Multidimensional Assessment of Sarcopenia and Sarcopenic Obesity in Geriatric Patients: Creatinine/Cystatin C Ratio Performs Better than Sarcopenia Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Anthropometric Measurements
2.3. Hand Grip Test
2.4. Assessment of Body Composition by Bioelectrical Impedance Analysis
2.5. Assessment of Geriatric Performance
2.6. Blood Chemistry
2.7. Diagnosis of Sarcopenia
2.8. Calculation of Creatinine/Cystatin C Ratio (CCR) Score and Sarcopenic Index (SI)
2.9. Data Analysis
3. Results
3.1. General Characteristics of Subjects
3.2. Assessment of Clinical, Physical, and Bio-Electric Parameters According to Sarcopenic Conditions
3.3. Role of CCR and SI in Predicting Sarcopenia
3.4. Sarcopenic Obesity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ooi, H.; Welch, C. Obstacles to the Early Diagnosis and Management of Sarcopenia: Current Perspectives. Clin. Interv. Aging 2024, 19, 323–332. [Google Scholar] [CrossRef]
- Sayer, A.A.; Syddall, H.; Martin, H.; Patel, H.; Baylis, D.; Cooper, C. The developmental origins of sarcopenia. J. Nutr. Health Aging 2008, 12, 427–432. [Google Scholar] [CrossRef]
- Duarte, M.P.; Almeida, L.S.; Neri, S.G.R.; Oliveira, J.S.; Wilkinson, T.J.; Ribeiro, H.S.; Lima, R.M. Prevalence of sarcopenia in patients with chronic kidney disease: A global systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2024, 15, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Li, C.W.; Yu, K.; Shyh-Chang, N.; Jiang, Z.; Liu, T.; Ma, S.; Luo, L.; Guang, L.; Liang, K.; Ma, W.; et al. Pathogenesis of sarcopenia and the relationship with fat mass: Descriptive review. J. Cachexia Sarcopenia Muscle 2022, 13, 781–794. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A., Jr.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef]
- Ibrahim, K.; May, C.; Patel, H.P.; Baxter, M.; Sayer, A.A.; Roberts, H. A feasibility study of implementing grip strength measurement into routine hospital practice (GRImP): Study protocol. Pilot. Feasibility Stud. 2016, 2, 27. [Google Scholar] [CrossRef]
- Beaudart, C.; McCloskey, E.; Bruyère, O.; Cesari, M.; Rolland, Y.; Rizzoli, R.; Araujo de Carvalho, I.; Amuthavalli Thiyagarajan, J.; Bautmans, I.; Bertière, M.C.; et al. Sarcopenia in daily practice: Assessment and management. BMC Geriatr. 2016, 16, 170. [Google Scholar] [CrossRef] [PubMed]
- Hull, H.; He, Q.; Thornton, J.; Javed, F.; Allen, L.; Wang, J.; Pierson, R.N., Jr.; Gallagher, D. iDXA, Prodigy, and DPXL dual-energy X-ray absorptiometry whole-body scans: A cross-calibration study. J. Clin. Densitom. 2009, 12, 95–102. [Google Scholar] [CrossRef]
