fatty acids in bovine milk fat. Food Nutr. Res. 2008, 52, 1821. [Google Scholar] [CrossRef]
- Cossignani, L.; Giua, L.; Urbani, E.; Simonetti, M.S.; Blasi, F. Fatty acid composition and CLA content in goat milk and cheese samples from Umbrian market. Eur. Food Res. Technol. 2014, 239, 905–911. [Google Scholar] [CrossRef]
- Martínez-Padilla, E.; Li, K.; Blok Frandsen, H.; Skejovic Joehnke, M.; Vargas-Bello-Pérez, E.; Lykke Petersen, I. In vitro protein digestibility and fatty acid profile of commercial plant-based milk alternatives. Foods 2020, 9, 1784. [Google Scholar] [CrossRef] [PubMed]
- Ekanayaka, R.; Ekanayaka, N.; Perera, B.; De Silva, P. Impact of a traditional dietary supplement with coconut milk and soya milk on the lipid profile in normal free living subjects. J. Nutr. Metab. 2013, 2013, 481068. [Google Scholar] [CrossRef] [PubMed]
- Peñalvo, J.L.; Castilho, M.C.; Silveira, M.I.N.; Matallana, M.C.; Torija, M.E. Fatty acid profile of traditional soymilk. Eur. Food Res. Technol. 2004, 219, 251–253. [Google Scholar] [CrossRef]
- Oyeyinka, A.T.; Odukoya, J.O.; Adebayo, Y.S. Nutritional composition and consumer acceptability of cheese analog from soy and cashew nut milk. J. Food Process. Preserv. 2019, 43, e14285. [Google Scholar] [CrossRef]
- Rico, R.; Bulló, M.; Salas-Salvadó, J. Nutritional composition of raw fresh cashew (Anacardium occidentale L.) kernels from different origin. Food Sci. Nutr. 2016, 4, 329–338. [Google Scholar] [CrossRef]
- Amores, G.; Virto, M. Total and free fatty acids analysis in milk and dairy fat. Separations 2019, 6, 14. [Google Scholar] [CrossRef]
- Rund, K.M.; Carpanedo, L.; Lauterbach, R.; Wermund, T.; West, A.L.; Wende, L.M.; Calder, P.C.; Schebb, N.H. LC-ESI-HRMS—Lipidomics of phospholipids: Characterization of extraction, chromatography and detection parameters. Anal. Bioanal. Chem. 2024, 416, 925–944. [Google Scholar] [CrossRef] [PubMed]
- Castro-Gómez, M.; Rodriguez-Alcalá, L.M.; Calvo, M.V.; Romero, J.; Mendiola, J.; Ibáñez, E.; Fontecha, J. Total milk fat extraction and quantification of polar and neutral lipids of cow, goat, and ewe milk by using a pressurized liquid system and chromatographic techniques. J. Dairy Sci. 2014, 97, 6719–6728. [Google Scholar] [CrossRef]
- Welty, F.K. Dietary treatment to lower cholesterol and triglyceride and reduce cardiovascular risk. Curr. Opin. Lipidol. 2020, 31, 206–231. [Google Scholar] [CrossRef] [PubMed]
- Packard, C.J.; Boren, J.; Taskinen, M.R. Causes and Consequences of Hypertriglyceridemia. Front. Endocrinol. 2020, 11, 252. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Rochfort, S. Lipidomics in milk: Recent advances and developments. Curr. Opin. Food Sci. 2023, 51, 101016. [Google Scholar] [CrossRef]
- McClain, C.J.; Barve, S.; Deaciuc, I. Good fat/bad fat. Hepatology 2007, 45, 1343–1346. [Google Scholar] [CrossRef]
- Glick, N.R.; Fischer, M.H. The role of essential fatty acids in human health. J. Evid.-Based Complement. Altern. Med. 2013, 18, 268–289. [Google Scholar] [CrossRef]
