The Potential of Metabolomics in Colorectal Cancer Prognosis
Abstract
:1. Introduction
2. Metabolomics Profile
2.1. Detection Platform
2.2. Data Analysis
2.2.1. Data Preprocessing
2.2.2. Statistical Analysis
3. Metabolomics and CRC Prognosis
3.1. Metabolomics in CRC Staging
3.2. Metabolomics in CRC Metastasis
3.3. Metabolomics in CRC Recurrence
Ref. | Specimen | Platform | Population | Positively Associated Metabolites | Negatively Associated Metabolites |
---|---|---|---|---|---|
Di et al., 2021 [65] | Serum | NMR | Italian | Glutamine, Histidine (HMDB0000177) | Formate (HMDB0304356) |
Minicozzi et al., 2013 [66] | Tissue | 1H-MRS | Italian | Choline (HMDB0000097) | Lipids |
Farshidfar et al., 2016 [67] | Serum | GC-MS | Canadian | Aspartic acid (HMDB0000191), Proline, Citric acid (HMDB0000094), Serine (HMDB0000187), Lactate (HMDB0000190) | Ornithine (HMDB0000214), Orotic acid (HMDB0000226), Pyruvic acid (HMDB0000243), Phosphoric acid monomethyl ester, Azelaic acid (HMDB0000784), Erythritol (HMDB0002994), Galactose (HMDB0033704), Erythronic acid (HMDB0000613), Hexadecenoic acid |
Qiu et al., 2014 [68] | Tissue | GC-TOF-MS | Chinese; American | β-alanine (HMDB0000056), glycerol (HMDB0000131), myristate, palmitoleate, kyrunine, putrescine (HMDB0001414), cysteine (HMDB0303385), lactate (HMDB0000190), glutamate, uracil (HMDB0000300), hypoxanthine (HMDB0000157), 5-oxoproline, 2-aminobutyrate, aspartate (HMDB0000191) | Myo-inositol (HMDB0000211) |
Jonas et al., 2022 [70] | Plasma | Biocrates Absolute IDQ p18 | Austrian | PC (HMDB0001565), LPC (HMDB0254271) | |
Zhuang et al., 2022 [71] | Serum | LC-MS | Chinese | Arginine (HMDB0000517), L-gulono-1,4-lactone, Phenylpyruvate | L-proline, Cis-4-hydroxy-d-proline, Myo-inositol (HMDB0000211), Hippurate |
Montcusí et al., 2024 [72] | Plasma | LC-MS | Spanish | Kynurenine/tryptophan | LPC 18:2/PCa 36:2, Hexadecanoylcarnitine |
Costantini et al., 2022 [73] | Plasma | 1H-NMR | Italian | 3-hydroxybutyrate, histidine (HMDB0000177), cholesterol (HMDB0000067), triglycerides, phospholipids |
3.4. Metabolomics in CRC Survival
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef]
- Keum, N.; Giovannucci, E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 713–732. [Google Scholar] [CrossRef] [PubMed]
- Bruni, D.; Angell, H.K.; Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 2020, 20, 662–680. [Google Scholar] [CrossRef] [PubMed]
- Fujii, M.; Sekine, S.; Sato, T. Decoding the basis of histological variation in human cancer. Nat. Rev. Cancer 2024, 24, 141–158. [Google Scholar] [CrossRef]
- Zhou, H.; Zhu, L.; Song, J.; Wang, G.; Li, P.; Li, W.; Luo, P.; Sun, X.; Wu, J.; Liu, Y.; et al. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer. Mol. Cancer 2022, 21, 86. [Google Scholar] [CrossRef]
- Hu, M.; Wang, Z.; Wu, Z.; Ding, P.; Pei, R.; Wang, Q.; Xing, C. Circulating tumor cells in colorectal cancer in the era of precision medicine. J. Mol. Med. 2022, 100, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhao, K.; Zhang, D.; Pang, X.; Pu, H.; Lei, M.; Fan, B.; Lv, J.; You, D.; Li, Z.; et al. Prediction models of colorectal cancer prognosis incorporating perioperative longitudinal serum tumor markers: A retrospective longitudinal cohort study. BMC Med. 2023, 21, 63. [Google Scholar] [CrossRef]
- Carpelan-Holmström, M.; Louhimo, J.; Stenman, U.H.; Alfthan, H.; Haglund, C. CEA, CA 19-9 and CA 72-4 improve the diagnostic accuracy in gastrointestinal cancers. Anticancer Res. 2002, 22, 2311–2316. [Google Scholar]
- Gold, A.; Choueiry, F.; Jin, N.; Mo, X.; Zhu, J. The Application of Metabolomics in Recent Colorectal Cancer Studies: A State-of-the-Art Review. Cancers 2022, 14, 725. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, Y.; Yao, H.; Lin, C.; Xie, Y.; Tang, S.; Zhang, A. Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 132. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Faubert, B.; Solmonson, A.; DeBerardinis, R.J. Metabolic reprogramming and cancer progression. Science 2020, 368, eaaw5473. [Google Scholar] [CrossRef]
- Xia, L.; Ouyang, L.; Lin, J.; Tan, S.; Han, Y.; Wu, N.; Yi, P.; Tang, L.; Pan, Q.; Rao, S.; et al. The cancer metabolic reprogramming and immune response. Mol. Cancer 2021, 20, 28. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Hold, G.L.; Flint, H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014, 12, 661–672. [Google Scholar] [CrossRef]
- Qu, R.; Zhang, Y.; Ma, Y.; Zhou, X.; Sun, L.; Jiang, C.; Zhang, Z.; Fu, W. Role of the Gut Microbiota and Its Metabolites in Tumorigenesis or Development of Colorectal Cancer. Adv. Sci. 2023, 10, e2205563. [Google Scholar] [CrossRef]
