Integrative Network Pharmacology and Multi-Omics Analysis Reveal Key Targets and Mechanisms of Saikosaponin B1 Against Acute Lung Injury
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification of SSB1 Targets
2.2. Identification of ALI Targets
2.3. Construction and Analysis of the SSB1–Target–ALI Network
2.4. PPI Network Analysis
2.5. GO and KEGG Pathway Enrichment Analyses
2.6. MCODE Clustering Analysis
2.7. Network Construction of Target–Pathway Interaction
2.8. Molecular Docking
2.9. Molecular Dynamics
2.10. Acquisition and Target Validation from the GEO Database
2.11. Animals and Treatments
2.12. Reagents and Materials
2.13. H&E Staining
2.14. Lung Wet/Dry (W/D) Weight Ratio
2.15. White Blood Cell Count
2.16. Measurement of BALF
2.17. Transcriptome
2.18. Untargeted Metabolomic Analysis
2.19. Determination of Arachidonic Acid Metabolite Content
2.20. Statistical Analysis
3. Results
3.1. Identification of SSB1 Targets
3.2. Prediction of Potential Therapeutic Targets for ALI
3.3. Construction of the SSB1–Target–ALI Network

3.4. PPI Network Analysis
3.5. GO Function and KEGG Pathway Enrichment Analysis
3.6. MCODE Clustering Analysis
3.7. Construction of the Target–Pathway Network and Identification of Core Targets
3.8. Molecular Docking
3.9. Molecular Dynamics Simulations
3.10. Identifying and Validating Therapeutic Targets for ALI Using GEO Datasets
3.11. SSB1 Alleviates LPS-Induced ALI in Mice
3.12. Transcriptome Analysis of SSB1 Against ALI
3.13. Metabolome Analysis of ALI Lung Tissue After SSB1 Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| SSB1 | Saikosaponin B1 |
| ALI | Acute lung injury |
| PPI | Protein–protein interaction |
| GO | Gene Ontology |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
| LPS | Lipopolysaccharide |
| BALF | Bronchoalveolar lavage fluid |
| ELISA | Enzyme-linked immunosorbent assay |
| H&E | Hematoxylin–eosin |
| ARDS | Acute respiratory distress syndrome |
| COVID-19 | Coronavirus Disease 2019 |
| TCM | Traditional Chinese Medicine |
| BR | Bupleurum Radix |
| SSA | Saikosaponin A |
| SSD | Saikosaponin D |
| RMSD | Root mean square deviation |
| RMSF | Root mean square fluctuation |
| Rg | Radius of gyration |
| SASA | Solvent-accessible surface area |
| DXMS | Dexamethasone |
| RSD | Relative standard deviation |
| QC | Quality control |
| PCA | Principal component analysis |
| PLS-DA | Partial least squares-discriminant analysis |
| VIP | Variable importance in projection |
| TPM | Transcripts per million |
| DEG | Differentially expressed gene |
| FDR | False discovery rate |
| SEM | Standard error of the mean |
| ANOVA | Analysis of variance |
| BC | Betweenness centrality |
| BP | Biological process |
| MF | Molecular function |
| CC | Cellular component |
References
- Wu, J.; Liu, Y.; Xu, J.; Zhang, G.; Xu, Q.; Deng, J.; Liu, Y.; Li, J.; Han, H.; Bu, L.L.; et al. Synergistic nanozyme-macrophage hybrid system for targeted therapy of acute lung injury. Nano Res. 2025, 18, 94907681. [Google Scholar] [CrossRef]
- Xiao, S.; Wang, Y.; Liu, L.; Sun, Z.; Xu, J.; Yin, X.; Wang, X.; Liao, F.; You, Y.; Zhang, H. Qingjin Huatan decoction attenuates lipopolysaccharide-induced acute lung injury in mice by controlling platelet-associated formation of neutrophil extracellular traps. Sci. Tradit. Chin. Med. 2023, 1, 59–71. [Google Scholar] [CrossRef]
- Liu, X.; Wang, N.; Cai, T.; Chen, H.; Dai, C.; Zhu, W. Exploring the material basis and mechanism of astilbe chinensis for acute lung injury via integrated network pharmacology and experimental validation. J. Ethnopharmacol. 2025, 353 Pt B, 120438. [Google Scholar] [CrossRef]