- Jensen, R.G.; Ferris, A.M.; Lammi-Keefe, C.J. The composition of milk fat. J. Dairy Sci. 1991, 74, 3228–3243. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.; Hu, F.B. Dairy products, dairy fatty acids, and the prevention of cardiometabolic disease: A review of recent evidence. Curr. Atheroscler. Rep. 2018, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, G.D.; Gómez-Coca, R.B.; Pérez-Camino, M.d.C.; Moreda, W.; Barrera-Arellano, D. Chemical characterization of major and minor compounds of nut oils: Almond, hazelnut, and pecan nut. J. Chem. 2017, 2017, 2609549. [Google Scholar] [CrossRef]
- Griffin, L.; Dean, L. Nutrient composition of raw, dry-roasted, and skin-on cashew nuts. J. Food Res. 2017, 6, 13–28. [Google Scholar] [CrossRef]
- Osipova, D.; Kokoreva, K.; Lazebnik, L.; Golovanova, E.; Pavlov, C.; Dukhanin, A.; Orlova, S.; Starostin, K. Regression of Liver Steatosis Following Phosphatidylcholine Administration: A Review of Molecular and Metabolic Pathways Involved. Front Pharmacol. 2022, 13, 797923. [Google Scholar] [CrossRef]
- Ortega-Anaya, J.; Jiménez-Flores, R. Symposium review: The relevance of bovine milk phospholipids in human nutrition-Evidence of the effect on infant gut and brain development. J. Dairy Sci. 2019, 102, 2738–2748. [Google Scholar] [CrossRef] [PubMed]
- Muhamad Kamil, N.A.I.; Wan Ismail, W.Z.; Ismail, I.; Jamaludin, J.; Hanasil, N.S.; Ibrahim, R.K.R. Analysis of milk from different sources based on light propagation and random laser properties. Photonics 2021, 8, 486. [Google Scholar] [CrossRef]
- Sharma, N.; Yeasmen, N.; Dube, L.; Orsat, V. A review on current scenario and key challenges of plant-based functional beverages. Food Biosci. 2024, 104320. [Google Scholar] [CrossRef]
- Jesús-José, D.; Hidalgo-Fuentes, B.; Rosas-Espejel, M.; Rayas-Amor, A.A.; Jiménez-Guzmán, J.; Zambrano-Zaragoza, M.L.; González-Reza, R.M.; Liceaga, A.M.; Aguilar-Toalá, J.E. Antioxidant properties of soy-dairy milk blends fermented with probiotics. Agro Product. 2024, 16, 143–151. [Google Scholar] [CrossRef]
Ingredients (240 mL/1 cup) | Cow Milk | Goat Milk | Almond Milk | Soy Milk | Coconut Milk | Cashew Milk |
---|---|---|---|---|---|---|
Calories | 160 | 140 | 60 | 110 | 45 | 25 |
Total Fat (g) | 8 | 7 | 2.5 | 4.5 | 4.5 | 2 |
Saturated Fat (g) | 5 | 4 | 0 | 0.5 | 4 | 0 |
Trans Fat (g) | 0 | 0 | 0 | 0 | 0 | 0 |
Polyunsaturated Fat (g) | n/a | 2.5 | 0.5 | 2.5 | n/a | 0 |
Monounsaturated Fat (g) | n/a | 1 | 1.5 | 1 | n/a | 1 |
Cholesterol (mg) | 35 | 25 | 0 | 0 | 0 | 0 |
Sodium (mg) | 130 | 115 | 150 | 90 | 15 | 160 |
Vitamin D (mcg) | 2.5 | 3 | 5 | 3 | n/a | 2.5 |
Iron (mg) | 0.1 | n/a | 0 | 1.1 | n/a | 0.5 |
Total Carbohydrate (g) | 12 | 11 | 8 | 9 | 2 | 2 |
Dietary Fiber (g) | 0 | 0 | 0 | 2 | 1 | 0 |
Total Sugar (g) | 11 | 11 | 8 | 6 | 0 | 0 |
Protein (g) | 8 | 8 | 1 | 8 | 0 | <1 |
