Impact of β-Carotene Enrichment on Carotenoid Composition and Gene Expression in Artemia Metanauplii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Artemia Cyst Incubation
2.2. Artemia Enrichment Experiment Design
2.3. Artemia Starvation Experimental Sampling After β-Carotene Enrichment
2.4. Analysis of the Carotenoid Content and Composition
2.5. Extraction and Sequencing of RNA from Artemia
2.6. De Novo Assembly
2.7. Validation of the Transcription Data with qRT-PCR
2.8. Statistical Analysis
2.9. Ethics Statement
3. Results
3.1. Change in the β-Carotene Contents of Artemia During the Enrichment and Starvation Processes
3.2. Changes in the Endogenous Carotenoid Composition in Artemia During the β-Carotene Enrichment and Starvation Processes
3.3. De Novo Sequencing and Assembly
3.4. Gene Expression and Functional Enrichment Analysis of DEGs
3.5. Validation by qRT-PCR
4. Discussion
4.1. Changes in the Carotenoid Content and Composition in Artemia in Response to β-Carotene Enrichment
4.2. Genes Associated with Carotenoid Physiological Function
4.3. Genes Associated with Carotenoid Absorption and Metabolism
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fawzy, S.; Wang, W.L.; Zhou, Y.; Xue, Y.C.; Yi, G.F.; Wu, M.Q.; Huang, X.X. Can dietary β-carotene supplementation provide an alternative to astaxanthin on the performance of growth, pigmentation, biochemical, and immune-physiological parameters of Litopenaeus vannamei? Aquacult. Rep. 2022, 23, 101054. [Google Scholar]
- Wade, N.M.; Gabaudan, J.; Glencross, B.D. A review of carotenoid utilisation and function in crustacean aquaculture. Rev. Aquacult. 2017, 9, 141–156. [Google Scholar] [CrossRef]
- Lim, K.C.; Yusoff, F.M.; Shariff, M.; Kamarudin, M.S. Astaxanthin as feed supplement in aquatic animals. Rev. Aquacult. 2017, 10, 738–773. [Google Scholar] [CrossRef]
- Fawzy, S.; Wang, W.L.; Wu, M.Q.; Yi, G.F.; Huang, X.X. Effects of dietary different canthaxanthin levels on growth performance, antioxidant capacity, biochemical and immune-physiological parameters of white (Litopenaeus vannamei). Aquaculture 2022, 556, 738276. [Google Scholar] [CrossRef]
- Hamre, K.; Yúfera, M.; Rønnestad, I.; Boglione, C.; Conceição, L.E.C.; Izquierdo, M. Fish larval nutrition and feed formulation: Knowledge gaps and bottlenecks for advances in larval rearing. Rev. Aquacult. 2013, 5, S26–S58. [Google Scholar] [CrossRef]
- Sorgeloos, P.; Dhert, P.; Candreva, P. Use of brine shrimp, Artemia spp., in marinefish laryiculture. Rev. Fish. Sci. 2001, 6, 55–68. [Google Scholar] [CrossRef]
- Reis, D.B.; Acosta, N.G.; Almansa, E.; Navarro, J.C.; Tocher, D.R.; Andrade, J.P.; Sykes, A.V.; Rodriguez, C. Comparative study on fatty acid metabolism of early stages of two crustacean species: Artemia sp. metanauplii and Grapsus adscensionis zoeae, as live prey for marine animals. Comp. Biochtem. Phys. B. 2017, 204, 53–60. [Google Scholar] [CrossRef]
- Lavens, P.; Sorgeloos, P. The history, present status and prospects of the availability of Artemia cysts for aquaculture. Aquaculture 2000, 181, 397–403. [Google Scholar] [CrossRef]
