Investigation of Metabolites in Feces and Plasma Associated with the Number of Piglets Weaned per Sow per Year
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Farms and Sampling Procedures
2.2. Analysis of Bacterial Metabolites in Feces
2.3. Analysis of Bacterial Metabolites in Plasma
2.4. Analysis of Plasma Biochemicals
2.5. Statistical Analysis
3. Results
3.1. Bacterial Metabolites in Feces
3.2. Bacterial Metabolites in Plasma
3.3. Biochemical Composition of Plasma
4. Discussion
4.1. Bacterial Metabolites
4.1.1. Fecal Metabolites
4.1.2. Plasma Metabolites
4.2. Plasma Biochemicals
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AA | Amino acid |
ALT | Alanine aminotransferase |
AST | Aspartate aminotransferase |
bCAA | Branched-chain amino acids |
BUN | Urea nitrogen |
CPK | Creatine phosphokinase |
GC-MS | Gas chromatography–mass spectrometry |
Group H | High reproductive performance group |
Group L | Low reproductive performance group |
IPM | Intestinal putrefactive metabolite |
LC-MS/MS | Ultra-performance liquid chromatography tandem mass spectrometry |
SCFA | Short-chain fatty acid |
Tcho | Total cholesterol |
TMA | Trimethylamine |
d9-TMA | Trimethylamine-d9 hydrochloride |
TMAO | Trimethylamine N-oxide |
d9-TMAO | Timethylamine-d9 N-oxide |
TNF | Tumor necrosis factor |
References
- Koketsu, Y.; Tani, S.; Iida, R. Factors for improving reproductive performance of sows and herd productivity in commercial breeding herds. Porc. Health Manag. 2017, 3, 1. [Google Scholar] [CrossRef]
- Thaker, M.Y.C.; Bilkei, G. Lactation weight loss influences subsequent reproductive performance of sows. Anim. Reprod. Sci. 2005, 88, 309–318. [Google Scholar] [CrossRef]
- Cheng, C.; Wu, X.; Zhang, X.; Zhang, X.; Peng, J. Obesity of sows at late pregnancy aggravates metabolic disorder of perinatal sows and affects performance and intestinal health of piglets. Animals 2020, 10, 49. [Google Scholar] [CrossRef]
- Monteiro, M.S.; Poor, A.P.; Muro, B.B.D.; Carnevale, R.F.; Leal, D.F.; Garbossa, C.A.P.; Moreno, A.M.; Almond, G. The sow microbiome: Current and future perspectives to maximize the productivity in swine herds. J. Swine Health Prod. 2022, 30, 238–250. [Google Scholar] [CrossRef]
- Uryu, H.; Tsukahara, T.; Ishikawa, H.; Oi, M.; Otake, S.; Yamane, I.; Inoue, R. Comparison of sow productivity and gut microbiotas of sows in commercial farms. Microorganisms 2020, 8, 1469. [Google Scholar] [CrossRef] [PubMed]
- Miura, H.; Tsukahara, T.; Inoue, R. Whole-genome metagenomic analysis of functional profiles in the fecal microbiome of farmed sows with different reproductive performances. Microorganisms 2024, 12, 2180. [Google Scholar] [CrossRef]
- Zhang, F.; Lau, R.I.; Liu, Q.; Su, Q.; Chan, F.K.L.; Ng, S.C. Gut microbiota in COVID-19: Key microbial changes, potential mechanisms and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 323–337. [Google Scholar] [CrossRef]
- Engelhardt, W.V. Absorption of short-chain fatty acids from the large intestine. In Physiological and Clinical Aspects of Short-Chain Fatty Acids; Cummings, J.H., Rombeau, J.L., Sakata, T., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 149–170. ISBN 0521616131. [Google Scholar]