- Lin, Z.; Yang, S.; Qiu, Q.; Cui, G.; Zhang, Y.; Yao, M.; Li, X.; Chen, C.; Gu, J.; Wang, T.; et al. Hypoxia-induced cysteine metabolism reprogramming is crucial for the tumorigenesis of colorectal cancer. Redox Biol. 2024, 75, 103286. [Google Scholar] [CrossRef]
- Schmidt, D.R.; Patel, R.; Kirsch, D.G.; Lewis, C.A.; Vander Heiden, M.G.; Locasale, J.W. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J. Clin. 2021, 71, 333–358. [Google Scholar] [CrossRef]
- Alhhazmi, A.A.; Alhamawi, R.M.; Almisned, R.M.; Almutairi, H.A.; Jan, A.A.; Kurdi, S.M.; Almutawif, Y.A.; Mohammed-Saeid, W. Gut Microbial and Associated Metabolite Markers for Colorectal Cancer Diagnosis. Microorganisms 2023, 11, 2037. [Google Scholar] [CrossRef]
- Jacob, M.; Lopata, A.L.; Dasouki, M.; Abdel Rahman, A.M. Metabolomics toward personalized medicine. Mass. Spectrom. Rev. 2019, 38, 221–238. [Google Scholar] [CrossRef] [PubMed]
- Danzi, F.; Pacchiana, R.; Mafficini, A.; Scupoli, M.T.; Scarpa, A.; Donadelli, M.; Fiore, A. To metabolomics and beyond: A technological portfolio to investigate cancer metabolism. Signal Transduct. Target. Ther. 2023, 8, 137. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Sánchez, B.; Priego-Capote, F.; Luque de Castro, M.D. Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation. TrAC Trends Anal. Chem. 2010, 29, 111–119. [Google Scholar] [CrossRef]
- Bi, H.; Guo, Z.; Jia, X.; Liu, H.; Ma, L.; Xue, L. The key points in the pre-analytical procedures of blood and urine samples in metabolomics studies. Metabolomics 2020, 16, 68. [Google Scholar] [CrossRef] [PubMed]
- Karu, N.; Deng, L.; Slae, M.; Guo, A.C.; Sajed, T.; Huynh, H.; Wine, E.; Wishart, D.S. A review on human fecal metabolomics: Methods, applications and the human fecal metabolome database. Anal. Chim. Acta 2018, 1030, 1–24. [Google Scholar] [CrossRef]
- Saoi, M.; Britz-McKibbin, P. New Advances in Tissue Metabolomics: A Review. Metabolites 2021, 11, 672. [Google Scholar] [CrossRef] [PubMed]
- Rey-Stolle, F.; Dudzik, D.; Gonzalez-Riano, C.; Fernández-García, M.; Alonso-Herranz, V.; Rojo, D.; Barbas, C.; García, A. Low and high resolution gas chromatography-mass spectrometry for untargeted metabolomics: A tutorial. Anal. Chim. Acta 2022, 1210, 339043. [Google Scholar] [CrossRef] [PubMed]
- Luan, H.; Yang, L.; Ji, F.; Cai, Z. PCI-GC-MS-MS approach for identification of non-amino organic acid and amino acid profiles. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1047, 180–184. [Google Scholar] [CrossRef]
- Marshall, D.D.; Powers, R. Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 100, 1–16. [Google Scholar] [CrossRef]
- Antequera, T.; Caballero, D.; Grassi, S.; Uttaro, B.; Perez-Palacios, T. Evaluation of fresh meat quality by Hyperspectral Imaging (HSI), Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI): A review. Meat Sci. 2021, 172, 108340. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Zhang, Z.; He, L.; Li, C.; Liu, M. NMR spectroscopy for metabolomics in the living system: Recent progress and future challenges. Anal. Bioanal. Chem. 2024, 416, 2319–2334. [Google Scholar] [CrossRef] [PubMed]
- Letertre, M.P.M.; Dervilly, G.; Giraudeau, P. Combined Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry Approaches for Metabolomics. Anal. Chem. 2021, 93, 500–518. [Google Scholar] [CrossRef] [PubMed]
- Zeki, Ö.C.; Eylem, C.C.; Reçber, T.; Kır, S.; Nemutlu, E. Integration of GC-MS and LC-MS for untargeted metabolomics profiling. J. Pharm. Biomed. Anal. 2020, 190, 113509. [Google Scholar] [CrossRef] [PubMed]
- Beale, D.J.; Pinu, F.R.; Kouremenos, K.A.; Poojary, M.M.; Narayana, V.K.; Boughton, B.A.; Kanojia, K.; Dayalan, S.; Jones, O.A.H.; Dias, D.A. Review of recent developments in GC-MS approaches to metabolomics-based research. Metabolomics 2018, 14, 152. [Google Scholar] [CrossRef] [PubMed]
- Bauermeister, A.; Mannochio-Russo, H.; Costa-Lotufo, L.V.; Jarmusch, A.K.; Dorrestein, P.C. Mass spectrometry-based metabolomics in microbiome investigations. Nat. Rev. Microbiol. 2022, 20, 143–160. [Google Scholar] [CrossRef]
- Yang, M.; Li, J.; Zhao, C.; Xiao, H.; Fang, X.; Zheng, J. LC-Q-TOF-MS/MS detection of food flavonoids: Principle, methodology, and applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 3750–3770. [Google Scholar] [CrossRef] [PubMed]
- Parrot, D.; Papazian, S.; Foil, D.; Tasdemir, D. Imaging the Unimaginable: Desorption Electrospray Ionization—Imaging Mass Spectrometry (DESI-IMS) in Natural Product Research. Planta Med. 2018, 84, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Fernández, F.M. Advances in mass spectrometry imaging for spatial cancer metabolomics. Mass. Spectrom. Rev. 2024, 43, 235–268. [Google Scholar] [CrossRef] [PubMed]