- Gui, L.; Xu, L.; Liu, Z.Y.; Zhou, Z.G.; Sun, Z. Carotenoid-rich microalgae promote growth and health conditions of Artemia nauplii. Aquaculture 2022, 546, 737289. [Google Scholar] [CrossRef]
- Xie, W.; Ma, Y.C.; Ren, B.; Gao, M.R.; Sui, L.Y. Artemia nauplii enriched with archaea Halorubrum increased survival and challenge tolerance of Litopenaeus vannamei postlarvae. Aquaculture 2021, 533, 736087. [Google Scholar] [CrossRef]
- Domínguez, A.; Ferreira, M.; Coutinho, P.; Fabregas, J.; Otero, A. Delivery of astaxanthin from Haematococcus pluvialis to the aquaculture food chain. Aquaculture 2005, 250, 424–430. [Google Scholar] [CrossRef]
- Guinot, D.; Monroig, Ó.; Navarro, J.C.; Varó, I.; Amat, F.; Hontoria, F. Enrichment of Artemia metanauplii in phospholipids and essential fatty acids as a diet for common octopus (Octopus vulgaris) paralarvae. Aquacult. Nutr. 2013, 19, 837–844. [Google Scholar] [CrossRef]
- Nelis, H.J.C.F.; Lavens, P.; Van Steenberge, M.M.Z.; Sorgeloos, P.; Leenheer, A.P.D. Qualitative and quantitative changes in the carotenoids during development of the brine shrimp Artemia. J. Lipid. Res. 1988, 29, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Abdollahi, Y.; Ahmadifard, N.; Agh, N.; Rahmanifarah, K.; Hejazi, M.A. β-Carotene-enriched Artemia as a natural carotenoid improved skin pigmentation and enhanced the mucus immune responses of platyfish Xiphophorus maculatus. Aquacult. Int. 2019, 27, 1847–1858. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Zhang, L.L.; Wang, G.D.; Huang, S. De novo assembly transcriptome analysis reveals the genes associated with body color formation in the freshwater ornamental shrimps Neocaridina denticulate sinensis. Gene 2022, 806, 145929. [Google Scholar] [CrossRef]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Moghadam, A.; Taghizadeh, M.S.; Haghi, R.; Tahmasebi, A.; Niazi, A.; Ebrahimie, E. Exploring novel insights: Methyl jasmonate treatment reveals novel lncRNA-mediated regulation of secondary metabolite biosynthesis pathways in Echinacea purpurea. Food. Bios. 2024, 57, 103457. [Google Scholar] [CrossRef]
- Su, F.; Huang, B.; Liu, J.G. The carotenoids of shrimps (Decapoda: Caridea and Dendrobranchiata) cultured in China. J. Crustacean. Biol. 2018, 38, 523–530. [Google Scholar] [CrossRef]
- Wade, N.M.; Anderson, M.; Sellars, M.J.; Tume, R.K.; Preston, N.P.; Glencross, B.D. Mechanisms of colour adaptation in the prawn Penaeus monodon. J. Exp. Biol. 2012, 215, 343–350. [Google Scholar] [CrossRef]
- Ribeiro, E.A.; Genofre, G.C.; McNamara, J.C. Identification and quantification of carotenoid pigments during the embryonic development of the freshwater shrimp Macrobrachium olfersii (Crustacea, Decapoda). Mar. Freshw. Behav. Phy. 2001, 34, 105–116. [Google Scholar] [CrossRef]
- Sachindra, N.M.; Bhaskar, N.; Mahendrakar, N.S. Carotenoids in different body components of Indian shrimps. J. Sci. Food. Agric. 2005, 85, 167–172. [Google Scholar] [CrossRef]
- Flores, M.; Diaz, F.; Medina, R.; Licea, A.; Medina, R. Physiological, metabolic and haematological responses in white shrimp Litopenaeus vannamei (Boone) juveniles fed diets supplemented with astaxanthin acclimated to low-salinity water. Aquac. Res. 2007, 38, 740–747. [Google Scholar] [CrossRef]
