Metabolomics and Pharmacometabolomics: Advancing Precision Medicine in Drug Discovery and Development
Abstract
1. Introduction
1.1. Metabolomics and Pharmacometabolomics in the Era of Precision Medicine




1.2. Currently Applied Metabolomics Strategies and Workflows
2. Analytical Methodologies in Metabolomics and Pharmacometabolomics
2.1. Biosamples and Sample Preparation
2.2. Separation Techniques
2.2.1. Liquid Chromatography
2.2.2. Gas Chromatography
2.2.3. Supercritical Fluid Chromatography
2.2.4. Ion Mobility Spectrometry
2.2.5. Capillary Electrophoresis
2.3. Instrumental Analysis for Detection and Identification of Metabolites
2.3.1. Mass Spectrometry
2.3.2. Nuclear Magnetic Resonance Spectroscopy
2.4. Quantitation in LC-MS/MS and NMR
2.5. MS and NMR Combination
3. Metabolomic Applications in Drug Discovery and Development
4. Current Limitations and Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Norman, G.A. Phase II Trials in Drug Development and Adaptive Trial Design. JACC Basic Transl. Sci. 2019, 4, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Phapale, P. Pharmaco-metabolomics opportunities in drug development and clinical research. Anal. Sci. Adv. 2021, 2, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Qlik Sense. Available online: https://fis.fda.gov/sense/app/95239e26-e0be-42d9-a960-9a5f7f1c25ee/sheet/7a47a261-d58b-4203-a8aa-6d3021737452/state/analysis (accessed on 1 October 2025).
- Burt, T.; Nandal, S. Pharmacometabolomics in Early-Phase Clinical Development. Clin Transl Sci. 2016, 9, 128–138. [Google Scholar] [CrossRef]
- Neavin, D.; Kaddurah-Daouk, R.; Weinshilboum, R. Pharmacometabolomics informs pharmacogenomics. Metabolomics 2016, 12, 121. Available online: https://link.springer.com/article/10.1007/s11306-016-1066-x (accessed on 29 October 2025). [CrossRef]
- Pang, H.; Hu, Z. Metabolomics in drug research and development: The recent advances in technologies and applications. Acta Pharm. Sin. B 2023, 13, 3238–3251. [Google Scholar] [CrossRef]
- Nalbantoglu, S. Metabolomics: Basic Principles and Strategies. In Molecular Medicine; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Everett, J.R. NMR-based pharmacometabonomics: A new paradigm for personalised or precision medicine. Prog. Nucl. Magn. Reason. Spectrosc. 2017, 102–103, 1–14. [Google Scholar] [CrossRef]
- Alves, S.; Paris, A.; Rathahao-Paris, E. Mass spectrometry-based metabolomics for an in-depth questioning of human health. Adv. Clin. Chem. 2020, 99, 147–191. [Google Scholar] [CrossRef]
- Ramsden, J. Metabolomics and Metabonomics. In Bioinformatics; Springer: London, UK, 2015; pp. 265–270. [Google Scholar] [CrossRef]
- Kaur, R.; Gupta, S.; Kulshrestha, S.; Khandelwal, V.; Pandey, S.; Kumar, A.; Sharma, G.; Kumar, U.; Parashar, D.; Das, K. Metabolomics-Driven Biomarker Discovery for Breast Cancer Prognosis and Diagnosis. Cells 2024, 14, 5. [Google Scholar] [CrossRef]
- Yang, Q.J.; Zhao, J.R.; Hao, J.; Li, B.; Huo, Y.; Han, Y.L.; Wan, L.L.; Li, J.; Huang, J.; Lu, J.; et al. Serum and urine metabolomics study reveals a distinct diagnostic model for cancer cachexia. J. Cachexia Sarcopenia Muscle 2018, 9, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Luo, Y.; Shen, Y.; Hu, Y.; Zhu, F.; Wu, J.; Liu, Y. Integrated Metabonomics and Network Pharmacology to Reveal the Action Mechanism Effect of Shaoyao Decoction on Ulcerative Colitis. Drug Des. Dev. Ther. 2022, 16, 3739–3776. [Google Scholar] [CrossRef]
- Hang, J.; Chen, Y.; Liu, L.; Chen, L.; Fang, J.; Wang, F.; Wang, M. Antitumor effect and metabonomics of niclosamide micelles. J. Cell Mol. Med. 2022, 26, 4814–4824. [Google Scholar] [CrossRef] [PubMed]
- Beger, R.D.; Dunn, W.; Schmidt, M.A.; Gross, S.S.; Kirwan, J.A.; Cascante, M.; Brennan, L.; Wishart, D.S.; Oresic, M.; Hankemeier, T.; et al. Metabolomics enables precision medicine: “A White Paper, Community Perspective”. Metabolomics 2016, 12, 149. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Song, H.E.; Lee, H.Y.; Yoo, H.J. Mass Spectrometry-based Metabolomics in Translational Research. Adv. Exp. Med. Biol. 2021, 1310, 509–531. Available online: https://pubmed.ncbi.nlm.nih.gov/33834448/ (accessed on 29 October 2025).