- Vasquez, R.; Oh, J.K.; Song, J.H.; Kang, D.K. Gut microbiome-produced metabolites in pigs: A review on their biological functions and the influence of probiotics. J. Anim. Sci. Technol. 2022, 64, 671–695. [Google Scholar] [CrossRef]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef]
- Tian, M.; Chen, J.; Liu, J.; Chen, F.; Guan, W.; Zhang, S. Dietary fiber and microbiota interaction regulates sow metabolism and reproductive performance. Anim. Nutr. 2020, 6, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.T.; Cox, R.P.; Jensen, B.B. 3-Methylindole (skatole) and indole production by mixed populations of pig fecal bacteria. Appl. Environ. Microbiol. 1995, 61, 3180–3184. [Google Scholar] [CrossRef]
- Smith, E.A.; Macfarlane, G.T. Formation of phenolic and indolic compounds by anaerobic bacteria in the human large intestine. Microb. Ecol. 1997, 33, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, K.A.; Boobis, A.R.; Chiodini, A.; Edwards, C.A.; Franck, A.; Kleerebezem, M.; Nauta, A.; Raes, J.; van Tol, E.A.F.; Tuohy, K.M. Towards microbial fermentation metabolites as markers for health benefits of prebiotics. Nutr. Res. Rev. 2015, 28, 42–66. [Google Scholar] [CrossRef]
- Schepers, E.; Glorieux, G.; Vanholder, R. The gut: The forgotten organ in uremia? Blood Purif. 2010, 29, 130–136. [Google Scholar] [CrossRef]
- Evenepoel, P.; Meijers, B.K.I.; Bammens, B.R.M.; Verbeke, K. Uremic toxins originating from colonic microbial metabolism. Kidney Int. 2009, 76, S12–S19. [Google Scholar] [CrossRef]
- Kuka, J.; Liepinsh, E.; Makrecka-Kuka, M.; Liepins, J.; Cirule, H.; Gustina, D.; Loza, E.; Zharkova-Malkova, O.; Grinberga, S.; Pugovics, O.; et al. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation. Life Sci. 2014, 117, 84–92. [Google Scholar] [CrossRef]
- Velasquez, M.T.; Ramezani, A.; Manal, A.; Raj, D.S. Trimethylamine N-oxide: The good, the bad and the unknown. Toxins 2016, 8, 326. [Google Scholar] [CrossRef]
- Kawase, T.; Hatanaka, K.; Kono, M.; Shirahase, Y.; Ochiai, K.; Takashiba, S.; Tsukahara, T. Simultaneous determination of 7 short-chain fatty acids in human saliva by high-sensitivity gas chromatography-mass spectrometry. Chromatography 2020, 41, 63–71. [Google Scholar] [CrossRef]
- Kawase, T.; Kawakami, K.; Harada, K.; Chonan, O.; Tsukahara, T. Simultaneous analysis of glucuronyl- and sulpho-conjugates of intestinal putrefactive compounds in human urine by ultra-performance liquid chromatography tandem mass spectrometry. Chromatography 2019, 40, 9–18. [Google Scholar] [CrossRef]
- Jia, X.; Osborn, L.J.; Wang, Z. Simultaneous measurement of urinary trimethylamine (TMA) and trimethylamine N-oxide (TMAO) by liquid chromatography–mass spectrometry. Molecules 2020, 25, 1862. [Google Scholar] [CrossRef] [PubMed]
- Mathus, T.L.; Townsend, D.E.; Miller, K.W. Anaerobic biogenesis of phenol and p-cresol from L-tyrosine. Fuel 1995, 74, 1505–1508. [Google Scholar] [CrossRef]
- Remesy, C.; Demigne, C.; Morand, C. Metabolism of short-chain fatty acid in the liver. In Physiological and Clinical Aspects of Short-Chain Fatty Acids; Cummings, J.H., Rombeau, J.L., Sakata, T., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 171–190. ISBN 0521616131. [Google Scholar]