- Buckinx, F.; Landi, F.; Cesari, M.; Fielding, R.A.; Visser, M.; Engelke, K.; Maggi, S.; Dennison, E.; Al-Daghri, N.M.; Allepaerts, S.; et al. Pitfalls in the measurement of muscle mass: A need for a reference standard. J. Cachexia Sarcopenia Muscle 2018, 9, 269–278. [Google Scholar] [CrossRef]
- Yamada, Y.; Nishizawa, M.; Uchiyama, T.; Kasahara, Y.; Shindo, M.; Miyachi, M.; Tanaka, S. Developing and Validating an Age-Independent Equation Using Multi-Frequency Bioelectrical Impedance Analysis for Estimation of Appendicular Skeletal Muscle Mass and Establishing a Cutoff for Sarcopenia. Int. J. Environ. Res. Public Health 2017, 14, 809. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Rolland, Y.; Cruz-Jentoft, A.J.; Bauer, J.M.; Sieber, C.; Cooper, C.; Al-Daghri, N.; Araujo de Carvalho, I.; Bautmans, I.; Bernabei, R. Assessment of muscle function and physical performance in daily clinical practice: A position paper endorsed by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Calcif. Tissue Int. 2019, 105, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Curcio, F.; Ferro, G.; Basile, C.; Liguori, I.; Parrella, P.; Pirozzi, F.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Tocchetti, C.G.; et al. Biomarkers in sarcopenia: A multifactorial approach. Exp. Gerontol. 2016, 85, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Calvani, R.; Marini, F.; Cesari, M.; Tosato, M.; Picca, A.; Anker, S.D.; von Haehling, S.; Miller, R.R.; Bernabei, R.; Landi, F.; et al. Biomarkers for physical frailty and sarcopenia. Aging Clin. Exp. Res. 2017, 29, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.H.; Zhu, Y.B.; Yao, Y.; Huang, H.B. Serum creatinine/cystatin C ratio as a muscle mass evaluating tool and prognostic indicator for hospitalized patients: A meta-analysis. Front. Med. 2022, 9, 1058464. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Chang, I.C.; Liou, H.-H.; Wang, C.-H.; Lai, Y.-H.; Kuo, C.-H.; Hsu, B.-G. Serum indices based on creatinine and cystatin C predict mortality in patients with non-dialysis chronic kidney disease. Sci. Rep. 2021, 11, 16863. [Google Scholar] [CrossRef] [PubMed]
- Barreto, E.F.; Poyant, J.O.; Coville, H.H.; Dierkhising, R.A.; Kennedy, C.C.; Gajic, O.; Nystrom, E.M.; Takahashi, N.; Moynagh, M.R.; Kashani, K.B. Validation of the sarcopenia index to assess muscle mass in the critically ill: A novel application of kidney function markers. Clin. Nutr. 2019, 38, 1362–1367. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, T.; Feng, D.; Dai, X.; Lv, T.; Wang, X.; Gong, J.; Zhu, W.; Li, J. A new diagnostic index for sarcopenia and its association with short-term postoperative complications in patients undergoing surgery for colorectal cancer. Color. Dis. 2019, 21, 538–547. [Google Scholar] [CrossRef]