- Ma, D.Y.; Peng, L.F.; Gao, X.Y.; Xing, T.J.; Hao, Z.H. Solidago decurrens lour. Controls LPS-induced acute lung injury by reducing inflammatory responses and modulating the TLR4/NF-κB/NLRP3 signaling pathway. J. Ethnopharmacol. 2025, 352, 120172. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, J.; Gong, J.; Yang, W.; Huang, J.; Sun, Y. Huashi Baidu granules alleviates LPS-induced acute lung injury by targeting TACE-mediated inflammatory signaling and stress granules disassembly. J. Ethnopharmacol. 2025, 354, 120580. [Google Scholar] [CrossRef]
- Xu, W.; Ou, D.; Zhao, Y.; Liu, Y.; Yan, P.; Li, S.; Sun, Q.; Zhang, X.; Liu, H.; Huang, J.; et al. Curcumin alleviates lipopolysaccharide-induced alveolar epithelial glycocalyx damage by modulating the Rac1/NF-κB/HPSE pathway. Cell. Signal. 2025, 134, 111909. [Google Scholar] [CrossRef] [PubMed]
- Madamsetty, V.S.; Mohammadinejad, R.; Uzieliene, I.; Nabavi, N.; Dehshahri, A.; Garcia-Couce, J.; Tavakol, S.; Moghassemi, S.; Dadashzadeh, A.; Makvandi, P.; et al. Dexamethasone: Insights into Pharmacological Aspects, Therapeutic Mechanisms, and Delivery Systems. ACS Biomater. Sci. Eng. 2022, 8, 1763–1790. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Cai, H.; Tu, S.; Duan, Y.; Pei, K.; Xu, Y.; Liu, J.; Niu, M.; Zhang, Y.; Shen, L.; et al. Identification and analysis of compound profiles of sinisan based on “individual herb, herb-pair, herbal formula” before and after processing using UHPLC-Q-TOF/MS coupled with multiple statistical strategy. Molecules 2018, 23, 3128. [Google Scholar] [CrossRef]
- Mao, X.; Wang, C.; Tang, H.; Liu, X.; Wei, C.; Yin, F.; Fu, T.; Fang, Y.; Yu, K.; Zhang, Z.; et al. Toosendanin alleviates acute lung injury by reducing pulmonary vascular barrier dysfunction mediated by endoplasmic reticulum stress through mTOR. Phytomedicine 2025, 136, 156277. [Google Scholar] [CrossRef]
- Xu, H.; Li, S.; Liu, J.; Cheng, J.; Kang, L.; Li, W.; Zhong, Y.; Wei, C.; Fu, L.; Qi, J.; et al. Bioactive compounds from Huashi Baidu decoction possess both antiviral and anti-inflammatory effects against COVID-19. Proc. Natl. Acad. Sci. USA 2023, 120, e2301775120. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, H.; Sun, J.; Chen, Y.; Bai, D.; Wang, S.; Zhang, J.; Song, J.; Sun, Z.; Dai, L. Research progress on extraction, purification, biotransformation, pharmacological effects, toxicity, combined therapy and new dosage forms of saikosaponins. J. Ethnopharmacol. 2025, 352, 120274. [Google Scholar] [CrossRef]
- Jia, A.; Yang, X.; Zou, B.; Li, J.; Wang, Y.; Ma, R.; Li, J.; Yao, Y. Saikosaponins: A review of structures and pharmacological activities. Nat. Prod. Commun. 2022, 17, 1934578X221094908. [Google Scholar] [CrossRef]
- Gu, S.; Zheng, Y.; Chen, C.; Liu, J.; Wang, Y.; Wang, J.; Li, Y. Research progress on the molecular mechanisms of Saikosaponin D in various diseases (Review). Int. J. Mol. Med. 2024, 55, 37. [Google Scholar] [CrossRef]
- Yang, F.; Dong, X.; Yin, X.; Wang, W.; You, L.; Ni, J. Radix Bupleuri: A Review of Traditional Uses, Botany, Phytochemistry, Pharmacology, and Toxicology. Biomed. Res. Int. 2017, 7597596. [Google Scholar] [CrossRef]
- Luo, J.; Wang, J.; Yang, J.; Huang, W.; Liu, J.; Tan, W.; Xin, H. Saikosaponin B1 and Saikosaponin D inhibit tumor growth in medulloblastoma allograft mice via inhibiting the Hedgehog signaling pathway. J. Nat. Med. 2022, 76, 584–593. [Google Scholar] [CrossRef]
- Noor, F.; Asif, M.; Ashfaq, U.A.; Qasim, M.; Tahir Ul Qamar, M. Machine learning for synergistic network pharmacology: A comprehensive overview. Brief. Bioinform. 2023, 24, bbad120. [Google Scholar] [CrossRef]