- Dunn, W.B.; Broadhurst, D.; Begley, P.; Zelena, E.; Francis-McIntyre, S.; Anderson, N.; Brown, M.; Knowles, J.D.; Halsall, A.; Haselden, J.N.; et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2011, 6, 1060–1083. [Google Scholar] [CrossRef]
- Chen, Y.; Li, E.M.; Xu, L.Y. Guide to Metabolomics Analysis: A Bioinformatics Workflow. Metabolites 2022, 12, 357. [Google Scholar] [CrossRef]
- Gromski, P.S.; Xu, Y.; Kotze, H.L.; Correa, E.; Ellis, D.I.; Armitage, E.G.; Turner, M.L.; Goodacre, R. Influence of missing values substitutes on multivariate analysis of metabolomics data. Metabolites 2014, 4, 433–452. [Google Scholar] [CrossRef] [PubMed]
- Kokla, M.; Virtanen, J.; Kolehmainen, M.; Paananen, J.; Hanhineva, K. Random forest-based imputation outperforms other methods for imputing LC-MS metabolomics data: A comparative study. BMC Bioinform. 2019, 20, 492. [Google Scholar] [CrossRef]
- Faquih, T.; van Smeden, M.; Luo, J.; le Cessie, S.; Kastenmüller, G.; Krumsiek, J.; Noordam, R.; van Heemst, D.; Rosendaal, F.R.; van Hylckama Vlieg, A.; et al. A Workflow for Missing Values Imputation of Untargeted Metabolomics Data. Metabolites 2020, 10, 486. [Google Scholar] [CrossRef]
- Liu, M.; Li, S.; Yuan, H.; Ong, M.E.H.; Ning, Y.; Xie, F.; Saffari, S.E.; Shang, Y.; Volovici, V.; Chakraborty, B.; et al. Handling missing values in healthcare data: A systematic review of deep learning-based imputation techniques. Artif. Intell. Med. 2023, 142, 102587. [Google Scholar] [CrossRef]
- Peluso, A.; Glen, R.; Ebbels, T.M.D. Multiple-testing correction in metabolome-wide association studies. BMC Bioinform. 2021, 22, 67. [Google Scholar] [CrossRef]
- Spratlin, J.L.; Serkova, N.J.; Eckhardt, S.G. Clinical applications of metabolomics in oncology: A review. Clin. Cancer Res. 2009, 15, 431–440. [Google Scholar] [CrossRef]
- Australian Institute of Health and Welfare. Cancer in Australia: Actual incidence data from 1982 to 2013 and mortality data from 1982 to 2014 with projections to 2017. Asia Pac. J. Clin. Oncol. 2018, 14, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, L.; Zhang, H.; Deng, P.; Chen, J.; Zhou, B.; Hu, J.; Zou, J.; Lu, W.; Xiang, P.; et al. 1H NMR-based metabolic profiling of human rectal cancer tissue. Mol. Cancer 2013, 12, 121. [Google Scholar] [CrossRef]
- Liu, T.; Peng, F.; Yu, J.; Tan, Z.; Rao, T.; Chen, Y.; Wang, Y.; Liu, Z.; Zhou, H.; Peng, J. LC-MS-based lipid profile in colorectal cancer patients: TAGs are the main disturbed lipid markers of colorectal cancer progression. Anal. Bioanal. Chem. 2019, 411, 5079–5088. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Xu, T.; Huang, J.; Zhang, L.; Xu, S.; Xiong, B.; Wang, Y.; Tang, H. Tissue Metabonomic Phenotyping for Diagnosis and Prognosis of Human Colorectal Cancer. Sci. Rep. 2016, 6, 20790. [Google Scholar] [CrossRef] [PubMed]
- Liesenfeld, D.B.; Habermann, N.; Toth, R.; Owen, R.W.; Frei, E.; Staffa, J.; Schrotz-King, P.; Klika, K.D.; Ulrich, C.M. Changes in urinary metabolic profiles of colorectal cancer patients enrolled in a prospective cohort study (ColoCare). Metabolomics 2015, 11, 998–1012. [Google Scholar] [CrossRef]
- Geijsen, A.; van Roekel, E.H.; van Duijnhoven, F.J.B.; Achaintre, D.; Bachleitner-Hofmann, T.; Baierl, A.; Bergmann, M.M.; Boehm, J.; Bours, M.J.L.; Brenner, H.; et al. Plasma metabolites associated with colorectal cancer stage: Findings from an international consortium. Int. J. Cancer 2020, 146, 3256–3266. [Google Scholar] [CrossRef] [PubMed]
- Mirnezami, R.; Jiménez, B.; Li, J.V.; Kinross, J.M.; Veselkov, K.; Goldin, R.D.; Holmes, E.; Nicholson, J.K.; Darzi, A. Rapid diagnosis and staging of colorectal cancer via high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy of intact tissue biopsies. Ann. Surg. 2014, 259, 1138–1149. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Su, R.; Xing, F.; Li, Q.; Liu, B.; Wang, D.; Du, Y.; Huang, K.; Yan, F.; Wang, J.; et al. Metabolic-Dysregulation-Based iEESI-MS Reveals Potential Biomarkers Associated with Early-Stage and Progressive Colorectal Cancer. Anal. Chem. 2022, 94, 11821–11830. [Google Scholar] [CrossRef]
- Coradduzza, D.; Arru, C.; Culeddu, N.; Congiargiu, A.; Azara, E.G.; Scanu, A.M.; Zinellu, A.; Muroni, M.R.; Rallo, V.; Medici, S.; et al. Quantitative Metabolomics to Explore the Role of Plasma Polyamines in Colorectal Cancer. Int. J. Mol. Sci. 2022, 24, 101. [Google Scholar] [CrossRef]
- Kang, C.; Zhang, J.; Xue, M.; Li, X.; Ding, D.; Wang, Y.; Jiang, S.; Chu, F.F.; Gao, Q.; Zhang, M. Metabolomics analyses of cancer tissue from patients with colorectal cancer. Mol. Med. Rep. 2023, 28, 13106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xu, R.; Hu, M.; Choueiry, F.; Jin, N.; Li, J.; Mo, X.; Zhu, J. Distinct plasma molecular profiles between early-onset and late-onset colorectal cancer patients revealed by metabolic and lipidomic analyses. J. Pharm. Biomed. Anal. 2024, 241, 115978. [Google Scholar] [CrossRef] [PubMed]
