Metabolite Alterations in Autoimmune Diseases: A Systematic Review of Metabolomics Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Data Curation
2.2. Data Synthesis
2.3. Risk of Bias Assessment
3. Results
3.1. Serum
3.2. Plasma
3.3. Feces
3.4. Urine
3.5. Other Biological Fluids
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, L.; Wang, F.-S.; Gershwin, M.E. Human autoimmune diseases: A comprehensive update. J. Intern. Med. 2015, 278, 369–395. [Google Scholar] [CrossRef]
- Tsoukalas, D.; Fragoulakis, V.; Papakonstantinou, E.; Antonaki, M.; Vozikis, A.; Tsatsakis, A.; Buga, A.M.; Mitroi, M.; Calina, D. Prediction of autoimmune diseases by targeted metabolomic assay of urinary organic acids. Metabolites 2020, 10, 502. [Google Scholar] [CrossRef]
- Hewagama, A.; Richardson, B. The genetics and epigenetics of autoimmune diseases. J. Autoimmun. 2009, 33, 3–11. [Google Scholar] [CrossRef]
- Gregersen, P.K.; Behrens, T.W. Genetics of autoimmune diseases—Disorders of immune homeostasis. Nat. Rev. Genet. 2006, 7, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Tsoukalas, D.; Sarandi, E.; Thanasoula, M.; Docea, A.O.; Tsilimidos, G.; Calina, D.; Tsatsakis, A. Metabolic fingerprint of chronic obstructive lung diseases: A new diagnostic perspective. Metabolites 2019, 9, 290. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, D.K.; Hollywood, K.A.; Goodacre, R. Metabolomics for the masses: The future of metabolomics in a personalized world. New Horiz. Transl. Med. 2017, 3, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Lelli, V.; Belardo, A.; Timperio, A.M.; Lelli, V.; Belardo, A.; Timperio, A.M. From targeted quantification to untargeted metabolomics. In Metabolomics—Methodology and Applications in Medical Sciences and Life Sciences; IntechOpen: London, UK, 2021; ISBN 978-1-83969-084-6. [Google Scholar]
- Kang, J.; Zhu, L.; Lu, J.; Zhang, X. Application of metabolomics in autoimmune diseases: Insight into biomarkers and pathology. J. Neuroimmunol. 2015, 279, 25–32. [Google Scholar] [CrossRef]
- Naz, S.; Vallejo, M.; García, A.; Barbas, C. Method validation strategies involved in non-targeted metabolomics. J. Chromatogr. A 2014, 1353, 99–105. [Google Scholar] [CrossRef]
- Gowda, G.A.N.; Raftery, D. NMR Based Metabolomics. Adv. Exp. Med. Biol. 2021, 1280, 19–37. [Google Scholar] [CrossRef]
- Letertre, M.P.M.; Dervilly, G.; Giraudeau, P. Combined nuclear magnetic resonance spectroscopy and mass spectrometry approaches for metabolomics. Anal. Chem. 2021, 93, 500–518. [Google Scholar] [CrossRef]
- Rist, M.J.; Muhle-Goll, C.; Görling, B.; Bub, A.; Heissler, S.; Watzl, B.; Luy, B. Influence of Freezing and Storage Procedure on Human Urine Samples in NMR-Based Metabolomics. Metabolites 2013, 3, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.A.; et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef]
- Li, C.; Zheng, S.; You, H.; Liu, X.; Lin, M.; Yang, L.; Li, L. Sphingosine 1-phosphate (S1P)/S1P receptors are involved in human liver fibrosis by action on hepatic myofibroblasts motility. J. Hepatol. 2011, 54, 1205–1213. [Google Scholar] [CrossRef]
- Castelino, F.V. Lipids and eicosanoids in fibrosis: Emerging targets for therapy. Curr. Opin. Rheumatol. 2012, 24, 649–655. [Google Scholar] [CrossRef]
- Herranz, D.; Ambesi-Impiombato, A.; Sudderth, J.; Sánchez-Martín, M.; Belver, L.; Tosello, V.; Xu, L.; Wendorff, A.A.; Castillo, M.; Haydu, J.E.; et al. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat. Med. 2015, 21, 1182–1189. [Google Scholar] [CrossRef]
- Pera, B.; Krumsiek, J.; Assouline, S.E.; Marullo, R.; Patel, J.; Phillip, J.M.; Román, L.; Mann, K.K.; Cerchietti, L. Metabolomic profiling reveals cellular reprogramming of b-cell lymphoma by a lysine deacetylase inhibitor through the choline pathway. EBioMedicine 2018, 28, 80–89. [Google Scholar] [CrossRef]
- Hashim, N.A.A.; Ab-Rahim, S.; Suddin, L.S.; Saman, M.S.A.; Mazlan, M. Global serum metabolomics profiling of colorectal cancer. Mol. Clin. Oncol. 2019, 11, 3–14. [Google Scholar] [CrossRef]
- Donnelly, D.; Aung, P.P.; Jour, G. The “-OMICS” facet of melanoma: Heterogeneity of genomic, proteomic and metabolomic biomarkers. Semin. Cancer Biol. 2019, 59, 165–174. [Google Scholar] [CrossRef]
- Wang, C.; Kong, H.; Guan, Y.; Yang, J.; Gu, J.; Yang, S.; Xu, G. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal. Chem. 2005, 77, 4108–4116. [Google Scholar] [CrossRef]
- Zhai, Q.; Wang, X.; Chen, C.; Tang, Y.; Wang, Y.; Tian, J.; Zhao, Y.; Liu, X. Prognostic value of plasma trimethylamine n-oxide levels in patients with acute ischemic stroke. Cell Mol. Neurobiol. 2019, 39, 1201–1206. [Google Scholar] [CrossRef]
- Rexidamu, M.; Li, H.; Jin, H.; Huang, J. Serum levels of Trimethylamine-N-oxide in patients with ischemic stroke. Biosci. Rep. 2019, 39, BSR20190515. [Google Scholar] [CrossRef] [PubMed]
- Stenemo, M.; Ganna, A.; Salihovic, S.; Nowak, C.; Sundström, J.; Giedraitis, V.; Broeckling, C.D.; Prenni, J.E.; Svensson, P.; Magnusson, P.K.E.; et al. The metabolites urobilin and sphingomyelin (30:1) are associated with incident heart failure in the general population. ESC Heart Fail. 2019, 6, 764–773. [Google Scholar] [CrossRef]
- Wang, D.; Dubois, R.N. Eicosanoids and cancer. Nat. Rev. Cancer 2010, 10, 181–193. [Google Scholar] [CrossRef]
- Van Pevenage, P.M.; Birchmier, J.T.; June, R.K. Utilizing metabolomics to identify potential biomarkers and perturbed metabolic pathways in osteoarthritis: A systematic review. Semin. Arthritis Rheum. 2023, 59, 152163. [Google Scholar] [CrossRef]
- Huang, T.; Pu, Y.; Wang, X.; Li, Y.; Yang, H.; Luo, Y.; Liu, Y. Metabolomic analysis in spondyloarthritis: A systematic review. Front. Microbiol. 2022, 13, 965709. [Google Scholar] [CrossRef] [PubMed]
- Marrie, R.A.; Reider, N.; Cohen, J.; Stuve, O.; Sorensen, P.S.; Cutter, G.; Reingold, S.C.; Trojano, M. A systematic review of the incidence and prevalence of autoimmune disease in multiple sclerosis. Mult. Scler. 2015, 21, 282–293. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.Y.; Zheng, K.D.; Lin, K.; Zheng, G.; Zou, H.; Wang, J.M.; Lin, Y.Y.; Chuka, C.M.; Ge, R.S.; Zhai, W.; et al. Energy metabolism disorder as a contributing factor of rheumatoid arthritis: A comparative proteomic and metabolomic study. PLoS ONE 2015, 10, e0132695. [Google Scholar] [CrossRef]
- Young, S.P.; Kapoor, S.R.; Viant, M.R.; Byrne, J.J.; Filer, A.; Buckley, C.D.; Kitas, G.D.; Raza, K. The impact of inflammation on metabolomic profiles in patients with arthritis. Arthritis Rheum. 2013, 65, 2015–2023. [Google Scholar] [CrossRef]
- Perl, A.; Hanczko, R.; Lai, Z.-W.; Oaks, Z.; Kelly, R.; Borsuk, R.; Asara, J.M.; Phillips, P.E. Comprehensive metabolome analyses reveal N-acetylcysteine-responsive accumulation of kynurenine in systemic lupus erythematosus: Implications for activation of the mechanistic target of rapamycin. Metabolomics 2015, 11, 1157–1174. [Google Scholar] [CrossRef]
- Gonzalo, H.; Brieva, L.; Tatzber, F.; Jové, M.; Cacabelos, D.; Cassanye, A.; Lanau-Angulo, L.; Boada, J.; Serrano, J.C.; González, C.; et al. Lipidome analysis in multiple sclerosis reveals protein lipoxidative damage as a potential pathogenic mechanism. J. Neurochem. 2012, 123, 622–634. [Google Scholar] [CrossRef] [PubMed]