- Fu, X.; Tian, Z.; Wen, S.; Sun, H.; Thapa, S.; Xiong, H.; Liu, H.; Li, L.; Yu, S. A new index based on serum creatinine and cystatin C is useful for assessing sarcopenia in patients with advanced cancer. Nutrition 2021, 82, 111032. [Google Scholar] [CrossRef]
- Quiñonez-Olivas, C.G.; Salinas-Martínez, R.; Ortiz-Jiménez, X.A.; Gámez-Treviño, D.G.; Guajardo-Álvarez, G.; González-García, B. Muscle mass measured using bioelectrical impedance analysis, calf circumference and grip strength in older adults. Med. Univ. 2016, 18, 158–162. [Google Scholar] [CrossRef]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef] [PubMed]
- Mehmet, H.; Robinson, S.R.; Yang, A.W.H. Assessment of Gait Speed in Older Adults. J. Geriatr. Phys. Ther. 2020, 43, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Katz, S. Assessing self-maintenance: Activities of daily living, mobility, and instrumental activities of daily living. J. Am. Geriatr. Soc. 1983, 31, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Guigoz, Y.; Lauque, S.; Vellas, B.J. Identifying the elderly at risk for malnutrition. The Mini Nutritional Assessment. Clin. Geriatr. Med. 2002, 18, 737–757. [Google Scholar] [CrossRef] [PubMed]
- Donini, L.M.; Busetto, L.; Bischoff, S.C.; Cederholm, T.; Ballesteros-Pomar, M.D.; Batsis, J.A.; Bauer, J.M.; Boirie, Y.; Cruz-Jentoft, A.J.; Dicker, D.; et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes. Facts 2022, 15, 321–335. [Google Scholar] [CrossRef]
- Lien, Y.-H.H. Looking for Sarcopenia Biomarkers. Am. J. Med. 2017, 130, 502–503. [Google Scholar] [CrossRef]
- Csiernik, B.; Edgar, M.; DeGraauw, C.; Howitt, S.; Hogg-Johnson, S. The utility of bioelectrical impedance analysis in the diagnosis of sarcopenia: A systematic review. J. Can. Chiropr. Assoc. 2022, 66, 118–129. [Google Scholar] [PubMed]
- Petermann-Rocha, F.; Balntzi, V.; Gray, S.R.; Lara, J.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Global prevalence of sarcopenia and severe sarcopenia: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 86–99. [Google Scholar] [CrossRef]
- Sato, K.; Kamiya, K.; Hamazaki, N.; Nozaki, K.; Ichikawa, T.; Uchida, S.; Ueno, K.; Yamashita, M.; Noda, T.; Ogura, K.; et al. Association of sarcopenia defined by different skeletal muscle mass measurements with prognosis and quality of life in older patients with heart failure. J. Cardiol. 2023. [Google Scholar] [CrossRef]