- Gonzalez-Covarrubias, V.; Martínez-Martínez, E.; del Bosque-Plata, L. The Potential of Metabolomics in Biomedical Applications. Metabolites 2022, 12, 194. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, A.H.; Miao, J.H.; Sun, H.; Han, Y.; Yan, G.L.; Wu, F.F.; Wang, X.J. Metabolomics biotechnology, applications, and future trends: A systematic review. RSC Adv. 2019, 9, 37245–37257. [Google Scholar] [CrossRef]
- Iruzubieta, P.; Arias-Loste, M.T.; Barbier-Torres, L.; Martinez-Chantar, M.L.; Crespo, J. The need for biomarkers in diagnosis and prognosis of drug-induced liver disease: Does metabolomics have any role? Biomed Res. Int. 2015, 2015, 386186. [Google Scholar] [CrossRef]
- van de Velde, B.; Guillarme, D.; Kohler, I. Supercritical fluid chromatography—Mass spectrometry in metabolomics: Past, present, and future perspectives. J. Chromatogr. B 2020, 1161, 122444. [Google Scholar] [CrossRef]
- Kantae, V.; Krekels, E.H.J.; Esdonk, M.J.V.; Lindenburg, P.; Harms, A.C.; Knibbe, A.J.C.; Van der Graaf, P.H.; Hankemeier, T. Integration of pharmacometabolomics with pharmacokinetics and pharmacodynamics: Towards personalized drug therapy. Metabolomics 2017, 13, 9. [Google Scholar] [CrossRef]
- Kaddurah-Daouk, R.; Weinshilboum, R.M. Pharmacometabolomics: Implications for Clinical Pharmacology and Systems Pharmacology. Clin. Pharmacol. Ther. 2014, 95, 154–167. [Google Scholar] [CrossRef] [PubMed]
- Katsila, T.; Konstantinou, E.; Lavda, I.; Malakis, H.; Papantoni, I.; Skondra, L.; Patrinos, G.P. Pharmacometabolomics-aided Pharmacogenomics in Autoimmune Disease. EBioMedicine 2016, 5, 40–45. [Google Scholar] [CrossRef]
- Kaddurah-Daouk, R.; Weinshilboum, R. Metabolomic signatures for drug response phenotypes: Pharmacometabolomics enables precision medicine. Clin. Pharmacol. Ther. 2015, 98, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Begou, O.; Gika, H.G.; Wilson, I.D.; Theodoridis, G. Hyphenated MS-based targeted approaches in metabolomics. Analyst. R. Soc. Chem. 2017, 142, 3079–3100. [Google Scholar] [CrossRef]
- Aszyk, J.; Byliński, H.; Namieśnik, J.; Kot-Wasik, A. Main strategies, analytical trends and challenges in LC-MS and ambient mass spectrometry–based metabolomics. TrAC—Trends Anal. Chem. 2018, 108, 278–295. [Google Scholar] [CrossRef]
- Barderas, M.G.; Laborde, C.M.; Posada, M.; de la Cuesta, F.; Zubiri, I.; Vivanco, F.; Alvarez-Llamas, G. Metabolomic Profiling for Identification of Novel Potential Biomarkers in Cardiovascular Diseases. J Biomed. Biotechnol. 2011, 2011, 790132. [Google Scholar] [CrossRef]
- Chen, Y.; Li, E.M.; Xu, L.Y. Guide to Metabolomics Analysis: A Bioinformatics Workflow. Metabolites 2022, 12, 357. [Google Scholar] [CrossRef]
- Emwas, A.H.; Saccenti, E.; Gao, X.; McKay, R.T.; Martins Dos Santos, V.A.P.; Roy, R.; Wishart, D.S. Recommended strategies for spectral processing and post-processing of 1D 1H-NMR data of biofluids with a particular focus on urine. Metabolomics 2018, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Moco, S. Studying Metabolism by NMR-Based Metabolomics. Front. Mol. Biosci. 2022, 9, 882487. Available online: https://www.frontiersin.org/journals/molecular-biosciences/articles/10.3389/fmolb.2022.882487/full (accessed on 29 October 2025). [CrossRef] [PubMed]
- Emwas, A.H.; Roy, R.; McKay, R.T.; Tenori, L.; Saccenti, E.; Nagana Gowda, G.A.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M.; et al. Nmr spectroscopy for metabolomics research. Metabolites 2019, 9, 123. [Google Scholar] [CrossRef]
- Wishart, D.S.; Guo, A.C.; Oler, E.; Wang, F.; Anjum, A.; Peters, H.; Dizon, R.; Sayeeda, Z.; Tian, S.; Lee, L.B.; et al. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2021, 50, D622–D631. [Google Scholar] [CrossRef]
- Heuckeroth, S.; Damiani, T.; Smirnov, A.; Mokshyna, O.; Brungs, C.; Korf, A.; Smith, J.A.; Stincone, P.; Dreolin, N.; Nothias, L.F.; et al. Reproducible mass spectrometry data processing and compound annotation in MZmine 3. Nat. Protoc. 2024, 19, 2597–2641. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Luan, H.; Ji, F.; Chen, Y.; Cai, Z. statTarget: A streamlined tool for signal drift correction and interpretations of quantitative mass spectrometry-based omics data. Anal. Chim. Acta 2018, 1036, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Haug, K.; Salek, R.M.; Conesa, P.; Hastings, J.; de Matos, P.; Rijnbeek, M.; Mahendraker, T.; Williams, M.; Neumann, S.; Rocca-Serra, P.; et al. MetaboLights--an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 2012, 41, D781–D786. [Google Scholar] [CrossRef]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis. Nat. Methods 2015, 12, 523. [Google Scholar] [CrossRef]
- Ruttkies, C.; Schymanski, E.L.; Wolf, S.; Hollender, J.; Neumann, S. MetFrag relaunched: Incorporating strategies beyond in silico fragmentation. J. Cheminform. 2016, 8, 3. Available online: https://jcheminf.biomedcentral.com/articles/10.1186/s13321-016-0115-9 (accessed on 29 October 2025). [CrossRef]
- Broadhurst, D.I. QC:MXP Repeat Injection Based Quality Control, Batch Correction, Exploration & Data Cleaning (Version 2) Zendono. Available online: https://github.com/broadhurstdavid/QC-MXP (accessed on 29 October 2025).