- Ishizaki, T.; Sugimoto, M.; Kuboyama, Y.; Mazaki, J.; Kasahara, K.; Tago, T.; Udo, R.; Iwasaki, K.; Hayashi, Y.; Nagakawa, Y. Stage-Specific Plasma Metabolomic Profiles in Colorectal Cancer. J. Clin. Med. 2024, 13, 5202. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Ma, X.; Feng, Y.; Chen, Y.; Wang, Y.; Xue, D.; Qiao, S. Study of the Relationship Between Serum Amino Acid Metabolism and Lymph Node Metastasis in Patients with Colorectal Cancer. Onco Targets Ther. 2020, 13, 10287–10296. [Google Scholar] [CrossRef]
- Williams, M.D.; Zhang, X.; Park, J.J.; Siems, W.F.; Gang, D.R.; Resar, L.M.; Reeves, R.; Hill, H.H., Jr. Characterizing metabolic changes in human colorectal cancer. Anal. Bioanal. Chem. 2015, 407, 4581–4595. [Google Scholar] [CrossRef] [PubMed]
- Zaimenko, I.; Jaeger, C.; Brenner, H.; Chang-Claude, J.; Hoffmeister, M.; Grötzinger, C.; Detjen, K.; Burock, S.; Schmitt, C.A.; Stein, U.; et al. Non-invasive metastasis prognosis from plasma metabolites in stage II colorectal cancer patients: The DACHS study. Int. J. Cancer 2019, 145, 221–231. [Google Scholar] [CrossRef]
- Zhang, H.; Qiao, L.; Li, X.; Wan, Y.; Yang, L.; Wang, H. Tissue metabolic profiling of lymph node metastasis of colorectal cancer assessed by 1H NMR. Oncol. Rep. 2016, 36, 3436–3448. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Du, Y.; Song, Z.; Liu, S.; Li, W.; Wang, D.; Suo, J. Profiling of serum metabolites in advanced colon cancer using liquid chromatography-mass spectrometry. Oncol. Lett. 2020, 19, 4002–4010. [Google Scholar] [CrossRef] [PubMed]
- Elmallah, M.I.Y.; Ortega-Deballon, P.; Hermite, L.; Pais-De-Barros, J.P.; Gobbo, J.; Garrido, C. Lipidomic profiling of exosomes from colorectal cancer cells and patients reveals potential biomarkers. Mol. Oncol. 2022, 16, 2710–2718. [Google Scholar] [CrossRef]
- Tristán, A.I.; González-Flores, E.; Salmerón, A.D.M.; Abreu, A.C.; Caba, O.; Jiménez-Luna, C.; Melguizo, C.; Prados, J.; Fernández, I. Serum nuclear magnetic resonance metabolomics analysis of human metastatic colorectal cancer: Biomarkers and pathway analysis. NMR Biomed. 2023, 36, e4935. [Google Scholar] [CrossRef] [PubMed]
- Di Donato, S.; Vignoli, A.; Biagioni, C.; Malorni, L.; Mori, E.; Tenori, L.; Calamai, V.; Parnofiello, A.; Di Pierro, G.; Migliaccio, I.; et al. A Serum Metabolomics Classifier Derived from Elderly Patients with Metastatic Colorectal Cancer Predicts Relapse in the Adjuvant Setting. Cancers 2021, 13, 2762. [Google Scholar] [CrossRef]
- Minicozzi, A.; Mosconi, E.; Cordiano, C.; Rubello, D.; Marzola, P.; Ferretti, A.; Maffione, A.M.; Sboarina, A.; Bencivenga, M.; Boschi, F.; et al. Proton magnetic resonance spectroscopy: Ex vivo study to investigate its prognostic role in colorectal cancer. Biomed. Pharmacother. 2013, 67, 593–597. [Google Scholar] [CrossRef]
- Farshidfar, F.; Weljie, A.M.; Kopciuk, K.A.; Hilsden, R.; McGregor, S.E.; Buie, W.D.; MacLean, A.; Vogel, H.J.; Bathe, O.F. A validated metabolomic signature for colorectal cancer: Exploration of the clinical value of metabolomics. Br. J. Cancer 2016, 115, 848–857. [Google Scholar] [CrossRef]
- Qiu, Y.; Cai, G.; Zhou, B.; Li, D.; Zhao, A.; Xie, G.; Li, H.; Cai, S.; Xie, D.; Huang, C.; et al. A distinct metabolic signature of human colorectal cancer with prognostic potential. Clin. Cancer Res. 2014, 20, 2136–2146. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Cai, Y.; Lu, L.; Huang, H.; Yan, H.; Paty, P.B.; Muca, E.; Ahuja, N.; Zhang, Y.; Johnson, C.H.; et al. Asparagine Metabolism in Tumors Is Linked to Poor Survival in Females with Colorectal Cancer: A Cohort Study. Metabolites 2022, 12, 164. [Google Scholar] [CrossRef]
- Jonas, J.P.; Hackl, H.; Pereyra, D.; Santol, J.; Ortmayr, G.; Rumpf, B.; Najarnia, S.; Schauer, D.; Brostjan, C.; Gruenberger, T.; et al. Circulating metabolites as a concept beyond tumor biology determining disease recurrence after resection of colorectal liver metastasis. HPB 2022, 24, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, F.; Bai, X.; Shi, Y.; Chang, L.; Ai, W.; Du, J.; Liu, W.; Liu, H.; Zhou, X.; Wang, Z.; et al. Metabolomic profiling identifies biomarkers and metabolic impacts of surgery for colorectal cancer. Front. Surg. 2022, 9, 913967. [Google Scholar] [CrossRef] [PubMed]