- Kim, D.; Lee, J.; Park, R.; Oh, C.M.; Moon, S. Association of low muscle mass and obesity with increased all-cause and cardiovascular disease mortality in US adults. J. Cachexia Sarcopenia Muscle 2024, 15, 240–254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ding, L.; Hu, H.; He, H.; Xiong, Z.; Zhu, X. Associations of Body-Roundness Index and Sarcopenia with Cardiovascular Disease among Middle-Aged and Older Adults: Findings from CHARLS. J. Nutr. Health Aging 2023, 27, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Di Vincenzo, O.; Marra, M.; Di Gregorio, A.; Pasanisi, F.; Scalfi, L. Bioelectrical impedance analysis (BIA)-derived phase angle in sarcopenia: A systematic review. Clin. Nutr. 2021, 40, 3052–3061. [Google Scholar] [CrossRef] [PubMed]
- Moonen, H.; Van Zanten, A.R.H. Bioelectric impedance analysis for body composition measurement and other potential clinical applications in critical illness. Curr. Opin. Crit. Care 2021, 27, 344–353. [Google Scholar] [CrossRef]
- Prado, C.M.; Landi, F.; Chew, S.T.H.; Atherton, P.J.; Molinger, J.; Ruck, T.; Gonzalez, M.C. Advances in muscle health and nutrition: A toolkit for healthcare professionals. Clin. Nutr. 2022, 41, 2244–2263. [Google Scholar] [CrossRef] [PubMed]
- Silva-Fhon, J.R.; Rojas-Huayta, V.M.; Aparco-Balboa, J.P.; Cespedes-Panduro, B.; Partezani-Rodrigues, R.A. Sarcopenia and blood albumin: A systematic review with meta-analysis. Biomedica 2021, 41, 590–603. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Mei, F.; Shang, Y.; Hu, K.; Chen, F.; Zhao, L.; Ma, B. Global prevalence of sarcopenic obesity in older adults: A systematic review and meta-analysis. Clin. Nutr. 2021, 40, 4633–4641. [Google Scholar] [CrossRef]
- Schrager, M.A.; Metter, E.J.; Simonsick, E.; Ble, A.; Bandinelli, S.; Lauretani, F.; Ferrucci, L. Sarcopenic obesity and inflammation in the InCHIANTI study. J. Appl. Physiol. 2007, 102, 919–925. [Google Scholar] [CrossRef]
- Roubenoff, R.; Freeman, L.M.; Smith, D.E.; Abad, L.W.; Dinarello, C.A.; Kehayias, J.J. Adjuvant arthritis as a model of inflammatory cachexia. Arthritis Rheum. 1997, 40, 534–539. [Google Scholar] [CrossRef]
- De Benedetti, F.; Alonzi, T.; Moretta, A.; Lazzaro, D.; Costa, P.; Poli, V.; Martini, A.; Ciliberto, G.; Fattori, E. Interleukin 6 causes growth impairment in transgenic mice through a decrease in insulin-like growth factor-I. A model for stunted growth in children with chronic inflammation. J. Clin. Investig. 1997, 99, 643–650. [Google Scholar] [CrossRef]
- Cappola, A.R.; Xue, Q.L.; Ferrucci, L.; Guralnik, J.M.; Volpato, S.; Fried, L.P. Insulin-like growth factor I and interleukin-6 contribute synergistically to disability and mortality in older women. J. Clin. Endocrinol. Metab. 2003, 88, 2019–2025. [Google Scholar] [CrossRef] [PubMed]
- Roubenoff, R. Catabolism of aging: Is it an inflammatory process? Curr. Opin. Clin. Nutr. Metab. Care 2003, 6, 295–299. [Google Scholar] [CrossRef]