- Pang, Z.; Lu, Y.; Zhou, G.; Hui, F.; Xu, L.; Viau, C.; Spigelman, A.F.; MacDonald, P.E.; Wishart, D.S.; Li, S.; et al. MetaboAnalyst 6.0: Towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 2024, 52, W398–W406. [Google Scholar] [CrossRef]
- Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K.; et al. MassBank: A public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 2010, 45, 703–714. [Google Scholar] [CrossRef]
- Röst, H.L.; Sachsenberg, T.; Aiche, S.; Bielow, C.; Weisser, H.; Aicheler, F.; Andreotti, S.; Ehrlich, H.C.; Gutenbrunner, P.; Kenar, E.; et al. OpenMS: A flexible open-source software platform for mass spectrometry data analysis. Nat. Methods 2016, 13, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Salguero, P.; Petek, M.; Martinez-Mira, C.; Balzano-Nogueira, L.; Ramšak, Ž.; McIntyre, L.; Gruden, K.; Tarazona, S.; Conesa, A. PaintOmics 4: New tools for the integrative analysis of multi-omics datasets supported by multiple pathway databases. Nucleic Acids Res. 2022, 50, W551–W559. [Google Scholar] [CrossRef] [PubMed]
- Tautenhahn, R.; Patti, G.J.; Rinehart, D.; Siuzdak, G. XCMS Online: A web-based platform to process untargeted metabolomic data. Anal. Chem. 2012, 84, 5035. [Google Scholar] [CrossRef]
- Conroy, M.J.; Andrews, R.M.; Andrews, S.; Cockayne, L.; Dennis, E.A.; Fahy, E.; Gaud, C.; Griffiths, W.J.; Jukes, G.; Kolchin, M.; et al. LIPID MAPS: Update to databases and tools for the lipidomics community. Nucleic Acids Res. 2023, 52, D1677–D1682. [Google Scholar] [CrossRef]
- Tobolkina, E.; González-Rui, V.; Meister, I.; De Figueiredo, M.; Guillarme, D.; Boccard, J.; Rudaz, S. Challenges in ESI-MS-based Untargeted Metabolomics. Chimia 2022, 76, 90–100. [Google Scholar] [CrossRef]
- Moses, T.; Burgess, K. Right in two: Capabilities of ion mobility spectrometry for untargeted metabolomics. Front. Mol. Biosci. 2023, 10, 1230282. [Google Scholar] [CrossRef]
- Anh, N.K.; Thu, N.Q.; Tien, N.T.N.; Long, N.P.; Nguyen, H.T. Advancements in Mass Spectrometry-Based Targeted Metabolomics and Lipidomics: Implications for Clinical Research. Molecules 2024, 29, 5934. [Google Scholar] [CrossRef]
- Watson, D.G. Pharmaceutical Analysis: A Textbook for Pharmacy Students and Pharmaceutical Chemists, 3nd Greek ed.; ΕΠΙΣΤHΜOΝΙΚΕΣ ΕΚΔOΣΕΙΣ ΠAΡΙAΣΙAΝOΥ A.Ε.: Attica, Greece, 2015. [Google Scholar]
- Ovbude, S.T.; Sharmeen, S.; Kyei, I.; Olupathage, H.; Jones, J.; Bell, R.J.; Powers, R.; Hage, D.S. Applications of chromatographic methods in metabolomics: A review. J. Chromatogr. B 2024, 1239, 124124. [Google Scholar] [CrossRef]
- Zaid, A.; Hassan, N.H.; Marriott, P.J.; Wong, Y.F. Comprehensive Two-Dimensional Gas Chromatography as a Bioanalytical Platform for Drug Discovery and Analysis. Pharmaceutics 2023, 15, 1121. [Google Scholar] [CrossRef] [PubMed]
- Myridakis, A.; Wen, Q.; Boshier, P.R.; Parker, A.G.; Belluomo, I.; Handakas, E.; Hanna, G.B. Global Urinary Volatolomics with (GC×)GC-TOF-MS. Anal. Chem. 2023, 95, 17170. [Google Scholar] [CrossRef] [PubMed]
- Schrimpe-Rutledge, A.C.; Codreanu, S.G.; Sherrod, S.D.; McLean, J.A. Untargeted Metabolomics Strategies—Challenges and Emerging Directions. J. Am. Soc. Mass Spectrom. 2016, 27, 1897–1905. [Google Scholar] [CrossRef]
- Hoerr, V.; Duggan, G.E.; Zbytnuik, L.; Poon, K.K.H.; Große, C.; Neugebauer, U.; Methling, K.; Löffler, B.; Vogel, H.J. Characterization and prediction of the mechanism of action of antibiotics through NMR metabolomics. BMC Microbiol. 2016, 16, 82. [Google Scholar] [CrossRef]
- Lepoittevin, M.; Blancart-Remaury, Q.; Kerforne, T.; Pellerin, L.; Hauet, T.; Thuillier, R. Comparison between 5 extractions methods in either plasma or serum to determine the optimal extraction and matrix combination for human metabolomics. Cell. Mol. Biol. Lett. 2023, 28, 43. Available online: https://pubmed.ncbi.nlm.nih.gov/37210499/ (accessed on 29 October 2025). [CrossRef]
- Gika, H.; Virgiliou, C.; Theodoridis, G.; Plumb, R.S.; Wilson, I.D. Untargeted LC/MS-based metabolic phenotyping (metabonomics/metabolomics): The state of the art. J. Chromatogr. B 2019, 1117, 136–147. [Google Scholar] [CrossRef]
- Gika, H.G.; Theodoridis, G.A.; Plumb, R.S.; Wilson, I.D. Current practice of liquid chromatography-mass spectrometry in metabolomics and metabonomics. J. Pharm. Biomed. Anal. 2014, 87, 12–25. [Google Scholar] [CrossRef] [PubMed]
- Gertsman, I.; Barshop, B.A. Promises and pitfalls of untargeted metabolomics. J. Inherit. Metab. Dis. 2018, 41, 355–366. [Google Scholar] [CrossRef]
- Lopes, A.S.; Cruz, E.C.S.; Sussulini, A.; Klassen, A. Metabolomic strategies involving mass spectrometry combined with liquid and gas chromatography. In Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2017; Volume 965, pp. 77–98. [Google Scholar] [CrossRef]
- Theodoridis, G.; Gika, H.G.; Wilson, I.D. Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies. Mass Spectrom. Rev. 2011, 30, 884–906. [Google Scholar] [CrossRef] [PubMed]
- Rainville, P.D.; Theodoridis, G.; Plumb, R.S.; Wilson, I.D. Advances in liquid chromatography coupled to mass spectrometry for metabolic phenotyping. TrAC Trends Anal. Chem. 2014, 61, 181–191. [Google Scholar] [CrossRef]
- Kapoore, R.V.; Vaidyanathan, S. Towards quantitative mass spectrometry-based metabolomics in microbial and mammalian systems. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150363. [Google Scholar] [CrossRef]
- Giannoukos, S.; Agapiou, A.; Brkić, B.; Taylor, S. Volatolomics: A broad area of experimentation. J. Chromatogr. B 2019, 1105, 136–147. [Google Scholar] [CrossRef]