- Montcusí, B.; Madrid-Gambin, F.; Pozo, Ó.J.; Marco, S.; Marin, S.; Mayol, X.; Pascual, M.; Alonso, S.; Salvans, S.; Jiménez-Toscano, M.; et al. Circulating metabolic markers after surgery identify patients at risk for severe postoperative complications: A prospective cohort study in colorectal cancer. Int. J. Surg. 2024, 110, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- Costantini, S.; Di Gennaro, E.; Capone, F.; De Stefano, A.; Nasti, G.; Vitagliano, C.; Setola, S.V.; Tatangelo, F.; Delrio, P.; Izzo, F.; et al. Plasma metabolomics, lipidomics and cytokinomics profiling predict disease recurrence in metastatic colorectal cancer patients undergoing liver resection. Front. Oncol. 2022, 12, 1110104. [Google Scholar] [CrossRef]
- Cai, Y.; Shen, X.; Lu, L.; Yan, H.; Huang, H.; Gaule, P.; Muca, E.; Theriot, C.M.; Rattray, Z.; Rattray, N.J.W.; et al. Bile acid distributions, sex-specificity, and prognosis in colorectal cancer. Biol. Sex Differ. 2022, 13, 61. [Google Scholar] [CrossRef]
- Jiménez, B.; Mirnezami, R.; Kinross, J.; Cloarec, O.; Keun, H.C.; Holmes, E.; Goldin, R.D.; Ziprin, P.; Darzi, A.; Nicholson, J.K. 1H HR-MAS NMR spectroscopy of tumor-induced local metabolic “field-effects” enables colorectal cancer staging and prognostication. J. Proteome Res. 2013, 12, 959–968. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cui, B.; Zhang, F.; Yang, Y.; Shen, X.; Li, Z.; Zhao, W.; Zhang, Y.; Deng, K.; Rong, Z.; et al. Development of a Correlative Strategy To Discover Colorectal Tumor Tissue Derived Metabolite Biomarkers in Plasma Using Untargeted Metabolomics. Anal. Chem. 2019, 91, 2401–2408. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, B.; Chen, Y.; Xing, Y.; Zhang, Y. Multi-Omics Prognostic Signatures Based on Lipid Metabolism for Colorectal Cancer. Front. Cell Dev. Biol. 2021, 9, 811957. [Google Scholar] [CrossRef] [PubMed]
- de Figueiredo Junior, A.G.; Serafim, P.V.P.; de Melo, A.A.; Felipe, A.V.; Lo Turco, E.G.; da Silva, I.; Forones, N.M. Analysis of the Lipid Profile in Patients with Colorectal Cancer in Advanced Stages. Asian Pac. J. Cancer Prev. 2018, 19, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Ecker, J.; Benedetti, E.; Kindt, A.S.D.; Höring, M.; Perl, M.; Machmüller, A.C.; Sichler, A.; Plagge, J.; Wang, Y.; Zeissig, S.; et al. The Colorectal Cancer Lipidome: Identification of a Robust Tumor-Specific Lipid Species Signature. Gastroenterology 2021, 161, 910–923.e19. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T.; Katsumata, K.; Udo, R.; Tago, T.; Kasahara, K.; Mazaki, J.; Kuwabara, H.; Kawakita, H.; Enomoto, M.; Ishizaki, T.; et al. Validation of Urinary Charged Metabolite Profiles in Colorectal Cancer Using Capillary Electrophoresis-Mass Spectrometry. Metabolites 2022, 12, 59. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhou, S.; Zhu, J.; Sheng, H.; Mao, W.; Fu, Z.; Chen, Z. Plasma lipid-based machine learning models provides a potential diagnostic tool for colorectal cancer patients. Clin. Chim. Acta 2022, 536, 191–199. [Google Scholar] [CrossRef]
- Xie, Z.; Zhu, R.; Huang, X.; Yao, F.; Jin, S.; Huang, Q.; Wang, D.; Li, H.; Wang, Q.; Long, H.; et al. Metabolomic analysis of gut metabolites in patients with colorectal cancer: Association with disease development and outcome. Oncol. Lett. 2023, 26, 358. [Google Scholar] [CrossRef]
- Ose, J.; Gigic, B.; Brezina, S.; Lin, T.; Peoples, A.R.; Schobert, P.P.; Baierl, A.; van Roekel, E.; Robinot, N.; Gicquiau, A.; et al. Higher Plasma Creatinine Is Associated with an Increased Risk of Death in Patients with Non-Metastatic Rectal but Not Colon Cancer: Results from an International Cohort Consortium. Cancers 2023, 15, 3391. [Google Scholar] [CrossRef] [PubMed]
- Damerell, V.; Klaassen-Dekker, N.; Brezina, S.; Ose, J.; Ulvik, A.; van Roekel, E.H.; Holowatyj, A.N.; Baierl, A.; Böhm, J.; Bours, M.J.L.; et al. Circulating tryptophan-kynurenine pathway metabolites are associated with all-cause mortality among patients with stage I-III colorectal cancer. Int. J. Cancer 2025, 156, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Morris, M.T.; Berardi, D.; Arora, T.; Domingo-Almenara, X.; Paty, P.B.; Rattray, N.J.W.; Kerekes, D.; Lu, L.; Khan, S.A.; et al. Charting the metabolic biogeography of the colorectum in cancer: Challenging the right sided versus left sided classification. Mol. Cancer 2024, 23, 211. [Google Scholar] [CrossRef] [PubMed]
- Nong, S.; Han, X.; Xiang, Y.; Qian, Y.; Wei, Y.; Zhang, T.; Tian, K.; Shen, K.; Yang, J.; Ma, X. Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (2020) 2023, 4, e218. [Google Scholar] [CrossRef]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef]
- Bian, X.; Liu, R.; Meng, Y.; Xing, D.; Xu, D.; Lu, Z. Lipid metabolism and cancer. J. Exp. Med. 2021, 218, e20201606. [Google Scholar] [CrossRef]