- Guillet, C.; Boirie, Y. Insulin resistance: A contributing factor to age-related muscle mass loss? Diabetes Metab. 2005, 31, 5S20–5S26. [Google Scholar] [CrossRef]
- Kashani, K.B.; Frazee, E.N.; Kukrálová, L.; Sarvottam, K.; Herasevich, V.; Young, P.M.; Kashyap, R.; Lieske, J.C. Evaluating Muscle Mass by Using Markers of Kidney Function: Development of the Sarcopenia Index. Crit. Care Med. 2017, 45, e23–e29. [Google Scholar] [CrossRef]
- Yanishi, M.; Kinoshita, H.; Tsukaguchi, H.; Kimura, Y.; Koito, Y.; Sugi, M.; Matsuda, T. The creatinine/cystatin C ratio provides effective evaluation of muscle mass in kidney transplant recipients. Int. Urol. Nephrol. 2019, 51, 79–83. [Google Scholar] [CrossRef]
- Tang, T.; Xie, L.; Hu, S.; Tan, L.; Lei, X.; Luo, X.; Yang, L.; Yang, M. Serum creatinine and cystatin C-based diagnostic indices for sarcopenia in advanced non-small cell lung cancer. J. Cachexia Sarcopenia Muscle 2022, 13, 1800–1810. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Jiang, Y.; Chen, W.; Chen, K.; Liao, Y.; Huang, K. Diagnostic and prognostic value of the Creatinine/Cystatin C ratio for low muscle mass evaluation among US adults. Front. Nutr. 2022, 9, 897774. [Google Scholar] [CrossRef]
- An, J.N.; Kim, J.K.; Lee, H.S.; Kim, S.G.; Kim, H.J.; Song, Y.R. Serum cystatin C to creatinine ratio is associated with sarcopenia in non-dialysis-dependent chronic kidney disease. Kidney Res. Clin. Pract. 2022, 41, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.C.; Huang, S.H.; Kao, C.L.; Hsu, P.C. Muscle Wasting in Chronic Kidney Disease: Mechanism and Clinical Implications-A Narrative Review. Int. J. Mol. Sci. 2022, 23, 6047. [Google Scholar] [CrossRef]
- Troutman, A.D.; Arroyo, E.; Lim, K.; Moorthi, R.N.; Avin, K.G. Skeletal Muscle Complications in Chronic Kidney Disease. Curr. Osteoporos. Rep. 2022, 20, 410–421. [Google Scholar] [CrossRef]
General Characteristics | Total (N = 79) | Male (N = 33) | Female (N = 46) | p |
---|---|---|---|---|
Age (years) | 78.2 ± 0.9 | 79.2 ± 1.6 | 77.4 ± 1.0 | 0.3 |
BMI (kg/m2) | 26.9 ± 0.7 | 29.1 ± 1.2 | 25.4 ± 0.9 | 0.009 |
Underweight N (%) | 4 (5.1%) | 1 (3.0%) | 3 (6.5%) | 0.48 |
Normal weight N (%) | 30 (38.0%) | 7 (21.2%) | 23 (50.0%) | 0.009 |
Overweight N (%) | 21 (26.6%) | 8 (24.2%) | 13 (28.3%) | 0.69 |
Obese N (%) | 24 (30.3%) | 17 (51.5%) | 7 (15.2%) | 0.0005 |
Smoker N (%) | 5 (6.3%) | 2 (6.1%) | 3 (6.5%) | 0.93 |
Former smokers N (%) | 30 (38.0%) | 6 (18.2%) | 24 (52.2%) | 0.002 |
Comorbidities N (%) | ||||
Dyslipidemia | 50 (63.3%) | 23 (69.7%) | 27 (58.7%) | 0.32 |
Arterial Hypertension | 57 (72.15%) | 24 (72.7%) | 33 (71.7%) | 0.92 |
Dysthyroidism | 21 (26.6%) | 13 (39.4%) | 8 (17.4%) | 0.03 |
Atheroma | 29 (36.7%) | 9 (27.3%) | 20 (43.5%) | 0.1 |
