Fair Data, Bayesian Statistics and Human Cohort Studies: Current Trends in Metabolomic Research
- No contribution stated that metabolomics is an emerging field. Metabolomics has matured and is now routinely applied in various disciplines from population health to cell biology.
- A sign of maturity is how intricate new developments have become. Former studies focused on data processing and enumerating all detected signals [1], often without significant efforts in compound identifications. Today, it is unthinkable for metabolomics studies not to disclose the number of annotated compounds in supplements or database uploads [2,3].
- Publication of data from corporate metabolomic service providers remains problematic, as long as the raw data are not publicly available to scrutinize the compound annotations [4].
- Tools in compound annotation have become more sophisticated [5]. Initially, database propagations were deemed sufficient [6]. Today, critical voices raise the issue of confidence in metabolome annotations, specifically if they rely only on mass spectra and do not consider additional lines of evidence such as retention times and the complexities of in-source fragments and adducts [7,8].
- This progress means that future developments must focus on three aspects:
- (a)
- Make metabolomics more quantitative, to enable comparisons across studies.
- (b)
- Make metabolomics more publicly accessible, to track unidentified metabolites across studies and gain trust in compound annotations.
- (c)
- Make metabolomics more interpretable, to find novel biological functions for metabolites.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Contributions
- Bremer, P.L.; Fiehn, O. SMetaS: A Sample Metadata Standardizer for Metabolomics. Metabolites 2023, 13, 941. https://doi.org/10.3390/metabo13080941.
- Cajka, T.; Hricko, J.; Rudl Kulhava, L.; Paucova, M.; Novakova, M.; Fiehn, O.; Kuda, O. Exploring the Impact of Organic Solvent Quality and Unusual Adduct Formation during LC-MS-Based Lipidomic Profiling. Metabolites 2023, 13, 966. https://doi.org/10.3390/metabo13090966.
- Wang, S.; Valdiviez, L.; Ye, H.; Fiehn, O. Automatic Assignment of Molecular Ion Species to Elemental Formulas in Gas Chromatography/Methane Chemical Ionization Accurate Mass Spectrometry. Metabolites 2023, 13, 962. https://doi.org/10.3390/metabo13080962.
- Zhang, Y.; Fan, S.; Wohlgemuth, G.; Fiehn, O. Denoising Autoencoder Normalization for Large-Scale Untargeted Metabolomics by Gas Chromatography—Mass Spectrometry. Metabolites 2023, 13, 944. https://doi.org/10.3390/metabo13080944.
- Brydges, C.; Che, X.; Lipkin, W.I.; Fiehn, O. Bayesian Statistics Improves Biological Interpretability of Metabolomics Data from Human Cohorts. Metabolites 2023, 13, 984. https://doi.org/10.3390/metabo13090984.
- Cumeras, R.; Shen, T.; Valdiviez, L.; Tippins, Z.; Haffner, B.D.; Fiehn, O. Differences in the Stool Metabolome between Vegans and Omnivores: Analyzing the NIST Stool Reference Material. Metabolites 2023, 13, 921. https://doi.org/10.3390/metabo13080921.
- Zhang, Y.; Barupal, D.K.; Fan, S.; Gao, B.; Zhu, C.; Flenniken, A.M.; McKerlie, C.; Nutter, L.M.J.; Lloyd, K.C.K.; Fiehn, O. Sexual Dimorphism of the Mouse Plasma Metabolome Is Associated with Phenotypes of 30 Gene Knockout Lines. Metabolites 2023, 13, 947. https://doi.org/10.3390/metabo13080947.
- Wen, A.; Zhu, Y.; Yee, S.W.; Park, B.I.; Giacomini, K.M.; Greenberg, A.S.; Newman, J.W. The Impacts of Slc19a3 Deletion and Intestinal SLC19A3 Insertion on Thia-mine Distribution and Brain Metabolism in the Mouse. Metabolites 2023, 13, 885. https://doi.org/10.3390/metabo13080885.
- Dahabiyeh, L.A.; Nimer, R.M.; Rashed, M.; Wells, J.D.; Fiehn, O. Serum-Based Lipid Panels for Diagnosis of Idiopathic Parkinson’s Disease. Metabolites 2023, 13, 990. https://doi.org/10.3390/metabo13090990.
- Jess, A.T.; Eskander, G.H.; Vu, M.H.; Michail, S. Short-Chain Fatty Acid Levels af-ter Fecal Microbiota Transplantation in a Pediatric Cohort with Recurrent Clos-tridioides difficile Infection. Metabolites 2023, 13, 1039. https://doi.org/10.3390/metabo13101039.
- De Oliveira, E.B.; Monteiro, H.F.; Pereira, J.M.V.; Williams, D.R.; Pereira, R.V.; Del Rio, N.S.; Menta, P.R.; Machado, V.S.; Lima, F.S. Changes in Uterine Metabolome Associated with Metritis Development and Cure in Lactating Holstein Cows. Metabolites 2023, 13, 1156. https://doi.org/10.3390/metabo13111156.