- Fritsche-Guenther, R.; Gloaguen, Y.; Bauer, A.; Tobias, O.; Kempa, S.; Fleming, C.A.; Redmond, H.P.; Kirwan, J.A. Optimized workflow for on-line derivatization for targeted metabolomics approach by gas chromatography-mass spectrometry. Metabolites 2021, 11, 888. Available online: https://pubmed.ncbi.nlm.nih.gov/34940646/ (accessed on 29 October 2025). [CrossRef] [PubMed]
- Rey-Stolle, F.; Dudzik, D.; Gonzalez-Riano, C.; Fernández-García, M.; Alonso-Herranz, V.; Rojo, D.; Barbas, C.; García, A. Low and high resolution gas chromatography-mass spectrometry for untargeted metabolomics: A tutorial. Anal. Chim. Acta 2022, 1210, 339043. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics by Gas Chromatography-Mass Spectrometry: The combination of targeted and untargeted profiling. Curr. Protoc. Mol. Biol. 2016, 114, 30.4.1–30.4.32. [Google Scholar] [CrossRef]
- Frolova, N.; Orlova, A.; Popova, V.; Bilova, T.; Frolov, A.; Timiryazev, K. GC-MS-based metabolomics-Part 1 Gas chromatography-mass spectrometry (GC-MS) and its place in the plant metabolomics toolbox. ChemRxiv 2025. [Google Scholar] [CrossRef]
- Shulaev, V.; Isaac, G. Supercritical fluid chromatography coupled to mass spectrometry—A metabolomics perspective. J Chromatogr B Anal. Technol Biomed. Life Sci. 2018, 1092, 499–505. [Google Scholar] [CrossRef]
- Dodds, J.N.; Baker, E.S. Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead. J. Chromatogr. B 2019, 30, 2185–2195. [Google Scholar] [CrossRef] [PubMed]
- Sans, M.; Feider, C.L.; Eberlin, L.S. Advances in mass spectrometry imaging coupled to ion mobility spectrometry for enhanced imaging of biological tissues. Curr. Opin. Chem. Biol. 2018, 42, 138–146. [Google Scholar] [CrossRef]
- Campuzano, I.D.G.; Lippens, J.L. Ion mobility in the pharmaceutical industry: An established biophysical technique or still niche? Curr. Opin. Chem. Biol. 2018, 42, 147–159. [Google Scholar] [CrossRef]
- Eyers, C.E.; Vonderach, M.; Ferries, S.; Jeakock, K.; Eyers, P.A. Understanding protein-drug interactions using ion mobility-mass spectrometry. Curr. Opin. Chem. Biol. 2018, 42, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhu, G.; Yan, X.; Zhang, Z.; Wojcik, R.; Champion, M.M.; Dovichi, N.J. Capillary zone electrophoresis for bottom-up analysis of complex proteomes. Proteomics 2015, 16, 188. [Google Scholar] [CrossRef] [PubMed]
- Ouimet, C.M.; D’amico, C.I.; Kennedy, R.T. Advances in Capillary Electrophoresis and the Implications for Drug Discovery. Expert Opin. Drug Discov. 2016, 12, 213. [Google Scholar] [CrossRef]
- Zhang, W.; Hankemeier, T.; Ramautar, R. Next-generation capillary electrophoresis–mass spectrometry approaches in metabolomics. Curr Opin Biotechnol. 2017, 43, 1–7. [Google Scholar] [CrossRef]
- Gomes, F.P.; Yates, J.R. Recent Trends of Capillary Electrophoresis-Mass Spectrometry in Proteomics Research. Mass Spectrom. Rev. 2019, 38, 445. [Google Scholar] [CrossRef]
- Xiao, J.F.; Zhou, B.; Ressom, H.W. Metabolite identification and quantitation in LC-MS/MS-based metabolomics. TrAC Trends Anal. Chem. 2012, 32, 1–14. [Google Scholar] [CrossRef]
- Wang, R.; Yin, Y.; Zhu, Z.J. Advancing untargeted metabolomics using data-independent acquisition mass spectrometry technology. Anal. Bioanal. Chem. 2019, 411, 4349–4357. [Google Scholar] [CrossRef]
- Jiang, F.; Liu, Q.; Li, Q.; Zhang, S.; Qu, X.; Zhu, J.; Zhong, G.; Huang, M. Signal Drift in Liquid Chromatography Tandem Mass Spectrometry and Its Internal Standard Calibration Strategy for Quantitative Analysis. Anal. Chem. 2020, 92, 7690–7698. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cai, B.; Huan, T. Enhancing Metabolome Coverage in Data-Dependent LC-MS/MS Analysis through an Integrated Feature Extraction Strategy. Anal Chem. 2019, 91, 14433–14441. [Google Scholar] [CrossRef]
- Leenders, J.; Frédérich, M.; De Tullio, P. Nuclear magnetic resonance: A key metabolomics platform in the drug discovery process. Drug Discov. Today Technol. 2015, 13, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Torres, C.; Wong, A. Current Developments in µMAS NMR Analysis for Metabolomics. Metabolites 2019, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Würtz, P.; Kangas, A.J.; Soininen, P.; Lawlor, D.A.; Smith, G.D.; Ala-Korpela, M. Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on -Omic Technologies. Am. J. Epidemiol. 2017, 186, 1084–1096. [Google Scholar] [CrossRef]
- Singh, S.; Roy, R. The application of absolute quantitative 1H NMR spectroscopy in drug discovery and development. Expert Opin. Drug Discov. 2016, 11, 695–706. [Google Scholar] [CrossRef]
- Crook, A.A.; Powers, R. Quantitative NMR-Based Biomedical Metabolomics: Current Status and Applications. Molecules 2020, 25, 5128. [Google Scholar] [CrossRef]
- Gomes, N.G.M.; Pereira, D.M.; Valentão, P.; Andrade, P.B. Hybrid MS/NMR methods on the prioritization of natural products: Applications in drug discovery. J. Pharm. Biomed. Anal. 2018, 147, 234–249. [Google Scholar] [CrossRef]
- Marshall, D.D.; Powers, R. Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 100, 1–16. [Google Scholar] [CrossRef]
- Tayyari, F.; Gowda, G.A.N.; Gu, H.; Raftery, D. 15N-Cholamine—A smart isotope tag for combining NMR- and MS-based metabolite profiling. Anal. Chem. 2013, 85, 8715–8721. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Geng, W.; Sun, H.; Liu, C.; Huang, F.; Cao, J.; Xia, L.; Zhao, H.; Zhai, J.; Li, Q.; et al. Integrative metabolomic characterisation identifies altered portal vein serum metabolome contributing to human hepatocellular carcinoma. Gut 2022, 71, 1203–1213. [Google Scholar] [CrossRef] [PubMed]