Diabetes | 27 (34.2%) | 10 (30.3%) | 17 (37.0%) | 0.53 |
Cardiovascular Disease | 55 (69.6%) | 21 (63.6%) | 34 (73.9%) | 0.32 |
Respiratory Disorders | 47 (59.5%) | 17 (51.5%) | 30 (65.2%) | 0.22 |
Neoplasms | 31 (39.2%) | 8 (24.2%) | 17 (40.0%) | 0.27 |
Chronic renal disease | 37 (64.6%) | 17 (51.5%) | 20 (43.5%) | 0.48 |
Charlson Comorbidity Index | 8.2 ± 0.2 | 8.2 ± 0.4 | 8.2 ± 0.3 | 0.97 |
Sarcopenia N (%) | ||||
No sarcopenia | 27 (34.2%) | 8 (24.2%) | 19 (41.3%) | 0.29 |
Probable Sarcopenia | 20 (25.3%) | 9 (27.3%) | 11 (23.9%) | 0.29 |
Confirmed Sarcopenia | 32 (40.5%) | 16 (48.5%) | 16 (34.8%) | 0.29 |
Sarcopenic obesity | 7 (8.9%) | 5 (15.2%) | 2 (4.3%) | 0.1 |
Malnutrition N (%) | ||||
No malnutrition | 31 (39.2%) | 12 (36.4%) | 19 (41.3%) | 0.9 |
Risk of malnutrition | 32 (40.5%) | 14 (42.4%) | 18 (39.1%) | 0.9 |
Malnutrition | 16 (20.3%) | 7 (21.2%) | 9 (19.6%) | 0.9 |
Fragility N (%) | ||||
Non-fragile | 3 (3.8%) | 1 (3.0%) | 2 (4.3%) | 0.14 |
Pre-fragile | 15 (19.0%) | 5 (15.2%) | 10 (21.7%) | 0.14 |
Fragile | 61 (77.2%) | 27 (81.8%) | 34 (73.9%) | 0.14 |
Absence of Sarcopenia (N = 27) | Probable Sarcopenia (N = 20) | Confirmed Sarcopenia (N = 32) | p-Value | |
---|---|---|---|---|
Females N (%) | 8 (29.6%) | 9 (45%) | 16 (50%) | 0.2 |
Age (years) | 74.7 ± 1.5 * | 78.3 ± 1.5 | 81.0 ± 1.4 * | 0.01 |
BMI (kg/m2) | 26.3 ± 1.1 | 29.7 ± 1.7 | 25.8 ± 1.0 | 0.13 |
Underweight N (%) | 2 (7.4%) | 0 (0.0%) | 2 (6.3%) | 0.1 |
Normal weight N (%) | 8 (29.6%) | 8 (40.0%) | 14 (43.8%) | 0.1 |
Overweight N (%) | 11 (40.7%) | 10 (10.0%) | 8 (25.0%) | 0.1 |
Obese N (%) | 6 (22.2%) | 20 (50.0%) | 8 (25.0%) | 0.1 |
Comorbidities N (%) | ||||
Dyslipidemia | 18 (66.7%) | 11 (55.0%) | 21 (65.6%) | 0.6 |
Arterial Hypertension | 18 (66.7%) | 14 (70.0%) | 25 (78.1%) | 0.6 |
Thyroid disease | 4 (14.8%) | 5 (25.0%) | 12 (37.5%) | 0.1 |
Atheroma | 13 (48.2%) | 7 (35.0%) | 9 (28.1%) | 0.2 |
Diabetes | 8 (29.6%) | 10 (50.0%) | 9 (28.1%) | 0.2 |
Cardiovascular diseases | 14 (51.9%) | 14 (70.0%) | 27 (84.4%) | 0.02 |
Respiratory diseases | 17 (63%) | 9 (45.0%) | 21 (65.6%) | 0.3 |
Chronic kidney disease | 13 (48.2%) | 15 (75.0%) | 32 (71.9%) | 0.08 |
Neoplastic disease | 11 (40.7%) | 6 (30.0%) | 14 (43.8%) | 0.4 |
Charlson Comorbidity Index | 7.3 ± 0.3 * | 8.3 ± 0.7 | 8.9 ± 0.3 * | 0.005 |
Malnutrition N (%) | ||||
No malnutrition | 15 (19.0%) | 5 (6.3%) | 11 (13.9%) | 0.2 |
Risk of malnutrition | 9 (11.4%) | 10 (12.7%) | 13 (16.5%) | 0.2 |
Malnutrition | 3 (3.8%) | 5 (6.3%) | 8 (10.1%) | 0.2 |
Frailty N (%) | ||||
Non-fragile | 3 (3.8%) | 0 (0.0%) | 0 (0.0%) | 0.01 |
Pre-fragile | 10 (12.7%) | 2 (2.5%) | 3 (3.8%) | 0.01 |
Fragile | 14 (17.7%) | 18 (22.8%) | 29 (36.7%) | 0.01 |