References
- Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006, 78, 779. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Riano, C.; Saiz, J.; Barbas, C.; Bergareche, A.; Huerta, J.M.; Ardanaz, E.; Konjevod, M.; Mondragon, E.; Erro, M.E.; Chirlaque, M.D.; et al. Prognostic biomarkers of Parkinson’s disease in the Spanish EPIC cohort: A multiplatform metabolomics approach. Npj Park. Dis. 2021, 7, 73. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Ji, J.; Rabow, Z.; Shen, T.; Folz, J.; Brydges, C.R.; Fan, S.; Lu, X.; Mehta, S.; Showalter, M.R.; et al. A metabolome atlas of the aging mouse brain. Nat. Commun. 2021, 12, 6021. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, E.; Chetnik, K.; Flynn, T.; Barbieri, C.E.; Scherr, D.S.; Loda, M.; Krumsiek, J. Plasma metabolomics profiling of 580 patients from an Early Detection Research Network prostate cancer cohort. Sci. Data 2023, 10, 830. [Google Scholar] [CrossRef] [PubMed]
- Dührkop, K.; Nothias, L.F.; Fleischauer, M.; Reher, R.; Ludwig, M.; Hoffmann, M.A.; Petras, D.; Gerwick, W.H.; Rousu, J.; Dorrestein, P.C.; et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. 2021, 39, 462. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Park, Y.; Duraisingham, S.; Strobel, F.H.; Khan, N.; Soltow, Q.A.; Jones, D.P.; Pulendran, B. Predicting network activity from high throughput metabolomics. PLoS Comput. Biol. 2013, 9, e1003123. [Google Scholar] [CrossRef] [PubMed]
- Theodoridis, G.; Gika, H.; Raftery, D.; Goodacre, R.; Plumb, R.S.; Wilson, I.D. Ensuring Fact-Based Metabolite Identification in Liquid Chromatography–Mass Spectrometry-Based Metabolomics. Anal. Chem. 2023, 95, 3909. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Ang, I.L.; Lam, M.M.; Wei, R.; Lei, K.M.; Zhou, X.; Lam, H.H.; He, Q.Y.; Poon, T.C. Susceptibility to false discovery in biomarker research using liquid chromatography–high resolution mass spectrometry based untargeted metabolomics profiling. Clin. Transl. Med. 2021, 11, e469. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Li, T.; Liu, Z.; Wang, X.; Xu, X.; Li, S.; Xu, G.; Le, W. Comprehensive metabolic profiling of Parkinson’s disease by liquid chromatography-mass spectrometry. Mol. Neurodegener. 2021, 16, 4. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guasch-Ferré, M.; Chung, W.; Ruiz-Canela, M.; Toledo, E.; Corella, D.; Bhupathiraju, S.N.; Tobias, D.K.; Tabung, F.K.; Hu, J.; et al. The Mediterranean diet, plasma metabolome, and cardiovascular disease risk. Eur. Heart J. 2020, 41, 2645. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Jarmusch, A.K.; Vargas, F.; Aksenov, A.A.; Gauglitz, J.M.; Weldon, K.; Petras, D.; da Silva, R.; Quinn, R.; Melnik, A.V.; et al. Mass spectrometry searches using MASST. Nat. Biotechnol. 2020, 38, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Baratange, C.; Paris-Palacios, S.; Bonnard, I.; Delahaut, L.; Grandjean, D.; Wortham, L.; Sayen, S.; Gallorini, A.; Michel, J.; Renault, D.; et al. Metabolic, cellular and defense responses to single and co-exposure to carbamazepine and methylmercury in Dreissena polymorpha. Environ. Pollut. 2022, 300, 118933. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Xu, J.; Liu, Y.; Liu, J. Metabolomic profiling for identification of potential biomarkers in patients with dermatomyositis. Metabolomics 2019, 15, 77. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiehn, O. Fair Data, Bayesian Statistics and Human Cohort Studies: Current Trends in Metabolomic Research. Metabolites 2024, 14, 576. https://doi.org/10.3390/metabo14110576
Fiehn O. Fair Data, Bayesian Statistics and Human Cohort Studies: Current Trends in Metabolomic Research. Metabolites. 2024; 14(11):576. https://doi.org/10.3390/metabo14110576
Chicago/Turabian StyleFiehn, Oliver. 2024. "Fair Data, Bayesian Statistics and Human Cohort Studies: Current Trends in Metabolomic Research" Metabolites 14, no. 11: 576. https://doi.org/10.3390/metabo14110576
APA StyleFiehn, O. (2024). Fair Data, Bayesian Statistics and Human Cohort Studies: Current Trends in Metabolomic Research. Metabolites, 14(11), 576. https://doi.org/10.3390/metabo14110576