- Tsukahara, T.; Matsukawa, N.; Tomonaga, S.; Inoue, R.; Ushida, K.; Ochiai, K. High-sensitivity detection of short-chain fatty acids in porcine ileal, cecal, portal and abdominal blood by gas chromatography-mass spectrometry. Anim. Sci. J. 2014, 85, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Perry, R.J.; Peng, L.; Barry, N.A.; Cline, G.W.; Zhang, D.; Cardone, R.L.; Petersen, K.F.; Kibbey, R.G.; Goodman, A.L.; Shulman, G.I. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 2016, 534, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Skutches, C.L.; Holroyde, C.P.; Myers, R.N.; Paul, P.; Reichard, G.A. Plasma acetate turnover and oxidation. J. Clin. Investig. 1979, 64, 708–713. [Google Scholar] [CrossRef] [PubMed]
- Van den Abbeele, P.; Ghyselinck, J.; Marzorati, M.; Koch, A.-M.; Lambert, W.; Michiels, J.; Chalvon-Demersay, T. The effect of amino acids on production of SCFA and bCFA by members of the porcine colonic microbiota. Microorganisms 2022, 10, 762. [Google Scholar] [CrossRef]
- Mutsaers, H.A.M.; Caetano-Pinto, P.; Seegers, A.E.M.; Dankers, A.C.A.; van den Broek, P.H.H.; Wetzels, J.F.M.; van den Brand, J.A.J.G.; van den Heuvel, L.P.; Hoenderop, J.G.; Wilmer, M.J.G.; et al. Proximal tubular efflux transporters involved in renal excretion of p-cresyl sulfate and p-cresyl glucuronide: Implications for chronic kidney disease pathophysiology. Toxicol. Vitr. 2015, 29, 1868–1877. [Google Scholar] [CrossRef]
- Loo, R.L.; Chan, Q.; Nicholson, J.K.; Holmes, E. Balancing the equation: A natural history of trimethylamine and trimethylamine-N-oxide. J. Proteome Res. 2022, 21, 560–589. [Google Scholar] [CrossRef]
- Florea, C.M.; Rosu, R.; Moldovan, R.; Vlase, L.; Toma, V.; Decea, N.; Baldea, I.; Filip, G.A. The impact of chronic Trimethylamine N-oxide administration on liver oxidative stress, inflammation, and fibrosis. Food Chem. Toxicol. 2024, 184, 114429. [Google Scholar] [CrossRef]
- Constantino-Jonapa, L.A.; Espinoza-Palacios, Y.; Escalona-Montaño, A.R.; Hernández-Ruiz, P.; Amezcua-Guerra, L.M.; Amedei, A.; Aguirre-García, M.M. Contribution of trimethylamine N-oxide (TMAO) to chronic inflammatory and degenerative diseases. Biomedicines 2023, 11, 431. [Google Scholar] [CrossRef]
- Pluske, J.R.; Kim, J.C.; Black, J.L. Manipulating the immune system for pigs to optimize performance. Anim. Prod. Sci. 2018, 58, 666–680. [Google Scholar] [CrossRef]
- Sauber, T.E.; Stahly, T.S.; Nonnecke, B.J. Effect of level of chronic immune system activation on the lactational performance of sows. J. Anim. Sci. 1999, 77, 1985–1993. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M.; Jacobson, M.; Andersen, P.H.; Bækbo, P.; Cerón, J.J.; Dahl, J.; Escribano, D.; Jacobsen, S. Inflammatory markers before and after farrowing in healthy sows and in sows affected with postpartum dysgalactia syndrome. BMC Vet. Res. 2018, 14, 83. [Google Scholar] [CrossRef]
- Lee, I.K.; Kye, Y.C.; Kim, G.; Kim, H.W.; Gu, M.J.; Umboh, J.; Maaruf, K.; Kim, S.W.; Yun, C.-H. Stress, nutrition, and intestinal immune responses in pigs—A review. Asian-Australas. J. Anim. Sci. 2016, 29, 1075–1082. [Google Scholar] [CrossRef]