- Zhong, P.; Tan, S.; Zhu, Z.; Bulloch, G.; Long, E.; Huang, W.; He, M.; Wang, W. Metabolomic phenotyping of obesity for profiling cardiovascular and ocular diseases. J. Transl. Med. 2023, 21, 384. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Gu, J.; Zhang, M.; Su, F.; Su, W.; Xie, Y. NMR-Based Metabolomics to Analyze the Effects of a Series of Monoamine Oxidases-B Inhibitors on U251 Cells. Biomolecules 2023, 13, 600. [Google Scholar] [CrossRef]
- Cacciatore, S.; Zadra, G.; Bango, C.; Penney, K.L.; Tyekucheva, S.; Yanes, O.; Loda, M. Metabolic Profiling in Formalin-Fixed and Paraffin-Embedded Prostate Cancer Tissues. Mol. Cancer Res. 2017, 15, 439. [Google Scholar] [CrossRef]
- Hundertmark, M.J.; Agbaje, O.F.; Coleman, R.; George, J.T.; Grempler, R.; Holman, R.R.; Lamlum, H.; Lee, J.; Milton, J.E.; Niessen, H.G.; et al. Design and rationale of the EMPA-VISION trial: Investigating the metabolic effects of empagliflozin in patients with heart failure. ESC Heart Fail. 2021, 8, 2580–2590. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, X.; Bu, X.; Li, Y.; Wang, M.; Zhang, B.; Sun, W.; Li, C. Application of plasma metabolome for monitoring the effect of rivaroxaban in patients with nonvalvular atrial fibrillation. PeerJ 2022, 10, e13853. [Google Scholar] [CrossRef]
- Shao, Y.; Li, T.; Liu, Z.; Wang, X.; Xu, X.; Li, S.; Xu, G.; Le, W. Comprehensive metabolic profiling of Parkinson’s disease by liquid chromatography-mass spectrometry. Mol. Neurodegener. 2021, 16, 4. [Google Scholar] [CrossRef]
- Sánchez-Castillo, A.; Heylen, E.; Hounjet, J.; Savelkouls, K.G.; Lieuwes, N.G.; Biemans, R.; Dubois, L.J.; Reynders, K.; Rouschop, K.M.; Vaes, R.D.W.; et al. Targeting serine/glycine metabolism improves radiotherapy response in non-small cell lung cancer. Br. J. Cancer 2023, 130, 568. [Google Scholar] [CrossRef]
- Tolstikov, V. Metabolomics: Bridging the Gap between Pharmaceutical Development and Population Health. Metabolites 2016, 6, 20. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, Y.; Yao, H.; Lin, C.; Xie, Y.; Tang, S.; Zhang, A. Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 132. [Google Scholar] [CrossRef]
- Yin, K.; Lee, J.; Liu, Z.; Kim, H.; Martin, D.R.; Wu, D.; Liu, M.; Xue, X. Mitophagy protein PINK1 suppresses colon tumor growth by metabolic reprogramming via p53 activation and reducing acetyl-CoA production. Cell Death Differ. 2021, 28, 2421. [Google Scholar] [CrossRef]
- Tan, B.; Jaulin, A.; Bund, C.; Outilaft, H.; Wendling, C.; Chenard, M.P.; Alpy, F.; Cicek, A.E.; Namer, I.J.; Tomasetto, C.; et al. Matrix Metalloproteinase-11 Promotes Early Mouse Mammary Gland Tumor Growth through Metabolic Reprogramming and Increased IGF1/AKT/FoxO1 Signaling Pathway, Enhanced ER Stress and Alteration in Mitochondrial UPR. Cancers 2020, 12, 2357. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Chen, H.; Yin, D.; Wang, J.; Wang, S.; Yang, F.; Li, J.; Mu, T.; Li, J.; Zhao, J.; et al. Multi-omics analysis reveals NNMT as a master metabolic regulator of metastasis in esophageal squamous cell carcinoma. NPJ Precis. Oncol. 2024, 8, 24. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Liu, W.; Xia, S.; Zhou, Y.; Tang, M.; Xu, M.; Lin, M.; Li, X.; Wang, Q. Warburg effect enhanced by AKR1B10 promotes acquired resistance to pemetrexed in lung cancer-derived brain metastasis. J. Transl. Med. 2023, 21, 547. [Google Scholar] [CrossRef]
- Fouad, Y.A.; Aanei, C. Revisiting the hallmarks of cancer. Am. J. Cancer Res. 2017, 7, 1016. [Google Scholar] [PubMed]
- Tran, D.T.; Dahlin, A. Pharmacometabolomics: General Applications of Metabolomics in Drug Development and Personalized Medicine. In Metabolomics; Springer: Cham, Switzerland, 2023; pp. 127–164. Available online: https://link.springer.com/chapter/10.1007/978-3-031-39094-4_5 (accessed on 29 October 2025).
- Fillet, M.; Frédérich, M. The emergence of metabolomics as a key discipline in the drug discovery process. Drug Discov. Today Technol. 2015, 13, 19–24. [Google Scholar] [CrossRef]
- Chowdhury, S.; Zielinski, D.C.; Dalldorf, C.; Rodrigues, J.V.; Palsson, B.O.; Shakhnovich, E.I. Empowering drug off-target discovery with metabolic and structural analysis. Nat. Commun. 2023, 14, 3390. [Google Scholar] [CrossRef]
- Coen, M.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. NMR-based metabolic profiling and metabonomic approaches to problems in molecular toxicology. Chem. Res. Toxicol. 2008, 21, 9–27. [Google Scholar] [CrossRef]
- Ramirez, T.; Daneshian, M.; Kamp, H.; Bois, F.Y.; Clench, M.R.; Coen, M.; Donley, B.; Fischer, S.M.; Ekman, D.R.; Fabian, E.; et al. T4 Report* Metabolomics in toxicology and preclinical research. Altex 2013, 30, 209–225. [Google Scholar] [CrossRef]
- Abouleila, Y.; Ali, A.; Masuda, K.; Mashaghi, A.; Shimizu, Y. Capillary microsampling-based single-cell metabolomics by mass spectrometry and its applications in medicine and drug discovery. Cancer Biomark. 2022, 33, 437–447. [Google Scholar] [CrossRef] [PubMed]
- Buglakova, E.; Ekelöf, M.; Schwaiger-Haber, M.; Schlicker, L.; Molenaar, M.R.; Shahraz, M.; Stuart, L.; Eisenbarth, A.; Hilsenstein, V.; Patti, G.J.; et al. Spatial single-cell isotope tracing reveals heterogeneity of de novo fatty acid synthesis in cancer. Nat. Metab. 2024, 6, 1695–1711. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shi, M.; Li, M.; Qin, S.; Miao, D.; Bai, Y. Dynamic single-cell metabolomics reveals cell-cell interaction between tumor cells and macrophages. Nat. Commun. 2025, 16, 4582. [Google Scholar] [CrossRef]