Calcium (mg) | 300 | 300 | 560 | 470 | n/a | 450 |
Potassium (mg) | 400 | 420 | 250 | 370 | 40 | 0 |
Fatty Acid Name | CW | GO | CO | AL | SO | CA |
---|---|---|---|---|---|---|
Hexanoic acid (6:0) | X [3,24,25,26,27,28] | X [3,24,26,29] | X [24,30] | |||
Octanoic acid (8:0) | X [3,24,25,26,27,28] | X [3,24,26,29] | X [24,30] | X [24] | ||
Decanoic acid (10:0) | X [3,24,25,26,27,28] | X [3,24,26,29] | X [24,30,31] | X [24] | ||
Undecanoic acid (11:0) | X [24,25,26,27] | X [24,26,29] | X [24] | |||
Dodecanoic acid (12:0) | X [3,24,25,26,27,28] | X [3,24,26,29] | X [24,30,31] | X [24,30] | X [24] | X [34] |
Tridecanoic acid (13:0) | X [24,25,26,27] | X [24,26,29] | X [24] | |||
Tetradecanoic acid (14:0) | X [3,24,25,26,27,28] | X [3,24,26,29] | X [24,30,31] | X [24] | X [24,31,32] | X |
9-Tetradecenoic acid (14:1) | X [3,24,25,27,28] | X [3,24,29] | ||||
Pentadecanoic acid (15:0) | X [3,24,25,26,27,28] | X [3,24,26,29] | X | X | X [24,32] | |
Hexadecanoic acid (16:0) | X [3,24,25,26,27,28] | X [3,24,26,29] | X [24,30,31] | X [24,30] | X [24,31,32,33] | X [33,34] |
9-Hexadecenoic acid (16:1) | X [3,24,25,26,27,28] | X [3,24,26,29] | X [24,30] | X [24,30] | X [24,31,32,33] | X [33,34] |
Heptadecanoic acid (17:0) | X [3,24,25,26,27,28] | X [3,24,26,29] | X [24] | X [24] | X [24,32,33] | X [33,34] |
cis-10-Heptadecenoic acid (17:1) | X [24,25,26,27,28] | X [24,26,29] | X | X [32] | X | |
Octadecanoic acid (18:0) | X [3,24,25,26,27,28] | X [3,24,26,29] | X [24,30,31] | X [24,30] | X [24,30,31,32,33] | X [33,34] |
8-Octadecenoic acid (18:1) | X [3,24,25,26,27,28] | X [3,24,26,29] | X [24,31] | X [24,30] | X [24,30,31,32,33] | X [33,34] |
9,12-Octadecadienoic acid (18:2) | X [3,24,25,26,27,28] | X [3,24,26,29] | X [24,30,31] | X [24,30] | X [24,30,31,32,33] | X [33,34] |
9,12,15-Octadecatrienoic acid (18:3) | X [31] | |||||
Nonadecanoic acid (19:0) | X [27] | X | ||||
Nonadecaenoic acid (19:1) | X [27] | X [24] | X [24] | X | ||
Icosanoic acid (20:0) | X [3,24,26,27,28] | X [3,24,26,29] | X [24] | X [24] | X [24,31,32,33] | X [33,34] |
9,-Icosenoic acid (20:1) | X [3,26,27] | X [3,24,26,29] | X [24] | X [24] | X [24] | X [34] |
Di-cosenoic acid (20:2) | X [24] | |||||
5,8,11 Icosatrienoic acid (20:3) | X [3,24,25,26,27] | |||||
5,8,11,14-tetraenoic acid (20:4) | X [3,24,25,26,27] | X [3,24,26,29] | ||||
Heneicosanoic acid (21:0) | X [24,26] | X | ||||
Docosanoic acid (22:0) | X [24,26] | X [24,26] | X [24] | X [24,31,32,33] | X [33,34] | |
7,10,13,16-docosatetraenoic acid (22:4) | X [27] | |||||
7,10,13,16,19-docosapentaenoic acid (22:5) | X [3,24,27] | X [3,24] | ||||
Tricosanoic acid (23:0) | X [26,27] | X | ||||
Tetracosanoic acid (24:0) | X [3,26,27] | X [24] | X [24,32,33] | X [33,34] |
Milk Type | Mass Readings |
---|---|
AL | 313.1, 314.1, 315, 327.2, 345.2, 347.3, 353.2, 354.1, 411.2, 437.3, 465.3, 466.3, 467.2, 485.4, 509.1, 537.3, 538.4, 593.5, 607.3, 609.2, 621.3, 663.5, 803.1, 863.5 |