- Vettore, L.; Westbrook, R.L.; Tennant, D.A. New aspects of amino acid metabolism in cancer. Br. J. Cancer 2020, 122, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.J.; Zhao, Q.; Liu, J.; Zheng, J.B.; Qiu, M.Z.; Ju, H.Q.; Xu, R.H. Novel Genetic and Epigenetic Biomarkers of Prognostic and Predictive Significance in Stage II/III Colorectal Cancer. Mol. Ther. 2021, 29, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Popat, S.; Hubner, R.; Houlston, R.S. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol. 2005, 23, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Narayan, S.; Roy, D. Role of APC and DNA mismatch repair genes in the development of colorectal cancers. Mol. Cancer 2003, 2, 41. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb. Perspect. Med. 2016, 6, a026104. [Google Scholar] [CrossRef] [PubMed]
- Andreyev, H.J.; Norman, A.R.; Cunningham, D.; Oates, J.; Dix, B.R.; Iacopetta, B.J.; Young, J.; Walsh, T.; Ward, R.; Hawkins, N.; et al. Kirsten ras mutations in patients with colorectal cancer: The ‘RASCAL II’ study. Br. J. Cancer 2001, 85, 692–696. [Google Scholar] [CrossRef]
- Zhu, L.; Dong, C.; Cao, Y.; Fang, X.; Zhong, C.; Li, D.; Yuan, Y. Prognostic Role of BRAF Mutation in Stage II/III Colorectal Cancer Receiving Curative Resection and Adjuvant Chemotherapy: A Meta-Analysis Based on Randomized Clinical Trials. PLoS ONE 2016, 11, e0154795. [Google Scholar] [CrossRef]
- Cheng, X.; Xu, X.; Chen, D.; Zhao, F.; Wang, W. Therapeutic potential of targeting the Wnt/β-catenin signaling pathway in colorectal cancer. Biomed. Pharmacother. 2019, 110, 473–481. [Google Scholar] [CrossRef]
- Wu, N.; Jiang, M.; Liu, H.; Chu, Y.; Wang, D.; Cao, J.; Wang, Z.; Xie, X.; Han, Y.; Xu, B. LINC00941 promotes CRC metastasis through preventing SMAD4 protein degradation and activating the TGF-β/SMAD2/3 signaling pathway. Cell Death Differ. 2021, 28, 219–232. [Google Scholar] [CrossRef]
- Argilés, G.; Tabernero, J.; Labianca, R.; Hochhauser, D.; Salazar, R.; Iveson, T.; Laurent-Puig, P.; Quirke, P.; Yoshino, T.; Taieb, J.; et al. Localised colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1291–1305. [Google Scholar] [CrossRef]
- Fan, N.J.; Chen, H.M.; Song, W.; Zhang, Z.Y.; Zhang, M.D.; Feng, L.Y.; Gao, C.F. Macrophage mannose receptor 1 and S100A9 were identified as serum diagnostic biomarkers for colorectal cancer through a label-free quantitative proteomic analysis. Cancer Biomark. 2016, 16, 235–243. [Google Scholar] [CrossRef]
- Bröker, M.E.; Lalmahomed, Z.S.; Roest, H.P.; van Huizen, N.A.; Dekker, L.J.; Calame, W.; Verhoef, C.; Ijzermans, J.N.; Luider, T.M. Collagen peptides in urine: A new promising biomarker for the detection of colorectal liver metastases. PLoS ONE 2013, 8, e70918. [Google Scholar] [CrossRef]
- Yu, J.; Zhai, X.; Li, X.; Zhong, C.; Guo, C.; Yang, F.; Yuan, Y.; Zheng, S. Identification of MST1 as a potential early detection biomarker for colorectal cancer through a proteomic approach. Sci. Rep. 2017, 7, 14265. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Snyder, M.P. Integrative omics for health and disease. Nat. Rev. Genet. 2018, 19, 299–310. [Google Scholar] [CrossRef]
- Wörheide, M.A.; Krumsiek, J.; Kastenmüller, G.; Arnold, M. Multi-omics integration in biomedical research—A metabolomics-centric review. Anal. Chim. Acta 2021, 1141, 144–162. [Google Scholar] [CrossRef] [PubMed]
- Nicora, G.; Vitali, F.; Dagliati, A.; Geifman, N.; Bellazzi, R. Integrated Multi-Omics Analyses in Oncology: A Review of Machine Learning Methods and Tools. Front. Oncol. 2020, 10, 1030. [Google Scholar] [CrossRef]
- Meng, C.; Kuster, B.; Culhane, A.C.; Gholami, A.M. A multivariate approach to the integration of multi-omics datasets. BMC Bioinform. 2014, 15, 162. [Google Scholar] [CrossRef] [PubMed]
- Picard, M.; Scott-Boyer, M.P.; Bodein, A.; Périn, O.; Droit, A. Integration strategies of multi-omics data for machine learning analysis. Comput. Struct. Biotechnol. J. 2021, 19, 3735–3746. [Google Scholar] [CrossRef] [PubMed]
Ref. | Specimen | Platform | Population | Positively Associated Metabolites | Negatively Associated Metabolites |
---|---|---|---|---|---|
Wang et al., 2013 [47] | Tissue | 1H-NMR | Chinese | Lactate (HMDB0000190), L-threonine (HMDB0000167), Acetate, Glutathione (HMDB0000125), Uracil (HMDB0000300), Succinate, Serine (HMDB0000187), fFormate (HMDB0304356), Lysine (HMDB0000182), Tyrosine (HMDB0000158) | Myo-inositol (HMDB0000211), Taurine (HMDB0000251), Phosphocreatine (HMDB0001511), Creatine (HMDB0000064), Betaine (HMDB0000043), Dimethylglycine (HMDB0000092) |
Liu et al., 2019 [48] | Plasma | LC-MS | Chinese | CE (20:4), TAG | FAHFA 27:1 |