- Beyoǧlu, D.; Idle, J.R. Metabolomics and its potential in drug development. Biochem Pharmacol. 2013, 85, 12–20. [Google Scholar] [CrossRef]
- Komagamine, J. Prevalence of urgent hospitalizations caused by adverse drug reactions: A cross-sectional study. Sci. Rep. 2024, 14, 6058. [Google Scholar] [CrossRef]
- Bouvy, J.C.; De Bruin, M.L.; Koopmanschap, M.A. Epidemiology of Adverse Drug Reactions in Europe: A Review of Recent Observational Studies. Drug Saf. 2015, 38, 437. [Google Scholar] [CrossRef] [PubMed]
- Beeler, P.E.; Stammschulte, T.; Dressel, H. Hospitalisations Related to Adverse Drug Reactions in Switzerland in 2012–2019: Characteristics, In-Hospital Mortality, and Spontaneous Reporting Rate. Drug Saf. 2023, 46, 753–763. Available online: https://pubmed.ncbi.nlm.nih.gov/37335465/ (accessed on 29 October 2025). [CrossRef]
- Crestani, E.; Harb, H.; Charbonnier, L.M.; Leirer, J.; Motsinger-Reif, A.; Rachid, R.; Phipatanakul, W.; Kaddurah-Daouk, R.; Chatila, T.A. Untargeted Metabolomic Profiling Identifies Disease-specific Signatures in Food Allergy and Asthma. J. Allergy Clin Immunol. 2019, 145, 897. [Google Scholar] [CrossRef]
- Yue, L.; Zeng, P.; Li, Y.; Chai, Y.; Wu, C.; Gao, B. Nontargeted and targeted metabolomics approaches reveal the key amino acid alterations involved in multiple myeloma. PeerJ 2022, 10, e12918. [Google Scholar] [CrossRef]
- Prince, N.; Chu, S.H.; Chen, Y.; Mendez, K.M.; Hanson, E.; Green-Snyder, L.; Brooks, E.; Korrick, S.; Lasky-Su, J.A.; Kelly, R.S. Phenotypically driven subgroups of ASD display distinct metabolomic profiles. Brain Behav. Immun. 2023, 111, 21. [Google Scholar] [CrossRef]
- Reher, R.; Aron, A.T.; Fajtová, P.; Stincone, P.; Wagner, B.; Pérez-Lorente, A.I.; Liu, C.; Ben Shalom, I.Y.; Bittremieux, W.; Wang, M.; et al. Native metabolomics identifies the rivulariapeptolide family of protease inhibitors. Nat Commun. 2022, 13, 4619. [Google Scholar] [CrossRef] [PubMed]
- Rattner, J.I.; Kopciuk, K.A.; Vogel, H.J.; Tang, P.A.; Shapiro, J.D.; Tu, D.; Jonker, D.J.; Siu, L.L.; O’Callaghan, C.J.; Bathe, O.F. Clinical and metabolomic characterization of Brivanib-Induced hypertension in metastatic colorectal cancer. Cancer Med. 2023, 12, 16019. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, K.; Zhao, H.; Hao, Z.; Yang, Y.; Gao, M.; Zhao, D. Integrated lipidomics and network pharmacology analysis to reveal the mechanisms of berberine in the treatment of hyperlipidemia. J. Transl. Med. 2022, 20, 412. [Google Scholar] [CrossRef]
- Xie, C.; Gao, X.; Sun, D.; Zhang, Y.; Krausz, K.W.; Qin, X.; Gonzalez, F.J. Metabolic profiling of the novel hypoxia-inducible factor 2α inhibitor PT2385 in vivo and in vitro. Drug Metab. Dispos. 2018, 46, 336–345. Available online: https://pubmed.ncbi.nlm.nih.gov/29363499/ (accessed on 29 October 2025). [CrossRef] [PubMed]
- Li, Y.; Girgis, M.; Jayatilake, M.; Serebrenik, A.A.; Cheema, A.K.; Kaytor, M.D.; Singh, V.K. Pharmacokinetic and metabolomic studies with a BIO 300 Oral Powder formulation in nonhuman primates. Sci. Rep. 2022, 12, 13475. [Google Scholar] [CrossRef]
- Jieu, B.; Sykorova, E.B.; Rohleder, C.; Marcolini, E.; Hoffmann, A.E.; Koethe, D.; Leweke, F.M.; Couttas, T.A. Alterations to sphingolipid metabolism from antipsychotic administration in healthy volunteers are restored following the use of cannabidiol. Psychiatry Res. 2024, 339, 116005. [Google Scholar] [CrossRef]
- Jangsiripornpakorn, J.; Srisuk, S.; Chailurkit, L.; Nimitphong, H.; Saetung, S.; Ongphiphadhanakul, B. The glucose-lowering effect of low-dose diacerein and its responsiveness metabolic markers in uncontrolled diabetes. BMC Res. Notes 2022, 15, 91. [Google Scholar] [CrossRef]
- Zhao, Q.; Lu, Y.; Duan, J.; Du, D.; Pu, Q.; Li, F. Gut microbiota depletion and FXR inhibition exacerbates zonal hepatotoxicity of sunitinib. Theranostics 2024, 14, 7219. [Google Scholar] [CrossRef]
- Boguszewicz, Ł.; Jamroz, E.; Ciszek, M.; Emich-Widera, E.; Kijonka, M.; Banasik, T.; Skorupa, A.; Sokół, M. NMR-based metabolomics in pediatric drug resistant epilepsy—Preliminary results. Sci. Rep. 2019, 9, 15035. [Google Scholar] [CrossRef]
- Moreno-Gordaliza, E.; González-Nicolás, M.Á.; Lázaro, A.; Barbas, C.; Gómez-Gómez, M.M.; López-Gonzálvez, Á. Untargeted metabolomics analysis of serum and urine unveils the protective effect of cilastatin on altered metabolic pathways during cisplatin-induced acute kidney injury. Biochem. Pharmacol. 2024, 227, 116435. [Google Scholar] [CrossRef] [PubMed]
- Latham, B.D.; Oskin, D.S.; Crouch, R.D.; Vergne, M.J.; Jackson, K.D. Cytochromes P450 2C8 and 3A Catalyze the Metabolic Activation of the Tyrosine Kinase Inhibitor Masitinib. Chem. Res. Toxicol. 2022, 35, 1467–1481. [Google Scholar] [CrossRef]
- Sonn, B.J.; Heard, K.J.; Heard, S.M.; D’Alessandro, A.; Reynolds, K.M.; Dart, R.C.; Rumack, B.H.; Monte, A.A. Metabolomic markers predictive of hepatic adaptation to therapeutic dosing of acetaminophen. Clin. Toxicol. 2021, 60, 221. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Chen, B.; Yan, Z.; Gao, J.; Tang, J.; Zhou, C. Metabolites profiling and pharmacokinetics of troxipide and its pharmacodynamics in rats with gastric ulcer. Sci. Rep. 2020, 10, 13619. [Google Scholar] [CrossRef]
- Lesche, D.; Sigurdardottir, V.; Leichtle, A.B.; Nakas, C.T.; Christians, U.; Englberger, L.; Fiedler, M.; Largiadèr, C.R.; Mohacsi, P.; Sistonen, J. Targeted and global pharmacometabolomics in everolimus-based immunosuppression: Association of co-medication and lysophosphatidylcholines with dose requirement. Metabolomics 2017, 14, 3. [Google Scholar] [CrossRef] [PubMed]