Total Population (N = 79) | Absence of Sarcopenia (N = 27) | Probable Sarcopenia (N = 20) | Confirmed Sarcopenia (N = 32) | p-Value | |
---|---|---|---|---|---|
BMR (Kcal) | 1282.9 ± 31.8 | 1358.9 ± 49.6 * | 1420.0 ± 79.6 # | 1133.1 ± 29.2 #,* | 0.00003 |
PhA | 4.6 ± 0.3 | 5.1 ± 0.4 * | 5.4 ± 0.8 # | 3.7 ± 0.2 #,* | 0.003 |
TBW (L) | 42.1 ± 4.3 | 39.0 ± 1.6 * | 43.2 ± 1.2 # | 44.1 ± 10.7 #,* | 0.00008 |
LM (kg) | 57.0 ± 5.9 | 53.3 ± 2.1 *,# | 59.0 ± 1.7 # | 58.8 ± 14.6 * | 0.00001 |
ECM (kg) | 30.0 ± 1.1 | 29.8 ± 1.9 | 33.6 ± 2.9 | 27.9 ± 1.2 | 0.2 |
BCM (kg) | 21.4 ± 1.0 | 23.9 ± 1.3 * | 25.6 ± 2.5 # | 16.6 ± 0.9 #,* | 0.00004 |
ECM/BCM | 2.7 ± 1.0 | 1.6 ± 0.4 * | 5.3 ± 3.9 | 1.9 ± 0.2 * | 0.008 |
Percentage of Cells | 41.3 ± 1.5 | 45.2 ± 2.2 * | 43.7 ± 4.0 # | 36.6 ± 1.5 #,* | 0.003 |
BFM (%) | 27.7 ± 1.4 | 26.5 ± 2.2 | 24.8 ± 3.4 | 30.3 ± 2.1 | 0.29 |
BFM (kg) | 25.2 ± 2.3 | 20.5 ± 2.2 | 20.5 ± 2.6 | 21.0 ± 2.1 | 0.99 |
R (Ω) | 584.2 ± 14.9 | 538.9 ± 21.0 $,* | 437.5 ± 25.0 $,# | 625.1 ± 19.6 #,* | 0.00001 |
Xc (Ω) | 42.8 ± 2.2 | 47.4 ± 4.4 | 42.8 ± 5.2 | 39.1 ± 2.2 | 0.36 |
RI (cm2/Ω) | 52.5 ± 1.7 | 54.1 ± 2.5 $,* | 65.2 ± 3.3 $,# | 43.3 ± 1.7 #,* | 0.00000 |
ASM (kg) | 18.4 ± 0.5 | 19.3 ± 0.8 $,* | 21.8 ± 0.9 $,# | 15.4 ± 0.5 #,* | 0.00000 |
ASM/BMI | 0.7 ± 0.0 | 0.7 ± 0.0 * | 0.8 ± 0.0 # | 0.6 ± 0.0 #,* | 0.004 |
Total Population (N = 79) | Absence of Sarcopenia (N = 27) | Probable Sarcopenia (N = 20) | Confirmed Sarcopenia (N = 32) | p-Value | |
---|---|---|---|---|---|
Albumin (g/dL) | 5.7 ± 0.8 | 6.0 ± 1.4 $,* | 7.4 ± 2.2 $ | 4.3 ± 1.0 * | 0.007 |
Pre-albumin (g/L) | 0.18 ± 0.02 | 0.22 ± 0.02 * | 0.17 ± 0.02 | 0.15 ± 0.02 * | 0.049 |
Total protein (g/dL) | 12.3 ± 1.9 | 10.5 ± 2.8 | 12.3 ± 3.6 | 13.9 ± 3.4 | 0.06 |
WBC (×103/μU) | 96.7 ± 31.7 | 75.3 ± 40.9 | 215.6 ± 100.7 | 40.6 ± 28.1 | 0.90 |
CRP (mg/L) | 62.4 ± 19.6 | 112.7 ± 56.6 | 29.3 ± 9.5 | 42.2 ± 7.9 | 0.12 |
IL-6 (pg/mL) | 51.4 ± 11.0 | 60.9 ± 28.2 | 45.4 ± 16.1 | 47.0 ± 8.9 | 0.30 |
Glycemia (mg/dL) | 97.3 ± 2.6 | 93.3 ± 3.4 $ | 110.1 ±6.0 $,# | 92.8 ± 3.9 # | 0.01 |
Insulinoma (μU/mL) | 8.5 ± 0.6 | 10.3 ± 1.3 | 7.7 ± 1.0 | 7.5 ± 0.8 | 0.15 |
HOMA-IR | 2.1 ± 0.2 | 2.4 ± 0.3 | 2.2 ± 0.3 | 1.8 ± 0.2 | 0.15 |
HbA1c (mmol/mol) | 40.4 ± 1.6 | 37.5 ± 1.2 | 41.9 ± 4.5 | 41.9 ± 2.7 | 0.80 |
Creatinine (mg/dL) | 1.1 ± 0.1 | 1.0 ± 0.1 | 1.3 ± 0.1 | 1.1 ± 0.1 | 0.27 |
eGFRCr (mL/min) | 65.5 ± 2.8 | 73.0 ± 4.5 | 57.4 ± 5.9 | 64.3 ± 4.2 | 0.08 |
Cystatin C (mg/mL) | 1.7 ± 0.1 | 1.4 ± 0.1 $,* | 1.9 ± 0.2 $ | 1.7 ± 0.1 * | 0.004 |
eGFRCys (mL/min) | 47.6 ± 2.8 | 61.8 ± 5.2 $,* | 40.3 ± 5.2 $ | 40.2 ± 3.1 * | 0.004 |
25 (OH) Vit D (ng/mL) | 18.4 ± 1.6 | 21.8 ± 2.8 | 17.4 ± 2.9 | 16.1 ± 2.4 | 0.12 |