- Vingara, L.K.; Yu, H.J.; Wagshul, M.E.; Serafin, D.; Christodoulou, C.; Pelczer, I.; Krupp, L.B.; Maletić-Savatić, M. Metabolomic approach to human brain spectroscopy identifies associations between clinical features and the frontal lobe metabolome in multiple sclerosis. Neuroimage 2013, 82, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Reinke, S.N.; Broadhurst, D.I.; Sykes, B.D.; Baker, G.B.; Catz, I.; Warren, K.G.; Power, C. Metabolomic profiling in multiple sclerosis: Insights into biomarkers and pathogenesis. Mult. Scler. J. 2014, 20, 1396–1400. [Google Scholar] [CrossRef] [PubMed]
- Pieragostino, D.; D’Alessandro, M.; di Ioia, M.; Rossi, C.; Zucchelli, M.; Urbani, A.; Di Ilio, C.; Lugaresi, A.; Sacchetta, P.; Del Boccio, P. An integrated metabolomics approach for the research of new cerebrospinal fluid biomarkers of multiple sclerosis. Mol. Biosyst. 2015, 11, 1563–1572. [Google Scholar] [CrossRef]
- Herman, S.; Khoonsari, P.E.; Tolf, A.; Steinmetz, J.; Zetterberg, H.; Åkerfeldt, T.; Jakobsson, P.-J.; Larsson, A.; Spjuth, O.; Burman, J.; et al. Integration of magnetic resonance imaging and protein and metabolite CSF measurements to enable early diagnosis of secondary progressive multiple sclerosis. Theranostics 2018, 8, 4477–4490. [Google Scholar] [CrossRef]
- Cicalini, I.; Rossi, C.; Pieragostino, D.; Agnifili, L.; Mastropasqua, L.; di Ioia, M.; De Luca, G.; Onofrj, M.; Federici, L.; Del Boccio, P. Integrated Lipidomics and Metabolomics Analysis of Tears in Multiple Sclerosis: An Insight into Diagnostic Potential of Lacrimal Fluid. Int. J. Mol. Sci. 2019, 20, 1265. [Google Scholar] [CrossRef]
- Podlecka-Piętowska, A.; Kacka, A.; Zakrzewska-Pniewska, B.; Nojszewska, M.; Zieminska, E.; Chalimoniuk, M.; Toczylowska, B. Altered Cerebrospinal Fluid Concentrations of Hydrophobic and Hydrophilic Compounds in Early Stages of Multiple Sclerosis—Metabolic Profile Analyses. J. Mol. Neurosci. 2019, 69, 94–105. [Google Scholar] [CrossRef]
- Carlsson, H.; Abujrais, S.; Herman, S.; Khoonsari, P.E.; Åkerfeldt, T.; Svenningsson, A.; Burman, J.; Kultima, K. Targeted metabolomics of CSF in healthy individuals and patients with secondary progressive multiple sclerosis using high-resolution mass spectrometry. Metabolomics 2020, 16, 26. [Google Scholar] [CrossRef]
- Zahoor, I.; Suhail, H.; Datta, I.; Ahmed, M.E.; Poisson, L.M.; Waters, J.; Rashid, F.; Bin, R.; Singh, J.; Cerghet, M.; et al. Blood-based untargeted metabolomics in relapsing-remitting multiple sclerosis revealed the testable therapeutic target. Proc. Natl. Acad. Sci. USA 2022, 119, e2123265119. [Google Scholar] [CrossRef]
- Madsen, R.K.; Lundstedt, T.; Gabrielsson, J.; Sennbro, C.J.; Alenius, G.M.; Moritz, T.; Rantapää-Dahlqvist, S.; Trygg, J. Diagnostic properties of metabolic perturbations in rheumatoid arthritis. Arthritis Res. Ther. 2011, 13, R19. [Google Scholar] [CrossRef]
- Fang, L.; Mundra, P.A.; Fan, F.; Galvin, A.; Weir, J.M.; Wong, G.; Chin-Dusting, J.; Cicuttini, F.; Meikle, P.; Dart, A.M. Plasma lipidomic profiling in patients with rheumatoid arthritis. Metabolomics 2016, 12, 136. [Google Scholar] [CrossRef]
- Zabek, A.; Swierkot, J.; Malak, A.; Zawadzka, I.; Deja, S.; Bogunia-Kubik, K.; Mlynarz, P. Application of (1) H NMR-based serum metabolomic studies for monitoring female patients with rheumatoid arthritis. J. Pharm. Biomed. Anal. 2016, 117, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chen, J.; Hu, C.; Xie, Z.; Li, H.; Wei, S.; Wang, D.; Wen, C.; Xu, G. Exploration of the serum metabolite signature in patients with rheumatoid arthritis using gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2016, 127, 60–67. [Google Scholar] [CrossRef]
- Li, J.; Che, N.; Xu, L.; Zhang, Q.; Wang, Q.; Tan, W.; Zhang, M. LC-MS-based serum metabolomics reveals a distinctive signature in patients with rheumatoid arthritis. Clin. Rheumatol. 2018, 37, 1493–1502. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, C.; Hiraishi, T.; Oku, T.; Okuma, K.; Suzumura, K.; Hashimoto, M.; Ito, H.; Aramori, I.; Hirayama, Y. Metabolomic approach to the exploration of biomarkers associated with disease activity in rheumatoid arthritis. PLoS ONE 2019, 14, e0219400. [Google Scholar] [CrossRef]
- Takahashi, S.; Saegusa, J.; Onishi, A.; Morinobu, A. Biomarkers identified by serum metabolomic analysis to predict biologic treatment response in rheumatoid arthritis patients. Rheumatology 2019, 58, 2153–2161. [Google Scholar] [CrossRef]
- Hur, B.; Gupta, V.K.; Huang, H.; Wright, K.A.; Warrington, K.J.; Taneja, V.; Davis, J.M.; Sung, J. Plasma metabolomic profiling in patients with rheumatoid arthritis identifies biochemical features predictive of quantitative disease activity. Arthritis Res. Ther. 2021, 23, 164. [Google Scholar] [CrossRef]
- Ouyang, X.; Dai, Y.; Wen, J.L.; Wang, L.X. 1H NMR-based metabolomic study of metabolic profiling for systemic lupus erythematosus. Lupus 2011, 20, 1411–1420. [Google Scholar] [CrossRef]
- Wu, T.; Xie, C.; Han, J.; Ye, Y.; Weiel, J.; Li, Q.; Blanco, I.; Ahn, C.; Olsen, N.; Putterman, C.; et al. Metabolic disturbances associated with systemic lupus erythematosus. PLoS ONE 2012, 7, e37210. [Google Scholar] [CrossRef]
- Bengtsson, A.A.; Trygg, J.; Wuttge, D.M.; Sturfelt, G.; Theander, E.; Donten, M.; Moritz, T.; Sennbro, C.J.; Torell, F.; Lood, C.; et al. Metabolic profiling of systemic lupus erythematosus and comparison with primary sjögren’s syndrome and systemic sclerosis. PLoS ONE 2016, 11, e0159384. [Google Scholar] [CrossRef]
- Guleria, A.; Pratap, A.; Dubey, D.; Rawat, A.; Chaurasia, S.; Sukesh, E.; Phatak, S.; Ajmani, S.; Kumar, U.; Khetrapal, C.L.; et al. NMR based serum metabolomics reveals a distinctive signature in patients with Lupus Nephritis. Sci. Rep. 2016, 6, 35309. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Huang, J.; Zhang, C.; Hu, X.; Gao, M.; Shi, A.; Zha, W.; Shi, L.; Huang, C.; Yang, L. Serum metabolomic profiling in patients with systemic lupus erythematosus by GC/MS. Mod. Rheumatol. 2016, 26, 914–922. [Google Scholar] [CrossRef]
- Yan, B.; Huang, J.; Dong, F.; Yang, L.; Huang, C.; Gao, M.; Shi, A.; Zha, W.; Shi, L.; Hu, X. Urinary metabolomic study of systemic lupus erythematosus based on gas chromatography/mass spectrometry. Biomed. Chromatogr. 2016, 30, 1877–1881. [Google Scholar] [CrossRef] [PubMed]
- Åkesson, K.; Pettersson, S.; Ståhl, S.; Surowiec, I.; Hedenström, M.; Eketjäll, S.; Trygg, J.; Jakobsson, P.J.; Gunnarsson, I.; Svenungsson, E.; et al. Kynurenine pathway is altered in patients with SLE and associated with severe fatigue. Lupus Sci. Med. 2018, 5, e000254. [Google Scholar] [CrossRef]
- Shin, T.H.; Kim, H.A.; Jung, J.Y.; Baek, W.Y.; Lee, H.S.; Park, H.J.; Min, J.; Paik, M.J.; Lee, G.; Suh, C.H. Analysis of the free fatty acid metabolome in the plasma of patients with systemic lupus erythematosus and fever. Metabolomics 2017, 14, 14. [Google Scholar] [CrossRef]
- Li, Y.; Liang, L.; Deng, X.; Zhong, L. Lipidomic and metabolomic profiling reveals novel candidate biomarkers in active systemic lupus erythematosus. Int. J. Clin. Exp. Pathol. 2019, 12, 857–866. [Google Scholar] [PubMed]
