Nutritional Profiles and Their Links to Insulin Resistance and Anthropometric Variables in a Female Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Setting Study Population
2.2. Recruitment and Sample
2.3. Inclusion and Exclusion Criteria
2.4. Anthropometric and Dietary Assessment
2.5. Handling of Missing Data and Controlled Variables
2.6. Justification for Methodological Choices Including Confounder Adjustment
2.7. Ethical Considerations
2.8. Data Analysis
3. Results
3.1. Demographic Characteristics and Group Comparisons
3.2. Impact of Dietary Adherence on DQI Scores
3.3. Assessment of Dietary Quality
3.4. Educational Attainment and Its Impact on Dietary Quality
3.5. Financial Status and Dietary Quality Index Scores
3.6. Multiple Regression Analysis on Dietary Quality and Insulin Resistance
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amisi, C.A. Markers of insulin resistance in Polycystic ovary syndrome women: An update. World J. Diabetes 2022, 13, 129. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Hu, M.; Lai, M.; Li, J.; Hu, Z.; Quan, K.; Liu, J.; Liu, H.; Meng, Y.; Wang, S.; et al. Effect of acupuncture and metformin on insulin sensitivity in women with polycystic ovary syndrome and insulin resistance: A three-armed randomized controlled trial. Hum. Reprod. 2022, 37, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; An, X.; Yang, C.; Sun, W.; Ji, H.; Lian, F. The crucial role and mechanism of insulin resistance in metabolic disease. Front. Endocrinol. 2023, 14, 1149239. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, V.; Verduci, E.; Vandoni, M.; Rossi, V.; Fiore, G.; Massini, G.; Berardo, C.; Gatti, A.; Baldassarre, P.; Bianchi, A.; et al. The effect of healthy lifestyle strategies on the management of insulin resistance in children and adolescents with obesity: A narrative review. Nutrients 2022, 14, 4692. [Google Scholar] [CrossRef] [PubMed]
- Ambroselli, D.; Masciulli, F.; Romano, E.; Catanzaro, G.; Besharat, Z.M.; Massari, M.C.; Ferretti, E.; Migliaccio, S.; Izzo, L.; Ritieni, A.; et al. New Advances in Metabolic Syndrome, from Prevention to Treatment: The Role of Diet and Food. Nutrients 2023, 15, 640. [Google Scholar] [CrossRef] [PubMed]
- Rassie, K.; Giri, R.; Joham, A.E.; Mousa, A.; Teede, H. Prolactin in relation to gestational diabetes and metabolic risk in pregnancy and postpartum: A systematic review and meta-analysis. Front. Endocrinol. 2022, 13, 1069625. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Barrea, L.; Caprio, M.; Ceriani, F.; Chavez, A.O.; El Ghoch, M.; Frias-Toral, E.; Mehta, R.J.; Mendez, V.; Paschou, S.A.; et al. Nutritional guidelines for the management of insulin resistance. Crit. Rev. Food Sci. Nutr. 2022, 62, 6947–6960. [Google Scholar] [CrossRef]
- Li, M.; Chi, X.; Wang, Y.; Setrerrahmane, S.; Xie, W.; Xu, H. Trends in insulin resistance: Insights into mechanisms and therapeutic strategy. Signal Transduct. Target. Ther. 2022, 7, 216. [Google Scholar] [CrossRef] [PubMed]
- Polidori, N.; Mainieri, F.; Chiarelli, F.; Mohn, A.; Giannini, C. Early insulin resistance, type 2 diabetes, and treatment options in childhood. Horm. Res. Paediatr. 2022, 95, 149–166. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Oikonomou, C.; Nychas, G.; Dimitriadis, G.D. Effects of diet, lifestyle, chrononutrition and alternative dietary interventions on postprandial glycemia and insulin resistance. Nutrients 2022, 14, 823. [Google Scholar] [CrossRef]