Cholesterol (mg/dL) | 135.4 ± 4.8 | 137.2 ± 9.6 | 128.9 ± 7.7 | 137.9 ± 7.3 | 0.66 |
LDL (mg/dL) | 81.9 ± 4.0 | 82.5 ± 7.9 | 76.8 ± 6.7 | 84.7 ± 6.1 | 0.73 |
HDL (mg/dL) | 35.2 ± 1.6 | 37.3 ± 2.7 | 32.9 ± 3.4 | 34.8 ± 2.6 | 0.40 |
Triglyceride (mg/dL) | 11.1 ± 5.3 | 113.9 ± 11.1 | 112.1 ± 10.8 | 108.1 ± 6.2 | 0.99 |
Obese (N = 17) | Sarcopenic Obesity (N = 7) | p | |
---|---|---|---|
Age (years) | 77.6 ± 1.7 | 85.0 ± 3.0 | 0.05 |
BMI (kg/m2) | 34.8 ± 1.5 | 33.2 ± 0.8 | 0.5 |
BIA measurements | |||
BMR (Kcal) | 1396.5 ± 53.0 | 1144.3 ± 41.1 | 0.008 |
PhA | 4.8 ± 0.4 | 3.6 ± 0.2 | 0.1 |
TBW (L) | 42.9 ± 1.9 | 32.9 ± 1.3 | 0.001 |
LM (kg) | 55.8 ± 3.0 | 44.9 ± 1.8 | 0.007 |
BCM (kg) | 24.7 ± 1.7 | 16.7 ± 1.3 | 0.01 |
BFM (%) | 33.8 ± 2.4 | 45.0 ± 1.9 | 0.004 |
BFM (kg) | 29.6 ± 2.5 | 36.8 ± 1.9 | 0.05 |
ASM | 21.0 ± 1.1 | 15.4 ± 0.8 | 0.004 |
ASM/BMI | 0.6 ± 0.02 | 0.5 ± 0.02 | 0.003 |
Physical measures | |||
SPPB | 3.7 ± 0.9 | 0.0 ± 0.0 | 0.01 |
ADL | 1.9 ± 0.5 | 4.0 ± 0.7 | 0.08 |
IADL | 2.8 ± 0.7 | 5.7 ± 0.7 | 0.02 |
Bio-Humoral measures | |||
CRP (mg/L) | 17.11 ± 3.8 | 62.3 ± 22.1 | 0.005 |
IL-6 (pg/mL) | 26.0 ± 7.1 | 41.7 ± 16.0 | 0.04 |
Glycemia (mg/dL) | 110 ± 6.4 | 87.9 ± 4.0 | 0.02 |
Creatinine (mg/dL) | 1.07 ± 0.1 | 1.02 ± 0.1 | 0.6 |
Cystatin C (mg/mL) | 1.7 ± 0.3 | 1.6 ± 0.1 | 0.5 |
Calculated indexes | |||
CCR index | 0.68 ± 0.1 | 0.62 ± 0.1 | 0.5 |
SI index | 42.9 ± 4.0 | 35.8 ± 3.2 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, M.; Di Ciaula, A.; Jaber, N.; Grandolfo, R.; Fiermonte, F.; Portincasa, P. Multidimensional Assessment of Sarcopenia and Sarcopenic Obesity in Geriatric Patients: Creatinine/Cystatin C Ratio Performs Better than Sarcopenia Index. Metabolites 2024, 14, 306. https://doi.org/10.3390/metabo14060306
Khalil M, Di Ciaula A, Jaber N, Grandolfo R, Fiermonte F, Portincasa P. Multidimensional Assessment of Sarcopenia and Sarcopenic Obesity in Geriatric Patients: Creatinine/Cystatin C Ratio Performs Better than Sarcopenia Index. Metabolites. 2024; 14(6):306. https://doi.org/10.3390/metabo14060306
Chicago/Turabian StyleKhalil, Mohamad, Agostino Di Ciaula, Nour Jaber, Roberta Grandolfo, Flavia Fiermonte, and Piero Portincasa. 2024. "Multidimensional Assessment of Sarcopenia and Sarcopenic Obesity in Geriatric Patients: Creatinine/Cystatin C Ratio Performs Better than Sarcopenia Index" Metabolites 14, no. 6: 306. https://doi.org/10.3390/metabo14060306
APA StyleKhalil, M., Di Ciaula, A., Jaber, N., Grandolfo, R., Fiermonte, F., & Portincasa, P. (2024). Multidimensional Assessment of Sarcopenia and Sarcopenic Obesity in Geriatric Patients: Creatinine/Cystatin C Ratio Performs Better than Sarcopenia Index. Metabolites, 14(6), 306. https://doi.org/10.3390/metabo14060306