- Zhang, Q.; Yin, X.; Wang, H.; Wu, X.; Li, X.; Li, Y.; Zhang, X.; Fu, C.; Li, H.; Qiu, Y. Fecal metabolomics and potential biomarkers for systemic lupus erythematosus. Front. Immunol. 2019, 10, 976. [Google Scholar] [CrossRef]
- Zhang, Y.; Gan, L.; Tang, J.; Liu, D.; Chen, G.; Xu, B. Metabolic profiling reveals new serum signatures to discriminate lupus nephritis from systemic lupus erythematosus. Front. Immunol. 2022, 13, 967371. [Google Scholar] [CrossRef]
- Mehrpour, M.; Kyani, A.; Tafazzoli, M.; Fathi, F.; Joghataie, M.T. A metabonomics investigation of multiple sclerosis by nuclear magnetic resonance. Magn. Reson. Chem. 2013, 51, 102–109. [Google Scholar] [CrossRef]
- Dickens, A.M.; Larkin, J.R.; Griffin, J.L.; Cavey, A.; Matthews, L.; Turner, M.R.; Wilcock, G.K.; Davis, B.G.; Claridge, T.D.W.; Palace, J.; et al. A type 2 biomarker separates relapsing-remitting from secondary progressive multiple sclerosis. Neurology 2014, 83, 1492–1499. [Google Scholar] [CrossRef]
- Cocco, E.; Murgia, F.; Lorefice, L.; Barberini, L.; Poddighe, S.; Frau, J.; Fenu, G.; Coghe, G.; Murru, M.R.; Murru, R.; et al. 1H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis. Neurol.—Neuroimmunol. Neuroinflamm. 2016, 3, e185. [Google Scholar] [CrossRef] [PubMed]
- Gebregiworgis, T.; Nielsen, H.H.; Massilamany, C.; Gangaplara, A.; Reddy, J.; Illes, Z.; Powers, R. A urinary metabolic signature for multiple sclerosis and neuromyelitis optica. J. Proteome Res. 2016, 15, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.K.; Bilgin, A.; Lovejoy, D.B.; Tan, V.; Bustamante, S.; Taylor, B.V.; Bessede, A.; Brew, B.J.; Guillemin, G.J. Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression. Sci. Rep. 2017, 7, 41473. [Google Scholar] [CrossRef]
- Stoessel, D.; Stellmann, J.P.; Willing, A.; Behrens, B.; Rosenkranz, S.C.; Hodecker, S.C.; Stürner, K.H.; Reinhardt, S.; Fleischer, S.; Deuschle, C.; et al. Metabolomic profiles for primary progressive Multiple Sclerosis stratification and disease course monitoring. Front. Hum. Neurosci. 2018, 12, 226. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, P.; Fitzgerald, K.C.; Venkata, S.L.V.; Smith, M.D.; Kornberg, M.D.; Mowry, E.M.; Haughey, N.J.; Calabresi, P.A. Dimethyl fumarate treatment induces lipid metabolism alterations that are linked to immunological changes. Ann. Clin. Transl. Neurol. 2019, 6, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Andersen, S.L.; Briggs, F.B.S.; Winnike, J.H.; Natanzon, Y.; Maichle, S.; Knagge, K.J.; Newby, L.K.; Gregory, S.G. Metabolome-based signature of disease pathology in MS. Mult. Scler. Relat. Disord. 2019, 31, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Lorefice, L.; Murgia, F.; Fenu, G.; Frau, J.; Coghe, G.; Murru, M.R.; Tranquilli, S.; Visconti, A.; Marrosu, M.G.; Atzori, L.; et al. Assessing the metabolomic profile of multiple sclerosis patients treated with interferon beta 1a by 1H-NMR Spectroscopy. Neurotherapeutics 2019, 16, 797–807. [Google Scholar] [CrossRef]
- Kasakin, M.F.; Rogachev, A.D.; Predtechenskaya, E.V.; Zaigraev, V.J.; Koval, V.V.; Pokrovsky, A.G. Targeted metabolomics approach for identification of relapsing–remitting multiple sclerosis markers and evaluation of diagnostic models. MedChemComm 2019, 10, 1803–1809. [Google Scholar] [CrossRef]
- Sylvestre, D.A.; Slupsky, C.M.; Aviv, R.I.; Swardfager, W.; Taha, A.Y. Untargeted metabolomic analysis of plasma from relapsing-remitting multiple sclerosis patients reveals changes in metabolites associated with structural changes in brain. Brain Res. 2020, 1732, 146589. [Google Scholar] [CrossRef]
- Gaetani, L.; Boscaro, F.; Pieraccini, G.; Calabresi, P.; Romani, L.; Di Filippo, M.; Zelante, T. Host and Microbial Tryptophan metabolic profiling in multiple sclerosis. Front. Immunol. 2020, 11, 157. [Google Scholar] [CrossRef]
- Murgia, F.; Lorefice, L.; Noto, A.; Spada, M.; Frau, J.; Fenu, G.; Coghe, G.; Gagliano, A.; Atzori, L.; Cocco, E. Metabolomic changes in patients affected by multiple sclerosis and treated with fingolimod. Metabolites 2023, 13, 428. [Google Scholar] [CrossRef] [PubMed]
- De Preter, V.; Machiels, K.; Joossens, M.; Arijs, I.; Matthys, C.; Vermeire, S.; Rutgeerts, P.; Verbeke, K. Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD. Gut 2015, 64, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Bjerrum, J.T.; Wang, Y.; Hao, F.; Coskun, M.; Ludwig, C.; Günther, U.; Nielsen, O.H. Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease and healthy individuals. Metabolomics 2015, 11, 122–133. [Google Scholar] [CrossRef]
- Lamas, B.; Richard, M.L.; Leducq, V.; Pham, H.P.; Michel, M.L.; Da Costa, G.; Bridonneau, C.; Jegou, S.; Hoffmann, T.W.; Natividad, J.M.; et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 2016, 22, 598–605. [Google Scholar] [CrossRef]
- Coburn, L.A.; Horst, S.N.; Allaman, M.M.; Brown, C.T.; Williams, C.S.; Hodges, M.E.; Druce, J.P.; Beaulieu, D.B.; Schwartz, D.A.; Wilson, K.T. L-Arginine availability and metabolism is altered in ulcerative colitis. Inflamm. Bowel Dis. 2016, 22, 1847–1858. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Clavel, T.; Smirnov, K.; Schmidt, A.; Lagkouvardos, I.; Walker, A.; Lucio, M.; Michalke, B.; Schmitt-Kopplin, P.; Fedorak, R.; et al. Oral versus intravenous iron replacement therapy distinctly alters the gut microbiota and metabolome in patients with IBD. Gut 2017, 66, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.P.; Goudarzi, M.; Singh, N.; Tong, M.; McHardy, I.H.; Ruegger, P.; Asadourian, M.; Moon, B.H.; Ayson, A.; Borneman, J.; et al. A disease-associated microbial and metabolomics state in relatives of pediatric inflammatory bowel disease patients. Cell. Mol. Gastroenterol. Hepatol. 2016, 2, 750–766. [Google Scholar]
- Kolho, K.L.; Pessia, A.; Jaakkola, T.; de Vos, W.M.; Velagapudi, V. Faecal and serum metabolomics in paediatric inflammatory bowel disease. J. Crohns Colitis 2017, 11, 321–334. [Google Scholar] [CrossRef]
- Nikolaus, S.; Schulte, B.; Al-Massad, N.; Thieme, F.; Schulte, D.M.; Bethge, J.; Rehman, A.; Tran, F.; Aden, K.; Häsler, R.; et al. Increased Tryptophan metabolism is associated with activity of inflammatory bowel diseases. Gastroenterology 2017, 153, 1504–1516.e2. [Google Scholar] [CrossRef]
- Santoru, M.L.; Piras, C.; Murgia, A.; Palmas, V.; Camboni, T.; Liggi, S.; Ibba, I.; Lai, M.A.; Orrù, S.; Blois, S.; et al. Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Sci. Rep. 2017, 7, 9523. [Google Scholar] [CrossRef]
- Scoville, E.A.; Allaman, M.M.; Brown, C.T.; Motley, A.K.; Horst, S.N.; Williams, C.S.; Koyama, T.; Zhao, Z.; Adams, D.W.; Beaulieu, D.B.; et al. Alterations in lipid, amino acid, and energy metabolism distinguish Crohn’s disease from ulcerative colitis and control subjects by serum metabolomic profiling. Metabolomics 2017, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Marcišauskas, S.; Ji, B.; Nielsen, J. Metagenomic analysis of bile salt biotransformation in the human gut microbiome. BMC Genom. 2019, 20, 517. [Google Scholar] [CrossRef]
