Assessment of the Physical Invasiveness of Peroral Endoscopic Myotomy during the Perioperative Period Based on Changes in Energy Metabolism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Characteristics
2.2. Ethical Considerations
2.3. Definitions/Diagnosis
2.4. POEM
2.5. REE, Basal Energy Expenditure (BEE), and Stress Factor
2.6. Peripheral Leukocytes, Neutrophil Count, and CRP Levels in the Perioperative Period
2.7. Factors Associated with the Rate of Change in REE/BW during the Perioperative Period of POEM
2.8. Statistical Analysis
3. Results
3.1. REE, REE/BW, and Stress Factor
3.2. Relationship between Laboratory Findings and Energy Metabolism
3.3. Factors Associated with the Change in REE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boeckxstaens, G.E.; Zaninotto, G.; Richter, J.E. Achalasia. Lancet 2014, 383, 83–93. [Google Scholar] [PubMed]
- Inoue, H.; Sato, H.; Ikeda, H.; Onimaru, M.; Sato, C.; Minami, H.; Yokomichi, H.; Kobayashi, Y.; Grimes, K.L.; Kudo, S.E. Per-Oral Endoscopic Myotomy: A Series of 500 Patients. J. Am. Coll. Surg. 2015, 221, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Takahashi, K.; Mizuno, K.I.; Hashimoto, S.; Yokoyama, J.; Terai, S. A clinical study of peroral endoscopic myotomy reveals that impaired lower esophageal sphincter relaxation in achalasia is not only defined by high-resolution manometry. PLoS ONE 2018, 13, e0195423. [Google Scholar]
- Tatsuta, T.; Sato, H.; Fujiyoshi, Y.; Abe, H.; Shiwaku, A.; Shiota, J.; Sato, C.; Ominami, M.; Hata, Y.; Fukuda, H.; et al. Subtype of Achalasia and Integrated Relaxation Pressure Measured Using the Starlet High-resolution Manometry System: A Multicenter Study in Japan. J. Neurogastroenterol. Motil. 2022, 28, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Yokomichi, H.; Takahashi, K.; Tominaga, K.; Mizusawa, T.; Kimura, N.; Kawata, Y.; Terai, S. Epidemiological analysis of achalasia in Japan using a large-scale claims database. J. Gastroenterol. 2019, 54, 621–627. [Google Scholar]
- Samo, S.; Carlson, D.A.; Gregory, D.L.; Gawel, S.H.; Pandolfino, J.E.; Kahrilas, P.J. Incidence and Prevalence of Achalasia in Central Chicago, 2004-2014, Since the Widespread Use of High-Resolution Manometry. Clin. Gastroenterol. Hepatol. 2017, 15, 366–373. [Google Scholar] [CrossRef]
- Meijssen, M.A.; Tilanus, H.W.; van Blankenstein, M.; Hop, W.C.; Ong, G.L. Achalasia complicated by oesophageal squamous cell carcinoma: A prospective study in 195 patients. Gut 1992, 33, 155–158. [Google Scholar] [CrossRef]
- Chino, O.; Kijima, H.; Shimada, H.; Nishi, T.; Tanaka, H.; Oshiba, G.; Kise, Y.; Kajiwara, H.; Tsuchida, T.; Tanaka, M.; et al. Clinicopathological studies of esophageal carcinoma in achalasia: Analyses of carcinogenesis using histological and immunohistochemical procedures. Anticancer Res. 2000, 20, 3717–3722. [Google Scholar]
- Patel, D.A.; Kim, H.P.; Zifodya, J.S.; Vaezi, M.F. Idiopathic (primary) achalasia: A review. Orphanet. J. Rare Dis. 2015, 10, 89. [Google Scholar]
- van Hoeij, F.B.; Tack, J.F.; Pandolfino, J.E.; Sternbach, J.M.; Roman, S.; Smout, A.J.; Bredenoord, A.J. Complications of botulinum toxin injections for treatment of esophageal motility disorders. Dis. Esophagus 2017, 30, 1–5. [Google Scholar]