- Yan, Z.J.; Han, X.Y.; Zhang, L.; Wang, Q.; Kang, Y.; Yuan, Y.; Xiao, M.; Li, K.; Xie, Y.Q. Advances in traditional chinese medicine for endocrine-metabolic diseases in 2024. Tradit. Med. Res. 2025, 10, 69. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Zhu, Z.; Yang, Y.; Xiong, Y.; Cui, X.; Liu, Y. Network pharmacology-driven sustainability: AI and multi-omics synergy for drug discovery in traditional Chinese medicine. Pharmaceuticals 2025, 18, 1074. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Zhan, Y.; Wang, R.; Pei, J. Decoding neuroinflammation in Alzheimer’s disease: A multi-omics and AI-driven perspective for precision medicine. Front. Immunol. 2025, 16, 1616899. [Google Scholar] [CrossRef] [PubMed]
- Platnich, J.M.; Muruve, D.A. NOD-like receptors and inflammasomes: A review of their canonical and non-canonical signaling pathways. Arch. Biochem. Biophys. 2019, 670, 4–14. [Google Scholar] [CrossRef]
- Chu, L.; Liu, F.; Tang, K. Clinical significance of TLR7/IL-23/IL-17 signaling pathway in patients with acute respiratory distress syndrome. Clinics 2024, 79, 100358. [Google Scholar] [CrossRef] [PubMed]
- Qiu, D.; Zhang, D.; Yu, Z.; Jiang, Y.; Zhu, D. Bioinformatics approach reveals the critical role of the NOD-like receptor signaling pathway in COVID-19-associated multiple sclerosis syndrome. J. Neural Transm. 2022, 129, 1031–1038. [Google Scholar] [CrossRef]
- Yuan, B.; Xiong, L.L.; Wen, M.D.; Zhang, P.; Ma, H.Y.; Wang, T.H.; Zhang, Y.H. Interleukin-6 RNA knockdown ameliorates acute lung injury induced by intestinal ischemia reperfusion in rats by upregulating interleukin-10 expression. Mol. Med. Rep. 2017, 16, 2529–2537. [Google Scholar] [CrossRef]
- Lopez-Castejon, G.; Brough, D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 2011, 22, 189–195. [Google Scholar] [CrossRef]
- Kong, D.; Wang, Z.; Tian, J.; Liu, T.; Zhou, H. Glycyrrhizin inactivates toll-like receptor (TLR) signaling pathway to reduce lipopolysaccharide-induced acute lung injury by inhibiting TLR2. J. Cell. Physiol. 2019, 234, 4597–4607. [Google Scholar] [CrossRef] [PubMed]
- Fei, L.; Jifeng, F.; Tiantian, W.; Yi, H.; Linghui, P. Glycyrrhizin Ameliorate Ischemia Reperfusion Lung Injury through Downregulate TLR2 Signaling Cascade in Alveolar Macrophages. Front. Pharmacol. 2017, 8, 389. [Google Scholar] [CrossRef]
- Wang, Q.; Achour, J.; Emam, L.; Louaguenouni, Y.; Cailleau, C.; Mercier-Nome, F.; Domenichini, S.; Delomenie, C.; Gul, S.; Vergnaud, J.; et al. Pulmonary delivery of siRNA anti-TNFα-loaded lipid nanoparticles for rapid recovery in murine acute lung injury. Adv. Healthc. Mater. 2025, 14, e00695. [Google Scholar] [CrossRef]
- Tan, W.; Qi, L.; Tan, Z. Animal models of infection-induced acute lung injury. Exp. Lung Res. 2024, 50, 221–241. [Google Scholar] [CrossRef]
- Sanches, P.H.G.; de Melo, N.C.; Porcari, A.M.; de Carvalho, L.M. Integrating Molecular Perspectives: Strategies for Comprehensive Multi-Omics Integrative Data Analysis and Machine Learning Applications in Transcriptomics, Proteomics, and Metabolomics. Biology 2024, 13, 848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, H.; Liu, C.; Sun, X.; Zu, S.; Tian, J.; Qu, L.; Li, S. The function of feline stimulator of interferon gene (STING) is evolutionarily conserved. Vet. Immunol. Immunopathol. 2016, 169, 54–62. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Z.; Wang, Y.; Xu, G.; Luo, M.; Zhang, M.; Li, Y. Rutin ameliorates LPS-induced acute lung injury in mice by inhibiting the cGAS-STING-NLRP3 signaling pathway. Front. Pharmacol. 2025, 16, 1590096. [Google Scholar] [CrossRef]