- Hunter, R.W.; Bailey, M.A. Hyperkalemia: Pathophysiology, risk factors and consequences. Nephrol. Dial. Transplant. 2019, 34, iii2–iii11. [Google Scholar] [CrossRef] [PubMed]
- Øverland, M.; Bikker, P.; Fledderus, J. Potassium diformate in the diet of reproducing sows: Effect on performance of sows and litters. Livestock Sci. 2009, 122, 241–247. [Google Scholar] [CrossRef]
- Nordgreen, J.; Edwards, S.A.; Boyle, L.A.; Bolhuis, J.E.; Veit, C.; Sayyari, A.; Marin, D.E.; Dimitrov, I.; Janczak, A.M.; Valros, A. A proposed role for pro-inflammatory cytokines in damaging behavior in pigs. Front. Vet. Sci. 2020, 7, 646. [Google Scholar] [CrossRef]
- Wirthgen, E.; Leonard, A.K.; Scharf, C.; Domanska, G. The immunomodulator 1-methyltryptophan drives tryptophan catabolism toward the kynurenic acid branch. Front. Immunol. 2020, 11, 313. [Google Scholar] [CrossRef]
- Melchior, D.; Sève, B.; Le Floc’h, N. Chronic lung inflammation affects plasma amino acid concentrations in pigs. J. Anim. Sci. 2004, 82, 1091–1099. [Google Scholar] [CrossRef]
- Le Floc’h, N.; Lebellego, L.; Matte, J.J.; Melchior, D.; Sève, B. The effect of sanitary status degradation and dietary tryptophan content on growth rate and tryptophan metabolism in weaning pigs. J. Anim. Sci. 2009, 87, 1686–1694. [Google Scholar] [CrossRef]
- Newsholme, P.; Curi, R.; Pithon Curi, T.C.; Murphy, C.J.; Garcia, C.; de Melo, M.P. Glutamine metabolism by lymphocytes, macrophages, and neutrophils: Its importance in health and disease. J. Nutr. Biochem. 1999, 10, 316–324. [Google Scholar] [CrossRef]
- Wu, J.; Li, G.; Li, L.; Li, D.; Dong, Z.; Jiang, P. Asparagine enhances LCK signaling to potentiate CD8+ T-cell activation and anti-tumour responses. Nat. Cell Biol. 2021, 23, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Orellana, R.A.; Suryawan, A.; Wilson, F.A.; Gazzaneo, M.C.; Fiorotto, M.L.; Nguyen, H.V.; Davis, T.A. Development aggravates the severity of skeletal muscle catabolism induced by endotoxemia in neonatal pigs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 302, 682–690. [Google Scholar] [CrossRef] [PubMed]
Farms | Number of Piglets Weaned/Sow/Year | Sampling Number |
---|---|---|
H1 | 29.4 | 10 |
H2 | 28.9 | 10 |
L1 | 19.5 | 10 |
L2 | 23.0 | 7 |
Parameters | H Group | L Group | p Value | |
---|---|---|---|---|
Organic acid (mmol/kg) | Acetate | 67.8 ± 3.7 | 62.7 ± 3.0 | 0.30 |
Propionate | 22.9 ± 2.0 | 23.3 ± 1.4 | 0.87 | |
iso-Butyrate | 2.8 ± 0.1 | 4.9 ± 0.6 | 0.004 | |
n-Butyrate | 6.8 ± 0.7 | 7.6 ± 0.8 | 0.45 | |
iso-Valerate | 3.5 ± 0.2 | 3.2 ± 0.3 | 0.40 | |
n-Valerate | 0.6 ± 0.2 | 0.5 ± 0.2 | 0.61 | |
Intestinal putrefactive metabolites (µmol/kg) | Phenol | 1.8 ± 0.5 | 3.1 ± 0.6 | 0.08 |
p-Cresol | 929.2 ± 61.3 | 835.2 ± 86.1 | 0.37 | |
Indole | 44.1 ± 3.2 | 33.9 ± 2.9 | 0.03 | |
Skatole | 132.3 ± 15.4 | 95.8 ± 13.1 | 0.09 |
Parameters | H Group | L Group | p Value | |
---|---|---|---|---|
Short-chain fatty acids (µmol/L) | Acetate | 53.0 ± 9.7 | 87.1 ± 13.4 | 0.04 |
iso-Butyrate | 4.1 ± 0.5 | 5.1 ± 0.8 | 0.26 | |
Glucuronyl- and sulpho-conjugates of intestinal putrefactive metabolites (µmol/L) | Phenyl glucuronide | 0.00 ± 0.00 | 0.14 ± 0.05 | 0.02 |