- Weng, Y.J.; Gan, H.Y.; Li, X.; Huang, Y.; Li, Z.C.; Deng, H.M.; Chen, S.Z.; Zhou, Y.; Wang, L.S.; Han, Y.P.; et al. Correlation of diet, microbiota and metabolite networks in inflammatory bowel disease. J. Dig. Dis. 2019, 20, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Franzosa, E.A.; Sirota-Madi, A.; Avila-Pacheco, J.; Fornelos, N.; Haiser, H.J.; Reinker, S.; Vatanen, T.; Hall, A.B.; Mallick, H.; McIver, L.J.; et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 2019, 4, 293–305. [Google Scholar] [CrossRef]
- Diederen, K.; Li, J.V.; Donachie, G.E.; Meij, T.G.; Waart, D.R.; Hakvoort, T.; Kindermann, A.; Wagner, J.; Auyeung, V.; Te Velde, A.A.; et al. Exclusive enteral nutrition mediates gut microbial and metabolic changes that are associated with remission in children with Crohn’s disease. Sci. Rep. 2020, 10, 18879. [Google Scholar]
- Bushman, F.D.; Conrad, M.; Ren, Y.; Zhao, C.; Gu, C.; Petucci, C.; Kim, M.S.; Abbas, A.; Downes, K.J.; Devas, N.; et al. Multi-omic Analysis of the Interaction between Clostridioides difficile Infection and Pediatric Inflammatory Bowel Disease. Cell Host Microbe 2020, 28, 422–433.e7. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, X.; Zhang, X.; Xiao, F.; Hu, H.; Li, X.; Dong, F.; Sun, M.; Xiao, Y.; Ge, T.; et al. Microbial and metabolic features associated with outcome of infliximab therapy in pediatric Crohn’s disease. Gut Microbes 2021, 13, 1865708. [Google Scholar] [CrossRef]
- Yang, Z.H.; Liu, F.; Zhu, X.R.; Suo, F.Y.; Jia, Z.; Yao, S.K. Altered profiles of fecal bile acids correlate with gut microbiota and inflammatory responses in patients with ulcerative colitis. World J. Gastroenterol. 2021, 27, 3609–3629. [Google Scholar] [CrossRef]
- Wu, X.; Liu, K.; Wu, Q.; Wang, M.; Chen, X.; Li, Y.; Qian, L.; Li, C.; Dai, G.; Zhang, Q.; et al. Biomarkers of metabolomics in inflammatory bowel disease and damp-heat syndrome: A preliminary study. Evid.-Based Complement. Altern. Med. 2022, 2022, 3319646. [Google Scholar] [CrossRef] [PubMed]
- Dutta, T.; Chai, H.S.; Ward, L.E.; Ghosh, A.; Persson, X.M.; Ford, G.C.; Kudva, Y.C.; Sun, Z.; Asmann, Y.W.; Kocher, J.P.A.; et al. Concordance of changes in metabolic pathways based on plasma metabolomics and skeletal muscle transcriptomics in type 1 diabetes. Diabetes 2012, 61, 1004–1016. [Google Scholar] [CrossRef]
- Deja, S.; Barg, E.; Młynarz, P.; Basiak, A.; Willak-Janc, E. 1H NMR-based metabolomics studies of urine reveal differences between type 1 diabetic patients with high and low HbAc1 values. J. Pharm. Biomed. Anal. 2013, 83, 43–48. [Google Scholar] [CrossRef]
- Balderas, C.; Rupérez, F.J.; Ibañez, E.; Señorans, J.; Guerrero-Fernández, J.; Casado, I.G.; Gracia-Bouthelier, R.; García, A.; Barbas, C. Plasma and urine metabolic fingerprinting of type 1 diabetic children. Electrophoresis 2013, 34, 2882–2890. [Google Scholar] [CrossRef] [PubMed]
- Galderisi, A.; Pirillo, P.; Moret, V.; Stocchero, M.; Gucciardi, A.; Perilongo, G.; Moretti, C.; Monciotti, C.; Giordano, G.; Baraldi, E. Metabolomics reveals new metabolic perturbations in children with type 1 diabetes. Pediatr. Diabetes 2018, 19, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Frohnert, B.I.; Webb-Robertson, B.J.; Bramer, L.M.; Reehl, S.M.; Waugh, K.; Steck, A.K.; Norris, J.M.; Rewers, M. Predictive modeling of type 1 diabetes stages using disparate data sources. Diabetes 2020, 69, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Lanza, I.R.; Zhang, S.; Ward, L.E.; Karakelides, H.; Raftery, D.; Nair, K.S. Quantitative metabolomics by 1H-NMR and LC-MS/MS confirms altered metabolic pathways in diabetes. PLoS ONE 2010, 5, e10538. [Google Scholar] [CrossRef]
- Dutta, T.; Kudva, Y.C.; Persson, X.M.; Schenck, L.A.; Ford, G.C.; Singh, R.J.; Carter, R.; Nair, K.S. Impact of long-term poor and good glycemic control on metabolomics alterations in type 1 diabetic people. J. Clin. Endocrinol. Metab. 2016, 101, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Brugnara, L.; Vinaixa, M.; Murillo, S.; Samino, S.; Rodriguez, M.A.; Beltran, A.; Lerin, C.; Davison, G.; Correig, X.; Novials, A. Metabolomics approach for analyzing the effects of exercise in subjects with type 1 diabetes mellitus. PLoS ONE 2012, 7, e40600. [Google Scholar] [CrossRef]
- Knebel, B.; Strassburger, K.; Szendroedi, J.; Kotzka, J.; Scheer, M.; Nowotny, B.; Müssig, K.; Lehr, S.; Pacini, G.; Finner, H.; et al. Specific metabolic profiles and their relationship to insulin resistance in recent-onset type 1 and type 2 diabetes. J. Clin. Endocrinol. Metab. 2016, 101, 2130–2140. [Google Scholar] [CrossRef]
- Lamichhane, S.; Kemppainen, E.; Trošt, K.; Siljander, H.; Hyöty, H.; Ilonen, J.; Toppari, J.; Veijola, R.; Hyötyläinen, T.; Knip, M.; et al. Circulating metabolites in progression to islet autoimmunity and type 1 diabetes. Diabetologia 2019, 62, 2287–2297. [Google Scholar] [CrossRef]
- Bervoets, L.; Massa, G.; Guedens, W.; Louis, E.; Noben, J.P.; Adriaensens, P. Metabolic profiling of type 1 diabetes mellitus in children and adolescents: A case-control study. Diabetol. Metab. Syndr. 2017, 9, 48. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, W.; Huang, K.; Dong, G.; Chen, X.; Xu, C.; Ni, Y.; Fu, J. Untargeted metabolomics reveals gender-and age-independent metabolic changes of type 1 diabetes in Chinese children. Front. Endocrinol. 2022, 13, 1037289. [Google Scholar] [CrossRef]
- Noso, S.; Babaya, N.; Hiromine, Y.; Taketomo, Y.; Niwano, F.; Yoshida, S.; Ikegami, H. Metabolic signatures of β-cell destruction in type 1 diabetes. J. Diabetes Investig. 2023, 14, 48–57. [Google Scholar] [CrossRef]
- Haukka, J.K.; Sandholm, N.; Forsblom, C.; Cobb, J.E.; Groop, P.H.; Ferrannini, E. Metabolomic profile predicts development of microalbuminuria in individuals with type 1 diabetes. Sci. Rep. 2018, 8, 13853. [Google Scholar] [CrossRef]
- Wang, J.B.; Pu, S.B.; Sun, Y.; Li, Z.F.; Niu, M.; Yan, X.Z.; Zhao, Y.L.; Wang, L.F.; Qin, X.M.; Ma, Z.J.; et al. Metabolomic profiling of autoimmune hepatitis: The diagnostic utility of nuclear magnetic resonance spectroscopy. J. Proteome Res. 2014, 13, 3792–3801. [Google Scholar] [CrossRef]
- Lian, J.S.; Liu, W.; Hao, S.R.; Chen, D.Y.; Wang, Y.Y.; Yang, J.L.; Jia, H.Y.; Huang, J.R. A serum metabolomic analysis for diagnosis and biomarker discovery of primary biliary cirrhosis and autoimmune hepatitis. Hepatobiliary Pancreat. Dis. Int. 2015, 14, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Trottier, J.; Białek, A.; Caron, P.; Straka, R.J.; Heathcote, J.; Milkiewicz, P.; Barbier, O. Metabolomic profiling of 17 bile acids in serum from patients with primary biliary cirrhosis and primary sclerosing cholangitis: A pilot study. Dig. Liver Dis. 2012, 44, 303–310. [Google Scholar] [CrossRef]
- Bell, L.N.; Wulff, J.; Comerford, M.; Vuppalanchi, R.; Chalasani, N. Serum metabolic signatures of primary biliary cirrhosis and primary sclerosing cholangitis. Liver Int. 2015, 35, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.M.; Wang, J.P.; Bao, W.M.; Yang, J.H.; Ma, L.K.; Yang, J.; Chen, H.; Xu, Y.; Yang, L.H.; Li, W.; et al. Urine and serum metabolomic profiling reveals that bile acids and carnitine may be potential biomarkers of primary biliary cirrhosis. Int. J. Mol. Med. 2015, 36, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Yang, T.; Zhou, Y.; Gao, G.Y.; Xing, F.; Peng, Y.; Tao, Y.Y.; Liu, C.H. Serum metabolomics analysis reveals a distinct metabolic profile of patients with primary biliary cholangitis. Sci. Rep. 2017, 7, 784. [Google Scholar] [CrossRef]