- Chalermsri, C.; Rahman, S.M.; Ekström, E.C.; Muangpaisan, W.; Aekplakorn, W.; Satheannopakao, W.; Ziaei, S. Socio-demographic characteristics associated with the dietary diversity of Thai community-dwelling older people: Results from the national health examination survey. BMC Public Health 2022, 22, 377. [Google Scholar] [CrossRef] [PubMed]
- Gokhale, D.; Rao, S. Socio-economic and socio-demographic determinants of diet diversity among rural pregnant women from Pune, India. BMC Nutr. 2022, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Has, E.M.; Efendi, F.; Wahyuni, S.D.; Mahmudah, I.Z.; Chotimah, K. Women’s Empowerment and Socio Demographic Characteristics as Determinant of Infant and Young Child Feeding Practice in Indonesia. Curr. Res. Nutr. Food Sci. J. 2022, 10, 607–619. [Google Scholar]
- Oliveira, M.C.; Menezes-Garcia, Z.; Henriques, M.C.; Soriani, F.M.; Pinho, V.; Faria, A.M.; Santiago, A.F.; Cara, D.C.; Souza, D.G.; Teixeira, M.M.; et al. Acute and sustained inflammation and metabolic dysfunction induced by high refined carbohydrate-containing diet in mice. Obesity 2013, 21, E396–E406. [Google Scholar] [CrossRef] [PubMed]
- Valle, M.; St-Pierre, P.; Pilon, G.; Marette, A. Differential effects of chronic ingestion of refined sugars versus natural sweeteners on insulin resistance and hepatic steatosis in a rat model of diet-induced obesity. Nutrients 2020, 12, 2292. [Google Scholar] [CrossRef] [PubMed]
- Foley, P.J. Effect of low carbohydrate diets on insulin resistance and the metabolic syndrome. Curr. Opin. Endocrinol. Diabetes Obes. 2021, 28, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Mao, T.; Huang, F.; Zhu, X.; Wei, D.; Chen, L. Effects of dietary fiber on glycemic control and insulin sensitivity in patients with type 2 diabetes: A systematic review and meta-analysis. J. Funct. Foods 2021, 82, 104500. [Google Scholar] [CrossRef]
- Wali, J.A.; Solon-Biet, S.M.; Freire, T.; Brandon, A.E. Macronutrient determinants of obesity, insulin resistance and metabolic health. Biology 2021, 10, 336. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Huang, R. Associations of serum total 25OHD, 25OHD3, and epi-25OHD3 with insulin resistance: Cross-sectional analysis of the National Health and Nutrition Examination Survey, 2011–2016. Nutrients 2022, 14, 3526. [Google Scholar] [CrossRef]
- Maki, K.C.; Palacios, O.M.; Kramer, M.W.; Trivedi, R.; Dicklin, M.R.; Wilcox, M.L.; Maki, C.E. Effects of substituting eggs for high-carbohydrate breakfast foods on the cardiometabolic risk-factor profile in adults at risk for type 2 diabetes mellitus. Eur. J. Clin. Nutr. 2020, 74, 784–795. [Google Scholar] [CrossRef]
- Borkowski, L.; Przekora, A.; Belcarz, A.; Palka, K.; Jojczuk, M.; Lukasiewicz, P.; Nogalski, A.; Ginalska, G. Highly porous fluorapatite/β-1, 3-glucan composite for bone tissue regeneration: Characterization and in-vitro assessment of biomedical potential. Int. J. Mol. Sci. 2021, 22, 10414. [Google Scholar] [CrossRef]
- Verde, L.; Di Lorenzo, T.; Savastano, S.; Colao, A.; Barrea, L.; Muscogiuri, G. Chrononutrition in type 2 diabetes mellitus and obesity: A narrative review. Diabetes/Metab. Res. Rev. 2024, 40, e3778. [Google Scholar] [CrossRef]
- Carmichael, L.; Keske, M.A.; Betik, A.C.; Parker, L.; Brayner, B.; Roberts-Thomson, K.M.; Wadley, G.D.; Hamilton, D.L.; Kaur, G. Is vascular insulin resistance an early step in diet-induced whole-body insulin resistance? Nutr. Diabetes 2022, 12, 31. [Google Scholar] [CrossRef]