CA | 309.1, 313.1, 314.1, 339.2, 341.1, 342.2, 357.2, 367.2, 411.2, 433.1, 437.3, 441.1, 465.3, 466.3, 473.3, 504.4, 505.3, 509.4, 535.5, 537.5, 551.5, 591.5, 607.3, 608.4, 609.3, 683.3, 691.3, 705.1, 735.8, 759.9, 762.5, 803.2 |
CO | 313.1, 314.1, 321.2, 345.2, 353.2, 387.3, 404, 423.3, 437.3, 441.2, 454.3, 465.3, 467.4, 493.4, 509.5, 593.5, 607.3, 621.5, 635.3, 683.2, 705.1, 762.5, 803.3 |
CW | 309.1, 313.1, 314.1, 357.2, 358.3, 381.4, 395.3, 431.1, 439.58, 465.3, 466.3, 481.5, 495.5, 524.5, 537.3, 607.3, 665.3, 705.4, 736.4, 746.5, 762.7, 965.5 |
GO | 313.1, 314.1, 315, 327.2, 345.2, 347.3, 353.2, 354.1, 411.2, 437.3, 465.3, 466.3, 467.2, 485.4, 509.1, 537.3, 538.4, 593.5, 607.3, 609.2, 621.3, 663.5, 803.1, 863.5 |
SO | 313.1, 341.1, 342.1, 345.2, 369.2, 381.3, 411.2, 421.1, 431.1, 432.1, 465.3, 467.2, 475.1, 476.1, 481.2, 521.1, 537.3, 571.3, 595.3, 607.3, 635.3, 683.2, 684.3, 685.2, 693.5, 777.6 |
Milk Type | Mass Readings |
---|---|
AL | 387, 388, 404.1, 469.1, 511, 551.1, 552, 592.8, 633.2, 635, 674.9, 705.2, 714.9, 717.2, 756.9, 757.2, 799, 839.1, 880.1, 921.2, 962.2, 1003, 1043, 1125.2 |
CA | 387, 388, 397.25, 401.1, 423.1, 453, 469.1, 485, 517.2, 551.1, 552, 580.8, 608.9, 621.3, 633, 634.9, 635.4, 683.1, 685.2, 690.8, 714.9, 731, 773, 774.9, 777.8, 787.1, 799, 838.9, 920.8, 1003, 1043 |
CO | 283.2, 331.1, 341.1, 387, 459, 635.2, 685, 787.1, 944.3 |
CW | 387, 389.3, 391.3, 415.3, 439.2, 457, 469.1, 489, 490.9, 501, 529.3, 551.1, 596.6, 675.8, 704.9, 733, 800 |
GO | 377.1, 387, 389.3, 401.1, 415.3, 431.3, 465.3, 469.1, 537.3, 551.1, 568.5, 581, 598.5, 624.4, 633, 639.2, 662.9, 689.3, 690.8, 715, 715.3 |
SO | 353.1, 377.1, 387, 404.1, 415.3, 417.3, 431.1, 441.1, 469.1, 529.5, 551.1, 552.4, 553.3, 581.8, 633, 652.6, 683.3, 685.2, 717.1, 745, 880, 961, 1003, 1043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, B.; Hewage, S.P.W.R.; Alexander, D.; Fernando, H. 1H-NMR Lipidomics, Comparing Fatty Acids and Lipids in Cow, Goat, Almond, Cashew, Soy, and Coconut Milk Using NMR and Mass Spectrometry. Metabolites 2025, 15, 110. https://doi.org/10.3390/metabo15020110
Williams B, Hewage SPWR, Alexander D, Fernando H. 1H-NMR Lipidomics, Comparing Fatty Acids and Lipids in Cow, Goat, Almond, Cashew, Soy, and Coconut Milk Using NMR and Mass Spectrometry. Metabolites. 2025; 15(2):110. https://doi.org/10.3390/metabo15020110
Chicago/Turabian StyleWilliams, Brianna, Shamika P. W. R. Hewage, Denzel Alexander, and Harshica Fernando. 2025. "1H-NMR Lipidomics, Comparing Fatty Acids and Lipids in Cow, Goat, Almond, Cashew, Soy, and Coconut Milk Using NMR and Mass Spectrometry" Metabolites 15, no. 2: 110. https://doi.org/10.3390/metabo15020110
APA StyleWilliams, B., Hewage, S. P. W. R., Alexander, D., & Fernando, H. (2025). 1H-NMR Lipidomics, Comparing Fatty Acids and Lipids in Cow, Goat, Almond, Cashew, Soy, and Coconut Milk Using NMR and Mass Spectrometry. Metabolites, 15(2), 110. https://doi.org/10.3390/metabo15020110