- Vignoli, A.; Orlandini, B.; Tenori, L.; Biagini, M.R.; Milani, S.; Renzi, D.; Luchinat, C.; Calabrò, A.S. Metabolic signature of primary biliary cholangitis and its comparison with celiac disease. J. Proteome Res. 2019, 18, 1228–1236. [Google Scholar] [CrossRef]
- Banales, J.M.; Iñarrairaegui, M.; Arbelaiz, A.; Milkiewicz, P.; Muntané, J.; Muñoz-Bellvis, L.; Casta, A.; Gonzalez, L.M.; Arretxe, E.; Alonso, C.; et al. Serum metabolites as diagnostic biomarkers for cholangiocarcinoma, hepatocellular carcinoma, and primary sclerosing cholangitis. Hepatology 2019, 70, 547–562. [Google Scholar] [CrossRef] [PubMed]
- Regenold, W.T.; Phatak, P.; Makley, M.J.; Stone, R.D.; Kling, M.A. Cerebrospinal fluid evidence of increased extra-mitochondrial glucose metabolism implicates mitochondrial dysfunction in multiple sclerosis disease progression. J. Neurol. Sci. 2008, 275, 106–112. [Google Scholar] [CrossRef]
- Weyand, C.M.; Goronzy, J.J. Immunometabolism in early and late stages of rheumatoid arthritis. Nat. Rev. Rheumatol. 2017, 13, 291–301. [Google Scholar] [CrossRef]
- Blanco, L.P.; Kaplan, M.J. Metabolic alterations of the immune system in the pathogenesis of autoimmune diseases. PLoS Biol. 2023, 21, e3002084. [Google Scholar] [CrossRef] [PubMed]
- Teng, X.; Li, W.; Cornaby, C.; Morel, L. Immune cell metabolism in autoimmunity. Clin. Exp. Immunol. 2019, 197, 181–192. [Google Scholar] [CrossRef]
- Porter, L.; Shoushtarizadeh, A.; Jelinek, G.A.; Brown, C.R.; Lim, C.K.; de Livera, A.M.; Jacobs, K.R.; Weiland, T.J. Metabolomic Biomarkers of Multiple Sclerosis: A Systematic Review. Front. Mol. Biosci. 2020, 7, 574133. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Liu, H.; Wei, P.; He, Q.; Zhang, J.; Shi, Q.; Liu, T.; Liu, S. Amino acids-targeted metabolomics reveals novel diagnostic biomarkers for ulcerative colitis and Crohn’s disease. Amino Acids 2023, 55, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Kono, M.; Yoshida, N.; Tsokos, G.C. Amino Acid Metabolism in Lupus. Front. Immunol. 2021, 12, 623844. [Google Scholar] [CrossRef] [PubMed]
- Mondanelli, G.; Iacono, A.; Carvalho, A.; Orabona, C.; Volpi, C.; Pallotta, M.T.; Matino, D.; Esposito, S.; Grohmann, U. Amino acid metabolism as drug target in autoimmune diseases. Autoimmun. Rev. 2019, 18, 334–348. [Google Scholar] [CrossRef]
- Piranavan, P.; Bhamra, M.; Perl, A. Metabolic targets for treatment of autoimmune diseases. Immunometabolism 2020, 2, e200012. [Google Scholar] [CrossRef]
- Müller, J.; Bertsch, T.; Volke, J.; Schmid, A.; Klingbeil, R.; Metodiev, Y.; Karaca, B.; Kim, S.H.; Lindner, S.; Schupp, T.; et al. Narrative review of metabolomics in cardiovascular disease. J. Thorac. Dis. 2021, 13, 2532–2550. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Liu, X.; Cheng, C.; Yu, W.; Yi, P. Metabolism of Amino Acids in Cancer. Front. Cell Dev. Biol. 2020, 8, 603837. [Google Scholar] [CrossRef]
- Schmidt, D.R.; Patel, R.; Kirsch, D.G.; Lewis, C.A.; Vander Heiden, M.G.; Locasale, J.W. Metabolomics in cancer research and emerging applications in clinical oncology. CA Cancer J. Clin. 2021, 71, 333–358. [Google Scholar] [CrossRef] [PubMed]
- Kośliński, P.; Rzepiński, Ł.; Koba, M.; Gackowski, M.; Maciejek, Z. Amino acids levels as a potential biomarker in myasthenia gravis. Folia Neuropathol. 2022, 60, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Arany, Z.; Neinast, M. Branched Chain Amino Acids in Metabolic Disease. Curr. Diab Rep. 2018, 18, 76. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, F.; Lavigne, C.; Jacques, H.; Marette, A. Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annu. Rev. Nutr. 2007, 27, 293–310. [Google Scholar] [CrossRef]
S. No. | Author | Species | Fluid Sample | Analysis Technique | Sample Size |
---|---|---|---|---|---|
1 | Madsen et al., 2011 [41] | Human | Plasma | GC-MS, UPLC-MS | RA = 20, HC = 10 |
2 | Young et al., 2013 [30] | Human | Synovial fluid | GC-TOF MS | RA = 16, HC = 14 |
3 | Yang et al., 2015 [29] | Human | Synovial fluid | GC-TOF MS | RA = 25, HC = 10 |
4 | Fang et al., 2016 [42] | Human | Plasma | LC-MS | RA = 32, HC = 84 |
5 | Zabek et al., 2016 [43] | Human | Serum | 1H-NMR | RA = 20, HC = 30 |
6 | Zhou et al., 2016 [44] | Human | Serum | GC-MS | RA = 33, HC = 32 |
7 | Li et al., 2018 [45] | Human | Serum | UPLC-HRMS | RA = 30, HC = 32 |
8 | Sasaki et al., 2019 [46] | Human | Plasma | CE-Q-TOFMS | RA = 49, HC = 10 |
9 | Takahashi et al., 2019 [47] | Human | Serum | CE-TOF-MS | RA = 43, HC = 43 |
10 | Hur et al., 2021 [48] | Human | Plasma | UPLC-MS/MS | RA = 128, HC = 12 |
11 | Ouyang et al., 2011 [49] | Human | Serum | 1H-NMR | SLE = 64, HC = 35 |
12 | Wu et al., 2012 [50] | Human | Serum | GC-MS, LC-MS | SLE = 20, HC = 9 |
13 | Perl et al., 2015 [31] | Human | Peripheral blood and lymphocytes | GC-MS, LC-MS | SLE = 36, HC = 39 |
14 | Bengtsson et al., 2016 [51] | Human | Serum | GC-MS | SLE = 30, HC = 05 |
15 | Guleria et al., 2016 [52] | Human | Serum | NMR | SLE = 22, HC = 30 |
16–17 | Yan et al., 2016 [53,54] | Human | Urine and serum | GC-MS | SLE = 28, HC = 44 |
18 | Åkesson et al., 2018 [55] | Human | Plasma | GC-MS, LC-MS, NMR | SLE = 132, HC = 30 |
19 | Shin et al., 2018 [56] | Human | Plasma | GC-MS | SLE = 41, HC = 41 |
20 | Li et al., 2019 [57] | Human | Serum | HPLC-MS | SLE = 17, HC = 17 |
21 | Zhang et al., 2019 [58] | Human | Feces | UHPLC-MS | SLE = 32, HC = 26 |
22 | Zhang et al., 2022 [59] | Human | Serum | UPLC-MS/MS | SLE = 52, HC = 21 |
23 | Gonzalo et al., 2012 [32] | Human | CSF | LC-MS/UHPLC-MS | MS = 11, HC = 12 |
24 | Mehrpour et al., 2013 [60] | Human | Serum | NMR | MS = 23, HC = 28 |
25 | Vingara et al., 2013 [33] | Human | In vivo white matter | MRS with MRI | MS (RR) = 27, HC = 14 |
26 | Dickens et al., 2014 [61] | Human | Serum | NMR | MS (RR) = 22, HC = 14 |
27 | Reinke et al., 2014 [34] | Human | CSF | NMR | MS = 15, HC = 17 |
28 | Pieragostino et al., 2015 [35] | Human | CSF | MALDI-TOF-MS, LC-MS/MS | MS(RR) = 12, HC = 13 |
29 | Cocco et al., 2016 [62] | Human | Plasma | NMR | MS = 73, HC = 88 |
30 | Gebregiworgis et al., 2016 [63] | Human | Urine | NMR | MS (RR) = 8, HC = 07 |
31 | Lim et al., 2017 [64] | Human | Serum | UHPLC, GC-MS | MS (RR) = 50, HC = 49 |
32 | Herman et al., 2018 [36] | Human | CSF | LC-MS/ELISA | MS (RR) = 30, HC = 10 |
33 | Stoessel et al., 2018 [65] | Human | Plasma | LC-MS | MS (RR) = 10, HC = 63 |
34 | Bhargava et al., 2019 [66] | Human | Plasma | GC-MS/LC-MS | MS = 18, HC = 18 |
35 | Andersen et al., 2019 [67] | Human | Serum | 2D GCxGC-TOFMS | MS = 12, HC = 13 |
36 | Cicalini et al., 2019 [37] | Human | Tears | LC–MS/MS | MS = 12, HC = 21 |
37 | Lorefice et al., 2019 [68] | Human | Plasma | NMR | MS = 21, HC = 21 |
38 | Kasakin et al., 2019 [69] | Human | Plasma | LC–MS/MS | MS (RR) = 22, HC = 22 |
39 | Podlecka-Piętowska et al., 2019 [38] | Human | CSF | NMR | MS = 19, HC = 19 |