- Blackwood, S.J.; Horwath, O.; Moberg, M.; Pontén, M.; Apró, W.; Ekblom, M.M.; Larsen, F.J.; Katz, A. Extreme variations in muscle fiber composition enable detection of insulin resistance and excessive insulin secretion. J. Clin. Endocrinol. Metab. 2022, 107, e2729–e2737. [Google Scholar] [CrossRef]
- Hill, A.; Roussell, M.; Kris-Etherton, P. Nutritional management of lipids for overweight and obesity: What can we achieve? Future Lipidol. 2008, 3, 573–584. [Google Scholar] [CrossRef]
- Breen, C.; O’Connell, J.; Geoghegan, J.; O’Shea, D.; Birney, S.; Tully, L.; Gaynor, K.; O’Kelly, M.; O’Malley, G.; O’Donovan, C.; et al. Obesity in adults: A 2022 adapted clinical practice guideline for Ireland. Obes. Facts 2022, 15, 736–752. [Google Scholar] [CrossRef]
- Humphries, D.L.; Scott, M.E.; Vermund, S.H. Nutrition and Infectious Diseases; Springer International Publishing: Cham, Switzerland, 2021; Volume 10, pp. 978–983. [Google Scholar]
- LaVela, S.L.; Pedersen, J.; Ehrlich-Jones, L.; Heinemann, A.W. Informal caregivers’ self-identified roles in facilitating health-promoting behaviours for weight management in community-dwelling care recipients living with spinal cord injury in the United States. Health Soc. Care Community 2022, 30, e1585–e1598. [Google Scholar] [CrossRef]
- Rababa, M.; Al Ali, N.; Alshaman, A. Health promoting behaviors, health needs and associated factors among older adults in Jordan: A cross-sectional study. Int. J. Community Based Nurs. Midwifery 2021, 9, 106. [Google Scholar]
- Kapelari, S.; Alexopoulos, G.; Moussouri, T.; Sagmeister, K.J.; Stampfer, F. Food heritage makes a difference: The importance of cultural knowledge for improving education for sustainable food choices. Sustainability 2020, 12, 1509. [Google Scholar] [CrossRef]
- Che, X.; Chen, Z.; Liu, M.; Mo, Z. Dietary interventions: A promising treatment for polycystic ovary syndrome. Ann. Nutr. Metab. 2021, 77, 313–323. [Google Scholar] [CrossRef]
- Phillips, A.S.; Guarnaccia, C.A. Self-determination theory and motivational interviewing interventions for type 2 diabetes prevention and treatment: A systematic review. J. Health Psychol. 2020, 25, 44–66. [Google Scholar] [CrossRef] [PubMed]
- Jake-Schoffman, D.E.; Brown, S.D.; Baiocchi, M.; Bibeau, J.L.; Daubenmier, J.; Ferrara, A.; Galarce, M.N.; Hartogensis, W.; Hecht, F.M.; Hedderson, M.M.; et al. Methods-motivational interviewing approach for enhanced retention and attendance. Am. J. Prev. Med. 2021, 61, 606–617. [Google Scholar] [CrossRef] [PubMed]
- Martínez-de-Quel, Ó.; Suárez-Iglesias, D.; López-Flores, M.; Pérez, C.A. Physical activity, dietary habits and sleep quality before and during COVID-19 lockdown: A longitudinal study. Appetite 2021, 158, 105019. [Google Scholar] [CrossRef] [PubMed]
- Bhimwal, M.K.; Mishra, R.K. Modern Scientific and Technological Discoveries: A New Era of Possibilities. In Contemporary Advances in Science & Technology, Volume VI; Notion Press: Tamil Nadu, India, 2023; Volume 31, p. 37. [Google Scholar]
- Berger, M. Sustainable Interaction with Digital Technologies: Fostering Pro-Environmental Behavior and Maintaining Mental Health. Ph.D. Thesis, Institut für Marketing & Management, Gimpel, Henner, 2023. [Google Scholar]
- Khorram-Manesh, A.; Goniewicz, K.; Burkle, F.M., Jr. Unleashing the global potential of public health: A framework for future pandemic response. J. Infect. Public Health 2023, 17, 82–95. [Google Scholar] [CrossRef] [PubMed]