Tian et al., 2016 [49] | Tissue | GC-MS; HR-MAS-NMR | Chinese | Lipid | Choline (HMDB0000097), PC (HMDB0001565), GPC (HMDB0000086), PE (HMDB0060244), Scyllo-inositol (HMDB0006088), Glutathione (HMDB0000125), Taurine (HMDB0000251), Uracil (HMDB0000300), Isocytosine, Inosine (HMDB0000195), Glutamine, Glutamate, Aspartate (HMDB0000191), Asparagine (HMDB0000168), Glycine (HMDB0000123), Cysteine (HMDB0303385) |
Liesenfeld et al., 2015 [50] | Urine | GC-MS; 1H-NMR | American | Dipeptide of hydroxyproline, P-cresol-β-O-glucuronide | |
Geijsen et al., 2020 [51] | Plasma | LC-MS | Dutch; German; Austrian | Sphingolipids | Glycine (HMDB0000123), Hhistidine (HMDB0000177), Phosphatidylcholine |
Mirnezami et al., 2014 [52] | Tissue | HR-MAS-NMR | British | Triglycerides, Acetate | GPC (HMDB0000086) |
Zheng et al., 2022 [53] | Tissue | iEESI-MS | Chinese | Hypoxanthine (HMDB0000157), LPC (HMDB0254271), Glucose (HMDB0000122), PE (HMDB0060244), SM, L-Palmitoylcarnitine (HMDB0240774), PC (HMDB0001565) | Cholesterol sulfate (HMDB0000653), Glycerophosphoinositol (HMDB0011649), PG (HMDB0302468), Inosine (HMDB0000195), Inositol cyclic phosphate (HMDB0001125), Taurine (HMDB0000251), Palmitoleic acid (HMDB0003229) |
Coradduzza et al., 2022 [54] | Plasma | LC-MS | Italian | Agmatine (HMDB0001432), Arginine (HMDB0000517), Cadaverine (HMDB0002322), Lysine (HMDB0000182), Ornithine (HMDB0000214), Putrescine (HMDB0001414), Acetyl-putrescine, Spermine (HMDB0001256), Acetyl-spermine | |
Kang et al., 2023 [55] | Tissue | LC-MS | Chinese | 2-Aminobenzenesulfonic acid (HMDB0304940), P-sulfanilic acid, Quinoline-4-carboxylic acid (HMDB0257047), Methylcysteine (HMDB0002108), 5′-Deoxy-5′-(methylthio) adenosine | N-ɑ-acetyl-ε-(2-propenal)-Lys |
Zhang et al., 2024 [56] | Plasma | LC-MS | American | Aminoadipate (HMDB0000510), Lysine (HMDB0000182), L-glutamic acid, Choline (HMDB0000097), 2-aminomuconic acid (HMDB0001241), Tyrosine (HMDB0000158) | Nicotinamide, Acetyl-l-carnitine, L-threonine (HMDB0000167), 4,6-quinolinediol, 2-aminosuccinamate, Uridine (HMDB0000296), Urea (HMDB0000294), Cytosine (HMDB0000630), Uracil (HMDB0000300) |
Ishizaki et al., 2024 [57] | Plasma | CE-TOF-MS | Japanese | N1-acetylspermine, N1, N12-diacetylspermine, Spermine (HMDB0001256), Spermidine (HMDB0001257) | Histidine (HMDB0000177), O-acetylcarnitine |
Ref. | Specimen | Platform | Population | Positively Associated Metabolites | Negatively Associated Metabolites |
---|---|---|---|---|---|
Liu et al., 2020 [58] | Serum | LC-MS | Chinese | Leucine (HMDB0000687), Free carnitine, Acetylcarnitine (HMDB0000201), Isovalerylcarnitine (HMDB0000688), Glutarylcarnitine (HMDB0013130), Tiglylcarnitine (HMDB0002366), Dexanoylcarnitine (HMDB0000756), Dodecanoylcarnitine (HMDB0002250), Palmitoylcarnitine (HMDB0000222) | |
Williams et al., 2015 [59] | Tissue | IMMS | American | 3-Hydroxysuberic acid (HMDB0000325), Docosapentaenoic acid, 3-Oxooctadecanoic acid (HMDB0010736), 3,4-Dihydroxyphenylvaleric acid (HMDB0029233), Acylcarnitines, Bile acids, Glucose-1-phosphate (HMDB0001586), Sorbitol (HMDB0000247), Polyamines, Putrescine (HMDB0001414) | |
Zaimenko et al., 2019 [60] | Plasma | LC-MS | German | 1,4-D-xylobiose | PEGn=16 |
Zhang et al., 2016 [61] | Tissue | 1H-NMR | Chinese | Lactate (HMDB0000190), L-threonine (HMDB0000167), Lipids, Succinate, Dimethylglycine (HMDB0000092), Serine (HMDB0000187), Arginine (HMDB0000517), Uracil (HMDB0000300) | Glucose (HMDB0000122), Ketoglutarate, Phosphocreatine (HMDB0001511), Creatine (HMDB0000064), Myo-inositol (HMDB0000211) |
Zhang et al., 2020 [62] | Serum | LC-MS | Chinese | Tyramine (HMDB0000306), Abscisic acid, (HMDB0036093) 3-hydroxynonanoyl carnitine (HMDB0061635), Ethanolamine oleate, Coutaric acid (HMDB0029225), Calcitroic acid (HMDB0006472), Lithocholic acid (HMDB0000761), Treprostinil (HMDB0014518), Flavoxate (HMDB0015279), Glycine conjugate, Glucosylsphingosine (HMDB0000596) | Sorgoleone, Aldosterone (HMDB0000037), Cinncassiol C3 (HMDB0036859), hydroxy-5-(3′, 5′-dihydroxyphenyl)-valeric acid-O-glucuronide, Phenobarbital O-glucuronide, Pinostrobin 5-glucoside |
Elmallah et al., 2022 [63] | Plasma | LC-MS | American | Cer | PC (HMDB0001565), PE (HMDB0060244) |
Tristán et al., 2023 [64] | Serum | NMR | Spanish | Lactate (HMDB0000190), Glutamate, Pyruvate, Acetate, Acetone (HMDB0001659) | 3-hydroxybutyrate, Glutamine, Alanine (HMDB0000161), Isoleucine (HMDB0000172), Valine (HMDB0000883), Choline (HMDB0000097), GPC (HMDB0000086) |
Ref. | Specimen | Platform | Population | Positively Associated Metabolites | Negatively Associated Metabolites |
---|---|---|---|---|---|