- Hsu, W.J.; Chichester, C.O.; Davies, B.H. The metabolism of β-carotene and other carotenoids in the brine shrimp, Artemia salina L. (Crustacea: Branchiopoda). Comp. Biochem. Phys. 1970, 32, 69–79. [Google Scholar] [CrossRef]
- Dhankhar, J.; Kadian, S.S.; Sharma, A. Astaxanthin: A potential carotenoid. Int. J. Pharm. 2012, 3, 1246–1259. [Google Scholar]
- Huang, J.; Hui, B. Feed-induced variation in the carotenoid composition of brine shrimp. eFood 2020, 3, 247–253. [Google Scholar] [CrossRef]
- Pereira da Costa, D.; Campos Miranda-Filho, K. The use of carotenoid pigments as food additives for aquatic organisms and their functional roles. Rev. Aquacult. 2020, 12, 1567–1578. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.J.; Tian, L.X.; Yang, H.J.; Liang, G.Y.; Yue, Y.R.; Xu, D.H. Effects of dietary astaxanthin on growth, antioxidant capacity and gene expression in Pacific white shrimp Litopenaeus vannamei. Aquacult. Nutr. 2013, 19, 917–927. [Google Scholar] [CrossRef]
- Wang, W.L.; Ishikawa, M.; Koshio, S.; Yokoyama, S.; Dawood, M.A.O.; Zhang, Y.K. Effects of dietary astaxanthin supplementation on survival growth and stress resistance in larval and post-larval kuruma shrimp, Marsupenaeus japonicus. Aquac. Res. 2018, 49, 2225–2232. [Google Scholar] [CrossRef]
- Joshi, K.; Kumar, P.; Kataria, R. Microbial carotenoid production and their potential applications as antioxidants: A current update. Process. Biochem. 2023, 128, 190–205. [Google Scholar] [CrossRef]
- Liu, M.; Kong, X.Y.; Yao, Y.; Wang, X.A.; Yang, W.; Wu, H.; Li, S.; Ding, J.W.; Yang, J. The critical role and molecular mechanisms of ferroptosis in antioxidant systems: A narrative review. Ann. Transl. Med. 2022, 10, 368. [Google Scholar] [CrossRef]
- Wang, W.L.; Ishikawa, M.; Koshio, S. Effects of dietary astaxanthin supplementation on juvenile kuruma shrimp, Marsupenaeus japonicus. Aquaculture 2018, 491, 197–204. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H.Q.; Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Aspects. Med. 2009, 30, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.Y.; Van Remmen, H.; Frohlich, V.; Lechleiter, J.; Richardson, A.; Ran, Q. Gpx4 protects mitochondrial ATP generation against oxidative damage. Biochem. Bioph. Res. Commun. 2007, 356, 893–898. [Google Scholar] [CrossRef]
- Kang, Y.P.; Mockabee-Macias, A.; Jiang, C. Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell. Metab. 2021, 33, 174–189. [Google Scholar] [CrossRef]
- Von Lintig, J.; Moon, J.; Lee, J.; Ramkumar, S. Carotenoid metabolism at the intestinal barrier. BBA-Mol. Cell. Biol. Lipids 2020, 1865, 158580. [Google Scholar] [CrossRef]
- During, A.; Hussain, M.M.; Morel, D.W. Carotenoid uptake and secretion by CaCo-2 cells: Beta-carotene isomer selectivity and carotenoid interactions. J. Lipid. Res. 2002, 43, 1086–1095. [Google Scholar] [CrossRef]
- Rajasingh, H.; Øyehaug, L.; Våge, D.I.; Omholt, S.W. Carotenoid dynamics in Atlantic salmon. BMC. Biol. 2006, 4, 10. [Google Scholar] [CrossRef] [PubMed]