- Fokina, V.M.; Xu, M.; Rytting, E.; Abdel-Rahman, S.Z.; West, H.; Oncken, C.; Clark, S.M.; Ahmed, M.S.; Hankins, G.D.V.; Nanovskaya, T.N. Pharmacokinetics of bupropion and its pharmacologically active metabolites in pregnancy. Drug Metab. Dispos. 2016, 44, 1832–1838. [Google Scholar] [CrossRef]
- Lin, L.H.; Ghasemi, M.; Burke, S.M.; Mavis, C.K.; Nichols, J.R.; Torka, P.; Mager, D.E.; Hernandez-Ilizaliturri, F.J.; Goey, A.K.L. Population Pharmacokinetics and Pharmacodynamics of Carfilzomib in Combination with Rituximab, Ifosfamide, Carboplatin, and Etoposide in Adult Patients with Relapsed/Refractory Diffuse Large B Cell Lymphoma. Target. Oncol. 2023, 18, 685. [Google Scholar] [CrossRef]
- de Almeida, V.; Alexandrino, G.L.; Aquino, A.; Gomes, A.F.; Murgu, M.; Dobrowolny, H.; Guest, P.C.; Steiner, J.; Martins-de-Souza, D. Changes in the blood plasma lipidome associated with effective or poor response to atypical antipsychotic treatments in schizophrenia patients. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 101, 109945. [Google Scholar] [CrossRef]
- Guan, X.; Xu, J.; Xiu, M.; Li, X.; Liu, H.; Wu, F. Kynurenine pathway metabolites and therapeutic response to olanzapine in female patients with schizophrenia: A longitudinal study. CNS Neurosci. Ther. 2022, 28, 1539. [Google Scholar] [CrossRef]
- Wang, H.; Fang, Z.Z.; Zheng, Y.; Zhou, K.; Hu, C.; Krausz, K.W.; Sun, D.; Idle, J.R.; Gonzalez, F.J. Metabolic profiling of praziquantel enantiomers. Biochem. Pharmacol. 2014, 90, 166–178. [Google Scholar] [CrossRef]
- Bieber, S.; Letzel, T.; Kruve, A. Electrospray Ionization Efficiency Predictions and Analytical Standard Free Quantification for SFC/ESI/HRMS. J. Am. Soc. Mass Spectrom. 2023, 34, 1511–1518. Available online: https://pubmed.ncbi.nlm.nih.gov/37358930/ (accessed on 29 October 2025). [CrossRef] [PubMed]
- Cui, L.; Lu, H.; Lee, Y.H. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. Mass Spectrom. Rev. 2018, 37, 772–792. [Google Scholar] [CrossRef] [PubMed]
- Mildau, K.; Ehlers, H.; Meisenburg, M.; Del Pup, E.; Koetsier, R.A.; Torres Ortega, L.R.; de Jonge, N.F.; Singh, K.S.; Ferreira, D.; Othibeng, K.; et al. Effective data visualization strategies in untargeted metabolomics. Nat. Prod. Rep. 2024, 42, 982–1019. [Google Scholar] [CrossRef]
- Coler, E.A.; Chen, W.; Melnik, A.V.; Morton, J.T.; Aksenov, A.A. Metabolomics in the era of artificial intelligence. Microbiota Host 2024, 2, e230017. [Google Scholar] [CrossRef]
- Chen, L.; Lu, W.; Wang, L.; Xing, X.; Chen, Z.; Teng, X.; Zeng, X.; Muscarella, A.D.; Shen, Y.; Cowan, A.; et al. Metabolite discovery through global annotation of untargeted metabolomics data. Nat. Methods 2021, 18, 1377–1385. [Google Scholar] [CrossRef]



| Technique | Type of Coupling | Information Provided |
|---|---|---|
| COSY | 1H–1H (neighboring protons, 2–3 bonds) | Reveals correlations between neighboring protons through 2–3 chemical bonds, helping identify local spin systems and define short-range proton connectivity. |
| TOCSY | 1H–1H (entire spin system) | Displays all protons belonging to the same coupled spin system, even if not directly bonded, allowing complete mapping of proton networks in complex metabolites. |
| HSQC | 1H–13C (one-bond coupling) | Provides direct information on hydrogen–carbon single-bond connectivity, enabling accurate assignment of carbon resonances to their attached protons. |
| HMBC | 1H–13C (2 to 3-bond coupling) | Detects long-range H–C correlations through 2–3 bonds, useful for identifying functional groups, reconstructing molecular skeletons, and confirming substitution patterns. |
| Databases and Libraries | Data Processing | Metabolite Annotation and Networking | QC, Drift and Batch Effect Correction | Multiomics Data Integration |
|---|---|---|---|---|
| HMDB [32] | MzMine [33] | Sirius [34] | StatTarget [35] | CytoScape [36] |
| MetaboLights [37] | MSdial [38] | MetFRag [39] | QC-MXP [40] | MetaboAnalyst [41] |
| MassBank [42] | OpenMS [43] | GNPS [44] | PaintOmics [45] | |
| GNPS [44] | XCMS [46] | |||
| LipidMass [47] | MetaboAnalyst [41] |
| Separation Technique | Stationary Phase | Mobile Phase | Separation Targets | |
|---|---|---|---|---|
| Liquid chromatography (LC) | RPLC | non-polar e.g. C8 or C18 bonded silica | Gradient elution preferred. Water, organic solvents, modified solvents e.g. with formic acid | non-polar, lipophilic compounds to moderate polar compounds |
| HILIC | polar Zwitterionic, bare silica, diol, amino, amide, etc. | Gradient elution preferred. Water, organic polar or aprotic solvents, modified solvents e.g. with formic acid | polar compounds | |
| Supercritical Fluid Chromatography (SFC) | variety of polarity | supercritical CO2 and co-solvents, such as EtOH or ACN | polar and non-polar compounds simultaneously | |
| Gas chromatography (GC) | capillary (mostly) or packed columns, in heated oven | buffer gas N2 or He | (semi)volatile and small polar compounds | |
| Ion Mobility Spectrometry (IMS) | Not applicable. Separation on gas phase, based on ion mobility and collisions with the buffer gas molecules | buffer gas N2 or He | independent of polarity | |
| Capillary Electrophoresis (CE) | fused silica capillary columns | aqueous, containing electrolytes | polar ionogenic compounds | |
| NMR Spectroscopy | MS | |
|---|---|---|
| Higher | Reproducibility | Lower |
| Low: >1 μΜ | Sensitivity | High: fM |
| Faster: highly automated | Duration of analysis | Slower: separation methods and ionization methods (+/−) |