Shen et al., 2022 [69] | Tissue | HILIC-MS; RPLC-MS | American | Asparagine (HMDB0000168), Citrulline (HMDB0000904), Glycerol 3-phosphate (HMDB0000126), LPC (16:0), Uracil (HMDB0000300), Xanthosine (HMDB0000299) | Adenosine, Arginino, Succinic acid (HMDB0000254), Hypoxanthine (HMDB0000157), Serine (HMDB0000187), Succinate, L-threonine (HMDB0000167), UDP-D-Glucose |
Cai et al., 2022 [74] | Tissue | LC-MS | American | Glycine-chenodeoxycholic acid/Chenodeoxycholic acid, Glycine-ursodeoxycholic acid/Ursodeoxycholic acid | |
Jiménez et al., 2013 [75] | Tissue | 1H-HR-MAS-NMR | British | Isobutyrate, Acetic acid (HMDB0000042), Choline (HMDB0000097) | |
Wang et al., 2019 [76] | Plasma | LC-MS | Chinese | Dihydrothymine l-gulonic γ-lactone | Chenodeoxycholic acid (HMDB0000518), Creatinine (HMDB0000562), Histidine-glycine, L-tryptophan, Tyrosine (HMDB0000158), Xanthine (HMDB0000292) |
Sun et al., 2022 [77] | Serum | LC-MS | Chinese | Cer (d18:0/14:0), Ganglioside GT3 (d18:0/18:1(9Z), LPE (22:6(4Z, 7Z, 10Z, 13Z, 16Z, 19Z)/0:0), PA (20:3(5Z, 8Z, 11Z)/24:1(15Z)), PS (20:4(5Z, 8Z, 11Z, 14Z)/14:1(9Z | Substance P |
Figueiredo et al. 2018 [78] | Serum | MALDI-TOF-MS | Brazilian | Sphingolipids, Policetidios, Glycerophospholipid | |
Ecker et al., 2021 [79] | Tissue | ESI-MS/MS | German | SM, TG | Cer |
Sakurai et al., 2022 [80] | Urine | CE-TOF-MS | Japanese | γ-Guanidinobutyrate | |
Yang et al., 2022 [81] | Plasma | LC-MS | PC (HMDB0001565), LPC (HMDB0254271) | TG | |
Xie et al., 2023 [82] | Fecal | LC-MS | Chinese | N-acetylmannosamine (HMDB0001129), 2,5-dihydroxybenzaldehyde | |
Ose et al., 2023 [83] | Plasma | Biocrates Absolute IDQ p180 | Dutch; German; Austrian | Proline, Hexose, Propionylcarnitine (HMDB0000824), Sarcosine (HMDB0000271), Hydroxybutyrylcarnitine, t4-hydroxyproline, Creatinine (HMDB0000562), Symmetric Dimethylarginine (HMDB0003334), Decenoylcarnitine (HMDB0250918), Asymmetric dimethylarginine (HMDB0001539) | Histidine (HMDB0000177), SM, PC (HMDB0001565), LPC (HMDB0254271), Octadecanoylcarnitine, Hydroxysphingomyeline |
Damerell et al., 2024 [84] | Plasma; Serum | LC-MS | Dutch; German; Austrian; American | 3-hydroxykynurenine, Quinolinic acid (HMDB0000232), Kynurenine (HMDB0000684) | Tryptophan, Xanthurenic acid (HMDB0000881), Picolinic acid (HMDB0002243) |
Jain et al., 2024 [85] | Tissue | LC-MS | American | Ethyl-4-aminobenzoate, Theobromine (HMDB0002825), Prostaglandine E2, Kynurenic acid (HMDB0000715), Riboflavin (HMDB0000244), Glycylproline (HMDB0000721), Hydrocinnamic acid (HMDB0000764), N-Acetylleucine, LPC (20:3) (HMDB0010393), P-Toluenesulfonic acid (HMDB0059933), Cytidine (HMDB0000089) , Linolenic Acid, Ethyl laurate, N-Acetyl-L-aspartic acid, Palmitoleic acid (HMDB0003229), Turanose (HMDB0011740), Indirubin (HMDB0240743), Retinyl acetate (HMDB0003648), Thiamine pyrophosphate (HMDB0001372), Uracil (HMDB0000300) | 4-methyl-2-oxovalerate, Methionine (HMDB0000696), Tyrosine (HMDB0000158), S-Adenosyl-methionine, N-Acetyl-L-methionine, ilirubin, Alanyl-L-phenylalanine, Threoninyl-Leucine (HMDB0029065), Valyl-Methionine (HMDB0029133), Valyl-Serine (HMDB0029136), Ergothioneine (HMDB0003045), LPC (14:0), LPE (P18:0) (HMDB0011130), 3-Hexenedioic acid (HMDB0000393), Phenylacetylglycine (HMDB0000821), Pantothenate, Hexanoylcarnitine (HMDB0000756), Guanosine (HMDB0000133), 8-Hydroxy-2′-deoxyguanosine, Arachidonic acid (HMDB0001043), N2-gamma-glutamylglutamine, Glucose-6-phosphate (HMDB0001401), Butyrylcarnitine (HMDB0002013), CMP sialic acid, Glycyl-L-phenylalanine, Inosine 5 triphosphate, Alanine (HMDB0000161), Cystine glutathione, LPC (20:4), Myristoylcarnitine (HMDB0254979), N-a-Acetyl-glutamine, Methylaspartic acid, Oleoylcarnitine (HMDB0005065), Uric acid (HMDB0000289), Valerylcarnitine (HMDB0013128), Valyl aspartate, Kynurenine (HMDB0000684), Creatinine (HMDB0000562), Trans-Urocanic acid, 5-Aminovaleric acid, 2-Deoxyguanosine, Alanylglutamic acid (HMDB0028686), dAMP, Estradiol-17B-glucuronide, Glycyl-L-glutamine, Glycyl-Serine (HMDB0028850), N2-Acetylornithine (HMDB0003357), Decanoylcarnitine (HMDB0000651), Adenosine 5′-diphosphate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, C.; Liu, X.; Wang, L.; Hang, D. The Potential of Metabolomics in Colorectal Cancer Prognosis. Metabolites 2024, 14, 708. https://doi.org/10.3390/metabo14120708
Fu C, Liu X, Wang L, Hang D. The Potential of Metabolomics in Colorectal Cancer Prognosis. Metabolites. 2024; 14(12):708. https://doi.org/10.3390/metabo14120708
Chicago/Turabian StyleFu, Chengqu, Xinyi Liu, Le Wang, and Dong Hang. 2024. "The Potential of Metabolomics in Colorectal Cancer Prognosis" Metabolites 14, no. 12: 708. https://doi.org/10.3390/metabo14120708
APA StyleFu, C., Liu, X., Wang, L., & Hang, D. (2024). The Potential of Metabolomics in Colorectal Cancer Prognosis. Metabolites, 14(12), 708. https://doi.org/10.3390/metabo14120708