- Sempionatto, J.R.; Montiel, V.R.; Vargas, E.; Teymourian, H.; Wang, J. Wearable and mobile sensors for personalized nutrition. ACS Sens. 2021, 6, 1745–1760. [Google Scholar] [CrossRef]
- Eicher-Miller, H.A.; Prapkree, L.; Palacios, C. Expanding the capabilities of nutrition research and health promotion through mobile-based applications. Adv. Nutr. 2021, 12, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Khorram-Manesh, A.; Dulebenets, M.A.; Goniewicz, K. Implementing public health strategies—The need for educational initiatives: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 5888. [Google Scholar] [CrossRef]
- Suryadevara, C.K. Revolutionizing dietary monitoring: A comprehensive analysis of the innovative mobile app for tracking dietary composition. Int. J. Innov. Eng. Res. Technol. 2023, 10, 44–50. [Google Scholar]
Variable | Research Group | Control Group | Mann–Whitney U Test | |||
---|---|---|---|---|---|---|
M | SD | M | SD | Z | p | |
Age (years) | 29.12 | 4.13 | 28.20 | 4.18 | −2.335 | 0.02 |
Body Weight (kg) | 78.92 | 1.52 | 65.04 | 12.66 | −8.189 | <0.001 |
BMI (kg/m2) | 28.45 | 5.88 | 23.17 | 3.98 | −9.279 | <0.001 |
WHR | 0.86 | 0.11 | 0.81 | 0.88 | −3.977 | <0.001 |
AVI | 16.63 | 5.28 | 12.78 | 3.95 | −7.562 | <0.001 |
BAI | 30.70 | 5.87 | 26.46 | 4.65 | −7.233 | <0.001 |
pHDI 10 Index | 28.90 | 10.22 | 24.88 | 10.43 | −3.930 | <0.001 |
nHDI 14 Index | 9.87 | 5.92 | 15.39 | 7.89 | −7.439 | <0.001 |
DQI | 19.02 | 12.69 | 9.49 | 12.93 | −7.173 | <0.001 |
Dietary Adherence | N | DQI Mean (±SD) | t-Test (df = 299) | p-Value |
---|---|---|---|---|
Yes | 221 | 21.99 (±11.2) | t = 7.300 | p < 0.001 |
No | 80 | 10.83 (±13.03) |
Metformin Usage | N | DQI Mean (±SD) | Mann–Whitney U Test |
---|---|---|---|
Yes | 187 | 18.89 (±12.87) | Z = −0.220 |
No | 114 | 19.24 (±12.45) |
Educational Level | N | DQI Mean (±SD) | p-Value |
---|---|---|---|
Higher Education | 338 | 17.38 (±12.82) | p < 0.001 |
Lower Education Levels | 104 | 11.36 (±14.68) |
Financial Situation | N | DQI Mean (±SD) | p-Value |
---|---|---|---|
Below Average | 42 | 12.77 (±14.77) | p < 0.13 |
Average | 288 | 15.79 (±13.44) | |
Above Average | 113 | 17.61 (±13.08) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniewska-Ślepaczuk, K.; Żak-Kowalska, K.; Moskal, A.; Kowalski, S.; Al-Wathinani, A.M.; Alhajlah, M.; Goniewicz, K.; Goniewicz, M. Nutritional Profiles and Their Links to Insulin Resistance and Anthropometric Variables in a Female Cohort. Metabolites 2024, 14, 252. https://doi.org/10.3390/metabo14050252
Wiśniewska-Ślepaczuk K, Żak-Kowalska K, Moskal A, Kowalski S, Al-Wathinani AM, Alhajlah M, Goniewicz K, Goniewicz M. Nutritional Profiles and Their Links to Insulin Resistance and Anthropometric Variables in a Female Cohort. Metabolites. 2024; 14(5):252. https://doi.org/10.3390/metabo14050252
Chicago/Turabian StyleWiśniewska-Ślepaczuk, Katarzyna, Karolina Żak-Kowalska, Adrian Moskal, Sebastian Kowalski, Ahmed M. Al-Wathinani, Mousa Alhajlah, Krzysztof Goniewicz, and Mariusz Goniewicz. 2024. "Nutritional Profiles and Their Links to Insulin Resistance and Anthropometric Variables in a Female Cohort" Metabolites 14, no. 5: 252. https://doi.org/10.3390/metabo14050252
APA StyleWiśniewska-Ślepaczuk, K., Żak-Kowalska, K., Moskal, A., Kowalski, S., Al-Wathinani, A. M., Alhajlah, M., Goniewicz, K., & Goniewicz, M. (2024). Nutritional Profiles and Their Links to Insulin Resistance and Anthropometric Variables in a Female Cohort. Metabolites, 14(5), 252. https://doi.org/10.3390/metabo14050252