40 | Carlsson et al., 2020 [39] | Human | CSF | LC-HRMS, FIA-HRMS | MS = 12, HC = 12 |
41 | Sylvestre et al., 2020 [70] | Human | Plasma | NMR | MS (RR) = 28, HC = 18 |
42 | Gaetani et al., 2020 [71] | Human | Urine | HPLC–MS/MS | MS (RR) = 47, HC = 43 |
43–44 | Zahoor et al., 2022 [40] | Human | Peripheral blood monocytes and serum | UPLC-MS/MS | MS (RR) = 35, HC = 14 |
45 | Murgia et al., 2023 [72] | Human | Plasma | 1H-NMR | MS = 42, HC = 22 |
46 | De Preter et al., 2015 [73] | Human | Feces | GC-MS | CD = 83, HC = 16 |
47 | Bjerrum et al., 2015 [74] | Human | Feces | 1H-NMR | CD = 44, HC = 21 |
48 | Lamas et al., 2016 [75] | Human | Feces | HPLC, LC-MS | IBD = 102, HC = 37 |
49 | Coburn et al., 2016 [76] | Human | Serum | HPLC | UC = 137, HC = 38 |
50 | Lee et al., 2017 [77] | Human | Feces | HRMS | CD = 31, UC = 22, HC = 19 |
51 | Jacobs et al., 2016 [78] | Human | Feces | UPLC-MS | CD = 26, UC = 10, HC = 54 |
52–53 | Kolho et al., 2017 [79] | Human | Serum and feces | UPLC-MS/MS | IBD = 69, HC = 29 |
54 | Nikolaus et al., 2017 [80] | Human | Serum | HPLC | IBD = 291, HC = 291 |
55 | Santoru et al., 2017 [81] | Human | Feces | 1H-NMR, GC-MS, LC-QTOF-MS | CD = 50, UC = 82, HC = 51 |
56 | Scoville et al., 2018 [82] | Human | Serum | HILIC/UPLC-MS/MS | CD = 20, UC = 20, HC = 20 |
57 | Das et al., 2019 [83] | Human | Feces | LC-MS | IBD = 25, HC = 14 |
58 | Weng et al., 2019 [84] | Human | Feces | GC-MS, LC-MS | CD = 172, UC = 107, HC = 42 |
59 | Franzosa et al., 2019 [85] | Human | Feces | Untargeted LC-MS | CD = 68, UC = 53, HC = 34 |
60 | Diederen et al., 2020 [86] | Human | Feces | 1H-NMR, HPLC | CD = 43, HC = 15 |
61 | Bushman et al., 2020 [87] | Human | Feces | UPLC-LC/MS | IBD = 28, HC = 37 |
62 | Wang et al., 2021 [88] | Human | Feces | UPLC-MS/MS | CD = 29, HC = 20 |
63 | Yang et al., 2021 [89] | Human | Feces | UPLC-MS/MS | UC = 32, HC = 23 |
64 | Wu et al., 2022 [90] | Human | Plasma | UHPLC-HRMS | IBD = 30, HC = 15 |
65 | Dutta et al., 2012 [91] | Human | Plasma | Untargeted UPLC-ToF MS | T1D = 07, HC = 07 |
66 | Deja et al., 2013 [92] | Human | Urine | 1H-NMR | T1D = 30, HC = 14 |
67 | Balderas et al., 2013 [93] | Human | Plasma | LC-MS and CE-MS | T1D = 34, HC = 15 |
68 | Galderisi et al., 2018 [94] | Human | Urine | LC-MS | T1D = 56, HC = 30 |
69 | Frohnert et al., 2020 [95] | Human | Serum | LC-MRM/MS | T1D = 42, HC = 25 |
70 | Lanza et al., 2010 [96] | Human | Plasma | 1H-NMR, LC-MS | T1D = 09, HC = 09 |
71 | Dutta et al., 2016 [97] | Human | Plasma | UPLC-TOF-MS | T1D = 14, HC = 14 |
72 | Brugnara et al., 2012 [98] | Human | Serum | 1H-NMR and GC-MS | T1D = 10, HC = 11 |
73 | Knebel et al., 2016 [99] | Human | Plasma | GC-MS, LC-MS | T1D = 127, HC = 129 |
74 | Lamichhane et al., 2019 [100] | Human | Plasma | GC-TOF-MS | T1D = 40, HC = 40 |
75 | Bervoets et al., 2017 [101] | Human | Plasma | 1H-NMR | T1D = 07, HC = 07 |
76 | Zhang et al., 2022 [102] | Human | Serum | GC-TOF-MS | T1D = 76, HC = 65 |
77 | Noso et al., 2023 [103] | Human | Serum | CE-FTMS, LC-TOF-MS | T1D = 23, HC = 03 |
78 | Haukka et al., 2018 [104] | Human | Serum | UPLC-MS | T1D = 102, HC = 98 |
79 | Wang et al., 2014 [105] | Human | Serum | 1H-NMR | PBC = 41, HC = 14 |
80 | Lian et al., 2015 [106] | Human | Serum | UPLC-MS | PBC = 20, HC = 25 |
81 | Trottier et al., 2012 [107] | Human | Serum | LC-MS/MS | PBC = 12, PSC = 06, HC = 60 |
82 | Bell et al., 2015 [108] | Human | Serum | UHPLC– MS/MS and GC– MS | PBC = 18, PSC = 21, HC = 10 |
83–84 | Tang et al., 2015 [109] | Human | Serum and urine | UPLC/QTOF MS | PBC = 32, HC = 32 |
85 | Hao et al., 2017 [110] | Human | Serum | 1H-NMR | PBC = 29, HC = 41 |
86–87 | Vignoli et al., 2018 [111] | Human | Serum and urine | 1H-NMR | PBC = 20, HC = 19 |
88 | Banales et al., 2019 [112] | Human | Serum | UHPLC-MS | PSC = 20, HC = 20 |
Author | Model | Metabolites/Metabolic Pathway |
---|---|---|
Zabek et al., 2016 [43] | Human | Up-regulated: 3-Hydroxyisobutyrate, acetate, NAC, acetoacetate, acetone Down-regulated: Isoleucine, lactate, alanine, creatinine, valine, histidine |
Zhou et al., 2016 [44] | Human | Up-regulated: Docosahexaenoate, palmitelaidate, oleate, trans-9-octadecenoate, D-mannose, glycerol, ribose Down-regulated: 2-Ketoisocaproate, isoleucine, leucine, serine, phenylalanine, pyroglutamate, methionine, proline, threonine, valine, urate |
Li et al., 2018 [45] | Human | Up-regulated: 4-Methoxyphenylacetic acid, glutamic acid, argininosuccinic acid, L-leucine, L-phenylalanine, L-tryptophan, L-proline, glyceraldehyde, fumaric acid, cholesterol Down-regulated: Capric acid, bilirubin |
Takahashi et al., 2019 [47] | Human | Up-regulated: Betonicine, citric acid, quinic acid Down-regulated: Glycerol 3-phosphate, N-acetylalanine, hexanoic acid, taurine, 3-aminobutyric acid |
Ouyang et al., 2011 [49] | Human | Up-regulated: Glucose, glycoprotein, lactate, VLDL, LDL Down-regulated: Valine, tyrosine, pyruvate, lysine, phenylalanine, HDL, cholesterol, isoleucine, histidine, alanine, phosphocholine, glycerol, glutamine, glutamate, creatinine, citrate |
Wu et al., 2012 [50] | Human | Up-regulated: Medium-chain FA, 9-HODE, 13-HODE, LTB4, 5-HETE, gamma-glutamyl peptides Down-regulated: 1,2 Propanediol, 3-hydroxybutyrate, alpha ketoglutarate, citrate, G3P, lactate, malate, pyruvate, phosphocholine, essential polyunsaturated fatty acids (PUFAs), long-chain FA, acyl carnitines, GSH, methionine, cysteine, choline, pyridoxate, vitamin B6 |
Bengtsson et al., 2016 [51] | Human | Up-regulated: Urea, cystine, threonine, glucose Down-regulated: Lysine, fumaric acid, malic acid, methionine, tyrosine, alanine, asparagine, threonic acid, histidine, lactic acid, cysteine, citric acid, tryptophan |
Guleria et al., 2016 [52] | Human | Up-regulated: Glucose and N-acetyl glycoprotein Down-regulated: Amino acids (leucine, valine, alanine, glycine, proline), citrate, choline, lactate |
Yan et al., 2016 [53] | Human | Up-regulated: Methionine, glutamate, cystine, 1-monopalmitin, 1- monolinolein, 1-monoolein, 2-hydroxyisobutyrate Down-regulated: Amino acids (tryptophan, alanine, proline, glycine, serine, threonine, aspartate, glutamine, asparagine, lysine, histidine, tyrosine, valine, leucine, isoleucine), fructose, mannose, glucose, gluconic acidlactone, glycerol, oleic acid, arachidonic acid, fumarate, aminomalonate, threonate, alpha tocopherol |
Li et al., 2019 [57] | Human | Up-regulated: Ceramides, phosphatidylethanolamine, ether phosphatidylcholine, diacylglycerol, sphingomyelin (SM), arachidonic acid, amino acids (arginine, L-glutamic acid, L-histidine), drug metabolites, 2-coumaric acid, acetylcholine, beta-guanidino propionic acid, xanthine, inosine, galacturonic acid, rac-glycerol 3 phosphate, trimethylamine N-oxide (TMAO) Down-regulated: Acylcarnitines, caffeine, hydrocortisone, itaconic acid, serotonin |
Zhang et al., 2022 [59] | Human | Up-regulated: DG, SM, 1,5-anhydro-4-deoxy-D-glycero-hex-3-en-2-ulose, 8-(4-methoxy-2,3,6-trimethyl-phenyl)-6-methyl-octa-3,5-dien-2-one, Cer-BDS, phenylacetyl-L-glutamine, a-amino-g-cyanobutanoate, Pro-Leu, lysoDGTS, LDGTS, glycidyloleate Down-regulated: PE, 1-hexadecylthio-2-hexadecanoylamino-1,2-dideoxy-sn-glycero-3-phosphocholine, PC, Cer-NS, diisononyl phthalate, serylisoleucine, nervonic acid |