p-Cresyl glucuronide | 8.9 ± 0.5 | 15.2 ± 1.0 | <0.0001 | |
Phenyl sulfate | 0.7 ± 0.1 | 1.0 ± 0.1 | 0.13 | |
Indoxyl sulfate | 17.8 ± 1.4 | 18.4 ± 2.9 | 0.85 | |
p-Cresyl sulfate | 3.7 ± 0.4 | 6.8 ± 0.8 | 0.002 | |
Trimethylamine N-oxide (µmol/L) | 5.2 ± 0.9 | 13.4 ± 2.3 | 0.003 |
Parameters | H Group | L Group | p Value |
---|---|---|---|
Tumor necrosis factor-alpha (pg/mL) | 37.1 ± 3.5 | 87.4 ± 17.8 | 0.01 |
Alanine aminotransferase (U/L) | 39.1 ± 1.6 | 34.4 ± 1.7 | 0.051 |
Aspartate aminotransferase (U/L) | 42.7 ± 2.5 | 61.2 ± 12.8 | 0.17 |
Creatine phosphokinase (U/L) | 1407 ± 149 | 4604 ± 1698 | 0.08 |
Urea nitrogen (mg/dL) | 9.6 ± 0.4 | 10.5 ± 0.6 | 0.19 |
Total cholesterol (mg/dL) | 59.6 ± 2.0 | 60.3 ± 2.2 | 0.81 |
Creatinine (mg/dL) | 2.22 ± 0.10 | 2.41 ± 0.11 | 0.22 |
Sodium (mEq/L) | 143.3 ± 0.6 | 142.6 ± 1.0 | 0.51 |
Calcium (mg/dL) | 10.3 ± 0.1 | 10.1 ± 0.1 | 0.07 |
Chloride (mEq/L) | 103.7 ± 0.6 | 103.7 ± 0.7 | 0.99 |
Potassium (mEq/L) | 4.8 ± 0.1 | 6.1 ± 0.5 | 0.02 |
Parameters | H Group | L Group | p Value |
---|---|---|---|
Tryptophan | 86.0 ± 2.5 | 71.5 ± 3.1 | 0.001 |
Phenylalanine | 101.3 ± 2.3 | 82.8 ± 3.1 | <0.0001 |
Tyrosine | 77.4 ± 2.6 | 82.1 ± 7.8 | 0.58 |
Leucine | 205.4 ± 3.8 | 207.3 ± 8.7 | 0.85 |
Isoleucine | 107.5 ± 2.8 | 104.7 ± 7.5 | 0.74 |
Valine | 315.4 ± 7.5 | 293.5 ± 18.5 | 0.28 |
Methionine | 45.6 ± 1.8 | 45.8 ± 2.8 | 0.95 |
Glutamic Acid | 181.9 ± 6.8 | 192.3 ± 19.7 | 0.62 |
Proline | 319.5 ± 11.5 | 361.4 ± 16.3 | 0.04 |
Threonine | 204.8 ± 6.1 | 179.6 ± 16.1 | 0.16 |
Alanine | 589.6 ± 23.1 | 546.1 ± 20.1 | 0.17 |
Serine | 162.3 ± 6.3 | 158.9 ± 8.2 | 0.75 |
Glutamine | 379.4 ± 10.4 | 334.6 ± 18.0 | 0.03 |
Glycine | 1219.8 ± 77.4 | 1132.9 ± 86.2 | 0.46 |
Asparagine | 52.8 ± 2.4 | 42.3 ± 2.8 | 0.01 |
Histidine | 146.4 ± 9.0 | 111.9 ± 9.0 | 0.01 |
Lysine | 207.1 ± 11.5 | 171.3 ± 10.0 | 0.03 |
Arginine | 198.3 ± 7.5 | 195.8 ± 13.6 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsukahara, T.; Miura, H.; Kawase, T.; Yoshimura, S.; Mizukami, Y.; Yahara, Y.; Fukuta, K.; Inoue, R. Investigation of Metabolites in Feces and Plasma Associated with the Number of Piglets Weaned per Sow per Year. Metabolites 2025, 15, 683. https://doi.org/10.3390/metabo15110683
Tsukahara T, Miura H, Kawase T, Yoshimura S, Mizukami Y, Yahara Y, Fukuta K, Inoue R. Investigation of Metabolites in Feces and Plasma Associated with the Number of Piglets Weaned per Sow per Year. Metabolites. 2025; 15(11):683. https://doi.org/10.3390/metabo15110683
Chicago/Turabian StyleTsukahara, Takamitsu, Hiroto Miura, Takahiro Kawase, Shu Yoshimura, Yoshihiro Mizukami, Yoshihiro Yahara, Kikuto Fukuta, and Ryo Inoue. 2025. "Investigation of Metabolites in Feces and Plasma Associated with the Number of Piglets Weaned per Sow per Year" Metabolites 15, no. 11: 683. https://doi.org/10.3390/metabo15110683
APA StyleTsukahara, T., Miura, H., Kawase, T., Yoshimura, S., Mizukami, Y., Yahara, Y., Fukuta, K., & Inoue, R. (2025). Investigation of Metabolites in Feces and Plasma Associated with the Number of Piglets Weaned per Sow per Year. Metabolites, 15(11), 683. https://doi.org/10.3390/metabo15110683