- Borel, P.; Lietz, G.; Goncalves, A.; Szabo, D.; Lecompte, S.; Curtis, P.; Goumidi, L.; Caslake, M.; Miles, E.; Packard, C. CD36 and SR-B1 are involved in cellular uptake of provitamin A carotenoids by caco-2 and HEK cells, and some of their genetic variants are associated with plasma concentrations of these micronutrients in humans. J. Nutr. 2013, 143, 448–456. [Google Scholar] [CrossRef]
- Toomey, M.B.; Lopes, R.J.; Araújo, P.M.; Johnson, J.D.; Gazda, M.A.; Afonso, S.; Mota, P.G.; Koch, R.E.; Hill, G.E.; Corbo, J.C.; et al. High-density lipoprotein receptor SCARB1 is required for carotenoid coloration in birds. Proc. Natl. Acad. Sci. USA 2017, 114, 5219–5224. [Google Scholar] [CrossRef]
- Sundvold, H.; Helgeland, H.; Baranski, M.; Omholt, S.W.; Våge, D.I. Characterisation of a novel paralog of scavenger receptor class B member (SCARB1) in Atlantic salmon (Salmo salar). BMC. Genet. 2011, 12, 52. [Google Scholar] [CrossRef]
- Van Bennekum, A.; Werder, M.; Thuahnai, S.T. Class B scavenger receptor-mediated intestinal absorption of dietary beta-carotene and cholesterol. Biochemistry 2005, 44, 4517–4525. [Google Scholar] [CrossRef]
- Hu, Z.; Song, H.; Zhou, C.; Yu, Z.L.; Yang, M.J.; Zhang, T. De novo assembly transcriptome analysis reveals the preliminary molecular mechanism of pigmentation in juveniles of the hard clam Mercenaria mercenaria. Genomics 2020, 112, 3635–3647. [Google Scholar] [CrossRef] [PubMed]
- Feng, D.; Li, Q.; Yu, H.; Zhao, X.; Kong, L.; Song, L. Comparative transcriptome analysis of the Pacific Oyster Crassostrea gigas characterized by shell colors: Identification of genetic bases potentially involved in pigmentation. PLoS ONE 2015, 10, e0145257. [Google Scholar] [CrossRef]
- Jin, Y.; Yu, Y.; Zhang, C.S.; Li, S.H.; Zhang, X.J.; Li, F.H. Characterization and function analysis of the beta-carotene oxygenase-like genes in carotenoids metabolism of the ridgetail white prawn Exopalaemon carinicauda. Front. Physiol. 2020, 11, 745. [Google Scholar] [CrossRef] [PubMed]
- Li, B.X.; Vachali, P.P.; Gorusupudi, A. Inactivity of human β, β-carotene-9′,10′-dioxygenase (BCO2) underlies retinal accumulation of the human macular carotenoid pigment. Proc. Natl. Acad. Sci. USA 2014, 111, 10173–10178. [Google Scholar] [CrossRef]
- Lehnert, S.J.; Christensen, K.A.; Vandersteen, W.E.; Sakhrani, D.; Pitcher, T.E.; Heath, J.W.; Koop, B.F.; Heath, D.D.; Devlin, R.H. Carotenoid pigmentation in salmon: Variation in expression at BCO2-1 locus controls a key fitness trait affecting red coloration. Proc. R. Soc. B 2019, 286, 1471–2954. [Google Scholar] [CrossRef]
- Martin, J.F.; Gudina, E.; Barredo, J.L. Conversion of β-carotene into astaxanthin: Two separate enzymes or a bifunctional hydroxylase-ketolase protein? Microb. Cell. Fact. 2008, 7, 3. [Google Scholar] [CrossRef]
- Hara, K.; Morita, T.; Mochizuki, M.; Yamamoto, K.; Ogino, C.; Araki, M.; Kondo, A. Development of a multi-gene expression system in Xanthophyllomyces dendrorhous. Microb. Cell. Fact. 2014, 13, 175. [Google Scholar] [CrossRef] [PubMed]
- Han, D.X.; Li, Y.T.; Hu, Q. Astaxanthin in microalgae: Pathways, functions and biotechnological implications. Algae 2013, 28, 131–147. [Google Scholar] [CrossRef]