- Li, Z.Y.; Dai, Y.X.; Wu, Z.M.; Li, G.; Pu, P.M.; Hu, C.W.; Zhou, L.Y.; Zhu, K.; Shu, B.; Wang, Y.J.; et al. Network pharmacology analysis and animal experiment validation of neuroinflammation inhibition by total ginsenoside in treating CSM. Phytomedicine 2024, 126, 155073. [Google Scholar] [CrossRef]
- Bai, J.; Liu, F. cGAS-STING signaling and function in metabolism and kidney diseases. J. Mol. Cell Biol. 2021, 13, 728–738. [Google Scholar] [CrossRef]
- Tong, Z.; Zou, J.P.; Wang, S.Y.; Luo, W.W.; Wang, Y.Y. Activation of the cGAS-STING-IRF3 Axis by Type I and II Interferons Contributes to Host Defense. Adv. Sci. 2024, 11, e2308890. [Google Scholar] [CrossRef]
- Alum, E.U.; Manjula, V.S.; Uti, D.E.; Echegu, D.A.; Ugwu, O.P.C.; Egba, S.I.; Agu, P.C. Metabolomics-driven standardization of herbal medicine: Advances, applications, and sustainability considerations. Nat. Prod. Commun. 2025, 20, 1934578X251367650. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Li, C.; Xiong, M.; Bai, W.; Sun, S.; Chen, C.; Zhang, X.; Li, M.; Zhao, A. Intracellular Lipid Accumulation Drives the Differentiation of Decidual Polymorphonuclear Myeloid-Derived Suppressor Cells via Arachidonic Acid Metabolism. Front. Immunol. 2022, 13, 868669. [Google Scholar] [CrossRef] [PubMed]
- Pablo-Torres, C.; Izquierdo, E.; Tan, T.J.; Obeso, D.; Layhadi, J.A.; Sánchez-Solares, J.; Mera-Berriatua, L.; Bueno-Cabrera, J.L.; Del Mar Reaño-Martos, M.; Iglesias-Cadarso, A.; et al. Deciphering the role of platelets in severe allergy by an integrative omics approach. Allergy 2023, 78, 1319–1332. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhong, Y.; Shi, Y.; Feng, C.; Xu, L.; Chen, Z.; Sun, X.; Zhao, Y.; Sun, X. Multi-omics reveals that 5-O-methylvisammioside prevention acute liver injury in mice by regulating the TNF/MAPK/NF-κB/arachidonic acid pathway. Phytomedicine 2024, 128, 155550. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, S.; Wu, Z.; Wang, C.; Zhang, H.; Yang, J.; Guo, C.; Dai, M.; Wang, X.; Ren, W. Porcine GWAS identifies ACOT11 as regulator for macrophage IL-1β maturation via IFNGR2 palmitoylation. Sci. China Life Sci. 2025, 68, 3037–3050. [Google Scholar] [CrossRef]













Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.; Liu, M.; Cui, S.; Liu, K.; Yang, M.; Hu, X.; Zheng, C.; Wang, L.; Cao, J. Integrative Network Pharmacology and Multi-Omics Analysis Reveal Key Targets and Mechanisms of Saikosaponin B1 Against Acute Lung Injury. Metabolites 2025, 15, 782. https://doi.org/10.3390/metabo15120782
Niu Y, Liu M, Cui S, Liu K, Yang M, Hu X, Zheng C, Wang L, Cao J. Integrative Network Pharmacology and Multi-Omics Analysis Reveal Key Targets and Mechanisms of Saikosaponin B1 Against Acute Lung Injury. Metabolites. 2025; 15(12):782. https://doi.org/10.3390/metabo15120782
Chicago/Turabian StyleNiu, Yuanfei, Meiting Liu, Shuang Cui, Kaiyang Liu, Mengyuan Yang, Xiaozhen Hu, Changhui Zheng, Lianmei Wang, and Junling Cao. 2025. "Integrative Network Pharmacology and Multi-Omics Analysis Reveal Key Targets and Mechanisms of Saikosaponin B1 Against Acute Lung Injury" Metabolites 15, no. 12: 782. https://doi.org/10.3390/metabo15120782
APA StyleNiu, Y., Liu, M., Cui, S., Liu, K., Yang, M., Hu, X., Zheng, C., Wang, L., & Cao, J. (2025). Integrative Network Pharmacology and Multi-Omics Analysis Reveal Key Targets and Mechanisms of Saikosaponin B1 Against Acute Lung Injury. Metabolites, 15(12), 782. https://doi.org/10.3390/metabo15120782