Mehrpour et al., 2013 [60] | Human | Up-regulated: Glucose Down-regulated: Valine |
Dickens et al., 2014 [61] | Human | Up-regulated: Fatty acids, beta-hydroxybutyrate Down-regulated: Glucose, phosphocholine, |
Lim et al., 2017 [64] | Human | Up-regulated: Quinolinic acid Down-regulated: Kynurenic acid |
Andersen et al., 2019 [67] | Human | Up-regulated: Pyroglutamate, laurate, acylcarnitine C14:1, N-methylmaleimide, phosphatidylcholines |
Zahoor et al., 2022 [40] | Human | Down-regulated: Glucose, lactate |
Coburn et al., 2016 [76] | Human | Up-regulated: L-citrulline (L-Cit), the L-Cit/L-Arg ratio Down-regulated: L-arginine |
Kolho et al., 2017 [79] * | Human | Up-regulated in UC: Glycocholic acid, L-isoleucine, symmetric dimethylarginine, serine, phosphoethanolamine, proline, hexanoylcarnitine Up-regulated in CD: Neopterin, urea cycle, arginine and methionine metabolisms, namely L-arginine, dimethylglycine, asymmetric dimethylarginine, guanosine, L-octanoylcarnitine, betaine, L-cystathionine, citrulline, decanoylcarnitine Down-regulated: L-tryptophan, kynurenic acid, trimethylamine-N-oxide |
Nikolaus et al., 2017 [80] | Human | Up-regulated: Quinolinic acid, Down-regulated: Tryptophan |
Scoville et al., 2018 [82] | Human | Up-regulated: 54 metabolites in case of CD Down-regulated: 232 metabolites in case of CD and all decreased in case of UC |
Frohnert et al., 2020 [95] | Human | Up-regulated: Serum glucose, ADP fibrinogen, mannose |
Brugnara et al., 2012 [98] | Human | Up-regulated: Alanine and lactate, citrate, malate, fumarate, succinate Down-regulated: Valine, leucine |
Zhang et al., 2022 [102] | Human | Up-regulated: TCA cycle metabolites (pyruvate, fuma indoleacetic acid rate, malate, linoleic acid), α-lactose, sorbitol, myo-inositol, sucrose, glycerol Down-regulated: 1,5-Anhydrosorbitol (1,5-anhydroglucitol), indoleacetic acid, d-mannose, d-galactose |
Noso et al., 2023 [103] | Human | Up-regulated: 3-Phenylpropionic acid Down-regulated: Hypotaurine |
Haukka et al., 2018 [104] | Human | Up-regulated: Carbohydrates, fatty acid, nucleotides, amino acids Down-regulated: γ-Glutamyl amino acids |
Wang et al., 2014 [105] | Human | Up-regulated: Aromatic amino acids Down-regulated: Branched-chain amino acids |
Lian et al., 2015 [106] | Human | Up-regulated: Bile acids Down-regulated: Free fatty acids, phosphatidylcholines, sphingomyelin, lysolecithins |
Trottier et al., 2012 [107] | Human | Up-regulated: Total bile acids, taurine and glycine conjugates of primary bile acids in both PBC and PSC Down-regulated: Ratio of total glycine versus total taurine conjugates in case of PBC and secondary acids in case of PSC |
Bell et al., 2015 [108] | Human | Up-regulated: Free fatty acid, acyl-carnitine, acetoacetate, BHBA Down-regulated: Lysolipids |
Tang et al., 2015 [109] | Human | Up-regulated: Level of bile acid Down-regulated: Propionyl carnitine, butyryl carnitine |
Hao et al., 2017 [110] | Human | Up-regulated: VLDL/LDL, taurine, glycine, phenylacetate, citrate, caprate, glycylproline, glucose, 3-hydroxyisovalerate, methionine, alanine Down-regulated: 4-Hydroxyproline, carnitine, 2-phosphoglycerate, citraconate, tyrosine, 3-hydroxyisobutyrate, inosine, thymidine, ornithine, tiglylglycine, urocanate, hippurate, n-acetylcysteine, isoleucine |
Vignoli et al., 2018 [111] | Human | Up-regulated: Pyruvate, citrate, glutamate, glutamine, serine, tyrosine, phenylalanine, lactate |
Banales et al., 2019 [112] | Human | Up-regulated: Glycholic acid, phosphatidylcholines Down-regulated: D(-)-2-aminobutyric acid |
Author | Model | Metabolites/Metabolic Pathway |
---|---|---|
Madsen et al., 2011 [41] | Human | Up-regulated: Glyceric acid, D-ribofuranose, hypoxanthine Down-regulated: Histidine, threonic acid, methionine, cholesterol, asparagine, threonine |
Fang et al., 2016 [42] | Human | Up-regulated: Lysophosphatidylinositol Down-regulated: Dihydroceramides, alkylphosphatidylethanolamine, alkenylphosphatidylethanolamines, phosphatidylserines |
Sasaki et al., 2019 [46] | Human | Up-regulated: Tyrosine, phenylalanine Down-regulated: Lactate |
Hur et al., 2021 [48] | Human | Up-regulated: Glucuronate, hypoxanthine |
Åkesson et al., 2018 [55] | Human | Up-regulated: Kynurenine, quinolinic acid |
Shin et al., 2018 [56] | Human | Up-regulated: Myristic, palmitoleic, oleic, and eicosanoic acid Down-regulated: Caproic, caprylic, linoleic, stearic, behenic, lignoceric, arachidonic, and hexacosanoic acid |
Cocco et al., 2016 [62] | Human | Up-regulated: 3-OH-butyrate, acetoacetate, acetone, alanine, choline Down-regulated: Glucose, 5-OH-tryptophan, tryptophan |
Stoessel et al., 2018 [65] | Human | Down-regulated: Glycerophospholipids, linoleic acid, lysoPC |
Bhargava et al., 2019 [66] | Human | Up-regulated: Phospholipids, lysophospholipids, plasmalogen Down-regulated: Saturated and polyunsaturated fatty acids |
Lorefice et al., 2019 [68] | Human | Up-regulated: Tryptophan Down-regulated: Acetoacetate, acetone, 3- hydroxybutyrate, glutamate, methylmalonate |
Kasakin et al., 2019 [69] | Human | Up-regulated: Glutamate Down-regulated: Decenoylcarnitine, leucine–isoleucine |
Sylvestre et al., 2020 [70] | Human | Down-regulated: Arginine, isoleucine, citrate, serine, phenylalanine, methionine, asparagine, histidine, myo-inositol |
Murgia et al., 2023 [72] | Human | Up-regulated: Leucine Down-regulated: Circulating branched-chain AAs, valine, isoleucine |
Wu et al., 2022 [90] | Human | Up-regulated: Phosphoethanolamine Down-regulated: Phosphotydilcholine |
Dutta et al., 2012 [91] | Human | Up-regulated: Ketogenic and gluconeogenic amino acid, BCAA, glycerol, beta-hydroxybutyrate |
Balderas et al., 2013 [93] | Human | Up-regulated: Free or non-esterified fatty acids, acetylarginine, hydroxytrimethyllysine, trimethyllysine Down-regulated: Tetrahydroaldosterone3-glucuronide |
Lanza et al., 2010 [96] | Human | Up-regulated: Lactate, acetate, allantoin, ketones, leucine, isoleucine, valine, phenylalanine, tyrosine Down-regulated: Glycine, glutamate, threonine |
Dutta et al., 2016 [97] | Human | Up-regulated: Carbohydrate metabolites: glucose, glucosamine, lactaldehyde, methylglyoxal, lactate, acetate, acetoacetate Down-regulated: Glycolytic metabolites such as pyruvate, dihydroxyacetone phosphate, TCA cycle metabolites |
Knebel et al., 2016 [99] | Human | Up-regulated: PC species, biogenic amines, H1, AC C18:2, arachidonic acid levels Down-regulated: ᵹ-6-Desaturase (D6D), Val/Gly |
Lamichhane et al., 2019 [100] | Human | Up-regulated: Methionine Down-regulated: Glutamic and aspartic acids |
Bervoets et al., 2017 [101] | Human | Up-regulated: Glucose Down-regulated: Triglycerides, phospholipids and cho- linated phospholipids, serine, tryptophan, cysteine |
Author | Model | Metabolites/Metabolic Pathway |
---|---|---|