| Minimal | Sample preparation | Demanding separation |
| Nondestructive | Sample recovery | Destructive, small amount of sample |
| Absolute quantitation: Signal intensity linearly proportional to the number of nuclei | Quantitative analysis | Relative quantitation Ionization efficiency? Isotopically labeled reference standards |
| Direct analysis of semi-solid samples (cells, tissue, biopsies) in vivo | Tissue samples | Extraction needed Some MALDI-TOF approaches |
| Hundreds of metabolites | Number of detectable metabolites per run | Thousands of metabolites |
| Little effect of history on data | History interference | Column and MS instrument performance can be affected by previous use |
| Instrumentation expensive but minimum conservation requirements and per sample cost relatively low | Cost | Instrumentation cost depending on the different models available on the market. Expensive: separation solvents and isotopically labeled reference standards |
| No | Application | Disease or Condition | Sample Type | Instrumentation | Bibliography |
|---|---|---|---|---|---|
| 1 | Understanding disease mechanisms Drug target identification | hepatocellular carcinoma | serum, liver tissue, stool samples | MS | [91] |
| 2 | Patient stratification | obesity, cardiovascular and ocular diseases | serum | NMR | [92] |
| 3 | Drug mechanism of action | Alzheimer’s disease | model cell line | NMR | [93] |
| 4 | Biomarker discovery | prostate cancer | tissue and model cell line | MS | [94] |
| 5 | Drug efficacy Drug toxicity | heart failure | serum | NMR | [95] |
| 6 | Drug efficacy Biomarker discovery | nonvalvular atrial fibrillation | plasma | MS | [96] |
| 7 | Understanding disease mechanisms Biomarker discovery | Parkinson’s disease | plasma | MS | [97] |
| 8 | Drug–drug interactions (drug-radiotherapy) Drug efficacy | non-small cell lung cancer | human plasma and cell lines/mouse tumor fluids and serum | MS | [98] |
| 9 | Understanding disease mechanisms Biomarker discovery | food allergy and asthma | serum | MS | [118] |
| 10 | Understanding disease mechanisms Biomarker discovery | multiple myeloma | serum | MS | [119] |
| 11 | Patient Stratification Potential personalized drug treatment | autism spectrum disorder | plasma | MS | [120] |
| 12 | Drug mechanism of action Drug-protein interaction Drug target identification | natural products as pharmaceutical candidates | cyanobacteria | MS and NMR | [121] |
| 13 | Drug toxicity Pharmacovigilance | brivanib-induced hypertension | plasma | MS | [122] |
| 14 | Drug mechanism of action Drug target identification | hyperlipidemia | hamster liver tissue | MS | [123] |
| 15 | Drug metabolism PK profiling Drug efficacy | renal cell carcinoma | mouse model serum and urine & bile | MS | [124] |
| 16 | PK profiling Drug efficacy Drug toxicity | pharmaceutical candidates evaluation | nonhuman primates serum | MS | [125] |
| 17 | Drug–drug interactions Drug efficacy ADRs monitoring | healthy subjects under antipsychotic treatment | serum | MS | [126] |
| 18 | Drug repurposing Drug–drug interactions (synergy) Drug efficacy | Type-2 diabetes mellitus | serum | MS | [127] |
| 19 | Drug toxicity | sunitinib-induced hepatotoxicity | Serum, liver, cecum content, duodenum, jejunum, and ileum | MS | [128] |
| 20 | Understanding disease mechanism ADR monitoring | drug resistant epilepsy | serum | NMR | [129] |
| 21 | Drug toxicity Drug–drug interactions Biomarker discovery (drug use-related) | cisplatin-induced acute kidney injury | rat model serum and urine | MS | [130] |
| 22 | Drug metabolism PK profiling | treatment with masitinib | human liver microsomes | MS | [131] |
| 23 | Drug toxicity Pharmacovigilance | acetaminophen-induced hepatotoxicity | serum | MS | [132] |
| 24 | PK/PD profiling Drug metabolism Drug mechanism of action | gastric ulcer | plasma, feces, urine | MS | [133] |
| 25 | PK profiling Drug–drug interactions | heart transplant | plasma | MS | [134] |
| 26 | PK profiling Drug efficacy | quit smoking treatment | plasma and urine | MS | [135] |
| 27 | PK/PD profiling Drug–drug interactions | relapsed/refractory Diffuse Large B Cell Lymphoma | plasma | MS | [136] |
| 28 | ADR monitoring Patient stratification | schizophrenia | plasma | MS | [137] |
| 29 | Drug efficacy Personalized drug treatment/biomarker discovery/pharmacovigilance | schizophrenia | plasma | MS | [138] |
| 30 | PK profiling Drug metabolites | schistosomiasis treatment | serum, urine, feces (mouse) and microsomal incubation (human) samples | MS | [139] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stolaki, E.V.; Psatha, K.; Aivaliotis, M. Metabolomics and Pharmacometabolomics: Advancing Precision Medicine in Drug Discovery and Development. Metabolites 2025, 15, 750. https://doi.org/10.3390/metabo15110750
Stolaki EV, Psatha K, Aivaliotis M. Metabolomics and Pharmacometabolomics: Advancing Precision Medicine in Drug Discovery and Development. Metabolites. 2025; 15(11):750. https://doi.org/10.3390/metabo15110750
Chicago/Turabian StyleStolaki, Eleni V., Konstantina Psatha, and Michalis Aivaliotis. 2025. "Metabolomics and Pharmacometabolomics: Advancing Precision Medicine in Drug Discovery and Development" Metabolites 15, no. 11: 750. https://doi.org/10.3390/metabo15110750
APA StyleStolaki, E. V., Psatha, K., & Aivaliotis, M. (2025). Metabolomics and Pharmacometabolomics: Advancing Precision Medicine in Drug Discovery and Development. Metabolites, 15(11), 750. https://doi.org/10.3390/metabo15110750