- Haque, F.; Dutta, A.; Thimmanagari, M.; Yi, W.C. Intensified green production of astaxanthin from Haematococcus pluvialis. Food. Bioprod. Process. 2016, 99, 1–11. [Google Scholar] [CrossRef]
- Wang, N.; Guan, B.; Kong, Q.; Sun, H.; Geng, Z.Y.; Duan, L.F. Enhancement of astaxanthin production from Haematococcus pluvialis mutants by three-stage mutagenesis breeding. J. Biotechnol. 2016, 236, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Twomey, E.; Melo-Sampaio, P.; Schulte, L.M.; Bossuyt, F.; Brown, J.L. Multiple Routes to Color Convergence in a Radiation of Neotropical Poison Frogs. Syst. Biol. 2023, 72, 1247–1261. [Google Scholar] [CrossRef] [PubMed]
- Mojib, N.; Amad, M.; Thimma, M.; Aldanondo, N.; Kumaran, M.; Irigoien, X. Carotenoid metabolic profiling and transcriptome-genome mining reveal functional equivalence among blue-pigmented copepods and appendicularia. Mol. Ecol. 2014, 23, 2740–2756. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Description | Primers |
---|---|---|
CAT | catalase | F: CTCCGCTTTCTTGCTCATCT R: CAGCCAGCCTTAGTCTTTCA |
RDH12 | protochlorophyllide reductase | F: CCCGAGTCAGGAATTGGCTT R: GCATCAGAGGCCTTGTAGCA |
COX1 | cytochrome c oxidase subunit 1 | F: TACTGTGGGAATGGACGTTGA R: CGTGTCCCGTGTAAAGTTCC |
SOD2 | superoxide dismutase 2 | F: CACAAAAGAATCACAAGCAGTAAGG R: TCAAGGCTCAGGATGGGGA |
ATP3 | ATP synthase subunit gamma | F: GTGTCTATTCGCCTGAAGTCTGT R: GCTTTGGTATATTTTGCTGCTG |
CYTB | cytochrome b, partial | F: AGCGGCCATCACAAGAAACA R: AACTACGGTTGGCTGCTCC |
EPT1 | choline/ethanolamine phosphotransferase 1 | F: CTCGTCTATGATTGGACCCTTG R: CAAAGCCAAAGAACGTAATACTCC |
MDH2 | malate dehydrogenase | F: TCCAAACAGGATTTTCGGTG R: AAAAGAAACAGATGGCGTGC |
ND1 | NADH dehydrogenase subunit 1 | F: TCCTACAACCTTTTTCTGATGGG R: GGAGCAACGAGGTACGGTATG |
GST | glutathione transferase family protein | F: TAGCCAGCAAAGTAAAATCAGC R: AGGTGCCACTTCTCTTGACG |
DDX5 | p68DDX5 RNA helicase | F: CGCTCTTGCTGCTGCTTGT R: GGAGGAGAAATTAAACCAGTTGC |
cyp301a | hypothetical protein SPRG_05930 | F: AATCATCCCCTTTTAGCCACC R: GCTATCACCTGCCGTTTTTG |
cyp5a | cytochrome P450 | F: TTGGTTCAACTCGTGCTGCG R: GGAGCTGGCCCAAGGAATTG |
β-actin | actin | F: GGTCGTGACTTGACGGACTATCT R: AGCGGTTGCCATTTCTTGTT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Ma, Z.; Li, W.; Xue, Y.; Moss, A.S.; Wu, M. Impact of β-Carotene Enrichment on Carotenoid Composition and Gene Expression in Artemia Metanauplii. Metabolites 2024, 14, 676. https://doi.org/10.3390/metabo14120676
Wang W, Ma Z, Li W, Xue Y, Moss AS, Wu M. Impact of β-Carotene Enrichment on Carotenoid Composition and Gene Expression in Artemia Metanauplii. Metabolites. 2024; 14(12):676. https://doi.org/10.3390/metabo14120676
Chicago/Turabian StyleWang, Weilong, Zhuojun Ma, Weiquan Li, Yucai Xue, Amina S. Moss, and Meiqin Wu. 2024. "Impact of β-Carotene Enrichment on Carotenoid Composition and Gene Expression in Artemia Metanauplii" Metabolites 14, no. 12: 676. https://doi.org/10.3390/metabo14120676
APA StyleWang, W., Ma, Z., Li, W., Xue, Y., Moss, A. S., & Wu, M. (2024). Impact of β-Carotene Enrichment on Carotenoid Composition and Gene Expression in Artemia Metanauplii. Metabolites, 14(12), 676. https://doi.org/10.3390/metabo14120676