Zhang et al., 2019 [58] | Human | Up-regulated: Proline, L-tyrosine, L-methionine, L-asparagine, DL-pipecolinic acid, glycyl-L-proline, xanthurenic acid, kynurenic acid, L-carnosine, monoacylglycerol (MG) 22:6, MG 16:5, lysophosphatidylethanolamine (lysoPE) 16:0, lysophosphatidylcholine (lysoPC) 22:5, phosphatidylglycerol (PG) 27:2, 1,2-dioleoyl-rac-glycerol Down-regulated: Adenosine, adenosine 5′ -diphosphate (ADP), D-alaninyl-dalanine (D-Ala-D-Ala), lauryl diethanolamide, sulfoquinovosyl diacylglyceride (SQDG) 26:5, thiamine pyrophosphate, trigonelline, mucic acid |
De Preter et al., 2015 [73] | Human | Up-regulated: 1-Ethyl3-methylbenzene, benzene acetaldehyde, phenol, 2-methyl propanal, carbon disulfide, 1-methoxy-4-methylbenzene Down-regulated: Pentanoate, hexanoate, heptanoate, octanoate, nonanoate |
Bjerrum et al., 2015 [74] | Human | Up-regulated: Glycine, isoleucine, leucine, valine, alanine, tyrosine Down-regulated: Butyl, propyl |
Lamas et al., 2016 [75] | Human | Down-regulated: Tryptophan, kynurenin |
Lee et al., 2017 [77] | Human | Up-regulated: LysoPA Down-regulated: Pyridoxate |
Jacobs et al., 2016 [78] | Human | Up-regulated: Bile acids, taurine, tryptophan, calprotectin |
Kolho et al., 2017 [79] * | Up-regulated in UC: Aspartate, glycine, threonine, ornithine, creatinine, asparagine, glyceraldehyde, choline, kynurenine, histidine, taurine, phenylalanine, alanine, normetanephrine, allantoin, citrulline, carnosine, tryptophan, serine. None of the metabolites as significant as in CD Down-regulated in UC: CytosineDown-regulated in CD: Aspartate, threonine, asparagine, cytosine, histidine, taurine | |
Santoru et al., 2017 [81] | Human | Up-regulated: Biogenic amines, amino acids, lipids Down-regulated: B group vitamins |
Das et al., 2019 [83] | Human | Up-regulated: Primary bile acids Down-regulated: Secondary bile acids |
Wenig et al., 2019 [84] | Human | Down-regulated: Arachidic, oleic acid, ebacic acid, isocaproic acid, bile acids, riboflavin, nicotinate, pantothenate, 25-hydroxyvitamin D3 |
Franzosa et al., 2019 [85] | Human | Up-regulated: Sphingolipids, carboximidic acids, bile acids, cholesteryl esters, phosphatidylcholines, α-amino acids Down-regulated: Lactones, alkyl-phenylketones, ergosterols, quinolines, vitamin D, cholestrol |
Diederen et al., 2020 [86] | Human | Up-regulated: Propionate, primary and conjugated bile acids Down-regulated: Secondary bile acids |
Bushman et al., 2020 [87] | Human | Up-regulated: Calprotectin, cholate, chenodeoxycholate |
Wang et al., 2021 [88] | Human | Up-regulated: Unconjugated bile acids, amino acids, including L-aspartic acid, linoleic acid, L-lactic acid Down-regulated: Conjugated bile acids |
Yang et al., 2021 [89] | Human | Up-regulated: TGR5, taurocholic acid, cholic acid, taurochenodeoxycholate, glycochenodeoxycholate Down-regulated: VDR, secondary Bas, such as lithocholic acid, deoxycholic acid, glycodeoxycholic acid, glycolithocholic acid, taurolithocholate |
Author | Model | Metabolites/Metabolic Pathway |
---|---|---|
Yan et al., 2016 [54] | Human | Up-regulated: Valine, leucine, 3-hydroxyisobutyrate, fumarate, malate, cystine, pyroglutamarate, cysteine, threonate, uracil, pseudouridine, xanthine, urate, p-cresol, 2-hydroxyisobutyrate, tryptophan, glyceric acid, myo-inositol, 2,3-dihydroxybutyrate, 2,4-dihydroxybutyrate, 3,4- dihydroxybutyrate, 3,4,5-trihidroxypentanoic acid glutarate |
Gebregiworgis et al., 2016 [63] | Human | Up-regulated: Trimethylamine N-oxide, 3-hydroxyisovalerate, hippurate, malonate Down-regulated: Creatinine, 3-hydroxybutyrate, methylmalonate |
Gaetani et al., 2020 [71] | Human | Up-regulated: Indole-3-propionic acid Down-regulated: Urinary tryptophan, kynurenine, anthranilate, serotonin, K/T ratio |
Deja et al., 2013 [92] | Human | Up-regulated: Urea Down-regulated: Pyruvate, citrate, succinate, glycine, phenylalanine, valine, alanine |
Galderisi et al., 2018 [94] | Human | Up-regulated: Tryptophan, phenylalanine |
Tang et al., 2015 [109] | Human | Up-regulated: Level of bile acid Down-regulated: Propionyl carnitine, butyryl carnitine |
Vignoli et al., 2018 [111] | Human | Down-regulated: Trigonelline, hippurate |
Author | Model | Fluid | Metabolites/Metabolic Pathway |
---|---|---|---|
Young et al., 2013 [30] | Human | Synovial fluid | Up-regulated: 3-Hydroxybutyrate, lactate, acetylglycine, taurine, glucose Down-regulated: LDL-lipids, alanine, methylguanidine |
Yang et al., 2015 [29] | Human | Synovial fluid | Up-regulated: Lactic acid, carnitine, diglycerol, pipecolinic acid, betamannosylglycerate Down-regulated: Valine, citric acid, gluconic lactone, glucose, glucose-1-phosphate, mannose, 5-methoxytryptamine, D-glucose, ribitol |
Perl et al., 2015 [31] | Human | Peripheral blood and lymphocytes | Up-regulated: Kynurenine, methionine sulfoxide, cystine, OAA, PEP, DHAP, 3 PG, R5P, guanine, guanosine, GDP, dGDP, AMP, ADP, cytosine, dCTP, PHE Down-regulated: Cysteine, inosine |
Gonzalo et al., 2012 [32] | Human | CSF | Up-regulated: 8-Iso-prostaglandin F2α Down-regulated: PPARϒ |
Vingara et al., 2013 [33] | Human | In vivo white matter | Up-regulated: N-acetyl-aspartate, glutamate/glutamine, choline Down-regulated: Lipid |
Reinke et al., 2014 [34] | Human | CSF | Up-regulated: Threonate, choline, myo-inositol Down-regulated: Phenylalanine, mannose, citrate, 3-hydroxybutyrate, 2-hydroxyisovalerate |
Pieragostino et al., 2015 [35] | Human | CSF | Up-regulated: Phosphatidylcholine, phosphatidylinositol Down-regulated: Phosphatydic acid |
Herman et al., 2018 [36] | Human | CSF | Up-regulated: Trigonelline, citrulline, O-succinyl-homoserine, N6-(delta2-isopentenyl)- adenine, pipecolate, 1-methyladenosine, 4-acetamidobutanoate, 5-hydroxytryptophan, kynurenate N-acetylserotonin Down-regulated: 3-Methoxytyramine, caffeine |
Cicalini et al., 2019 [37] | Human | Tears | Up-regulated: Amino acids, acylcarnitines Down-regulated: Phosphotydilcholine, lyso-phosphotydilcholine sphingomyelins |
Podlecka-Piętowska et al., 2019 [38] | Human | CSF | Down-regulated: Acetone, choline, urea, 1,3-dimethylurate, creatinine, isoleucine, myo-inositol, leucine, 3-OH butyrate, acetyl-CoA |
Carlsson et al., 2020 [39] | Human | CSF | Up-regulated: Glycine, asymmetric dimethylarginine, glycerophospholipid PC-O (34:0), hexoses |
Zahoor et al., 2022 [40] | Human | Peripheral blood monocytes and serum | Down-regulated: Glucose, lactate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mujalli, A.; Farrash, W.F.; Alghamdi, K.S.; Obaid, A.A. Metabolite Alterations in Autoimmune Diseases: A Systematic Review of Metabolomics Studies. Metabolites 2023, 13, 987. https://doi.org/10.3390/metabo13090987
Mujalli A, Farrash WF, Alghamdi KS, Obaid AA. Metabolite Alterations in Autoimmune Diseases: A Systematic Review of Metabolomics Studies. Metabolites. 2023; 13(9):987. https://doi.org/10.3390/metabo13090987
Chicago/Turabian StyleMujalli, Abdulrahman, Wesam F. Farrash, Kawthar S. Alghamdi, and Ahmad A. Obaid. 2023. "Metabolite Alterations in Autoimmune Diseases: A Systematic Review of Metabolomics Studies" Metabolites 13, no. 9: 987. https://doi.org/10.3390/metabo13090987
APA StyleMujalli, A., Farrash, W. F., Alghamdi, K. S., & Obaid, A. A. (2023). Metabolite Alterations in Autoimmune Diseases: A Systematic Review of Metabolomics Studies. Metabolites, 13(9), 987. https://doi.org/10.3390/metabo13090987