- Ramzan, Z.; Nassri, A.B. The role of Botulinum toxin injection in the management of achalasia. Curr. Opin. Gastroenterol. 2013, 29, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Aljebreen, A.M.; Samarkandi, S.; Al-Harbi, T.; Al-Radhi, H.; Almadi, M.A. Efficacy of pneumatic dilatation in Saudi achalasia patients. Saudi J. Gastroenterol. 2014, 20, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Campos, G.M.; Vittinghoff, E.; Rabl, C.; Takata, M.; Gadenstätter, M.; Lin, F.; Ciovica, R. Endoscopic and surgical treatments for achalasia: A systematic review and meta-analysis. Ann. Surg. 2009, 249, 45–57. [Google Scholar] [PubMed]
- Rebecchi, F.; Giaccone, C.; Farinella, E.; Campaci, R.; Morino, M. Randomized controlled trial of laparoscopic Heller myotomy plus Dor fundoplication versus Nissen fundoplication for achalasia: Long-term results. Ann. Surg. 2008, 248, 1023–1030. [Google Scholar] [CrossRef]
- Inoue, H.; Minami, H.; Kobayashi, Y.; Sato, Y.; Kaga, M.; Suzuki, M.; Satodate, H.; Odaka, N.; Itoh, H.; Kudo, S. Peroral endoscopic myotomy (POEM) for esophageal achalasia. Endoscopy 2010, 42, 265–271. [Google Scholar] [CrossRef]
- Inoue, H.; Shiwaku, H.; Iwakiri, K.; Onimaru, M.; Kobayashi, Y.; Minami, H.; Sato, H.; Kitano, S.; Iwakiri, R.; Omura, N.; et al. Clinical practice guidelines for peroral endoscopic myotomy. Dig. Endosc. 2018, 30, 563–579. [Google Scholar] [CrossRef]
- Shiwaku, H.; Inoue, H.; Beppu, R.; Nakashima, R.; Minami, H.; Shiroshita, T.; Yamauchi, Y.; Hoshino, S.; Yamashita, Y. Successful treatment of diffuse esophageal spasm by peroral endoscopic myotomy. Gastrointest. Endosc. 2013, 77, 149–150. [Google Scholar] [CrossRef]
- Minami, H.; Isomoto, H.; Yamaguchi, N.; Ohnita, K.; Takeshima, F.; Inoue, H.; Nakao, K. Peroral endoscopic myotomy (POEM) for diffuse esophageal spasm. Endoscopy 2014, 46 (Suppl. S1), E79–E81. [Google Scholar] [CrossRef]
- Bechara, R.; Ikeda, H.; Inoue, H. Peroral endoscopic myotomy for Jackhammer esophagus: To cut or not to cut the lower esophageal sphincter. Endosc. Int. Open 2016, 4, E585–E588. [Google Scholar] [CrossRef]
- Kandulski, A.; Fuchs, K.H.; Weigt, J.; Malfertheiner, P. Jackhammer esophagus: High-resolution manometry and therapeutic approach using peroral endoscopic myotomy (POEM). Dis. Esophagus 2016, 29, 695–696. [Google Scholar] [CrossRef]
- Ichkhanian, Y.; Sanaei, O.; Canakis, A.; Vosoughi, K.; Almazan, E.; Ghandour, B.; Khashab, M.A. Esophageal peroral endoscopic myotomy (POEM) for treatment of esophagogastric junction outflow obstruction: Results from the first prospective trial. Endosc. Int. Open 2020, 8, E1137–E1143. [Google Scholar] [CrossRef]
- Nishiguchi, K.; Okuda, J.; Toyoda, M.; Tanaka, K.; Tanigawa, N. Comparative evaluation of surgical stress of laparoscopic and open surgeries for colorectal carcinoma. Dis. Colon Rectum 2001, 44, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Jiang, Z.; Zhao, K.; Li, G.; Liu, F.; Pan, H.; Li, J. Immunologic response after laparoscopic colon cancer operation within an enhanced recovery program. J. Gastrointest. Surg. 2012, 16, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Benoit, O.; Faron, M.; Margot, N.; Creavin, B.; Debove, C.; Tiret, E.; Parc, Y.; Lefevre, J.H. C-Reactive Protein Values After Colorectal Resection: Can We Discharge a Patient With a C-Reactive Protein Value > 100? A Retrospective Cohort Study. Dis. Colon Rectum 2019, 62, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Ma, H.; Wang, G.; Yu, Z.; Li, K.; Huang, A. Effect of Remifentanil Combined Anesthesia on Cytokines and Oxidative Stress in Patients undergoing Laparoscopic Surgery for Colon Cancer. J. Coll. Physicians Surg. Pak. 2019, 29, 8–11. [Google Scholar] [CrossRef]
- Myre, K.; Raeder, J.; Rostrup, M.; Buanes, T.; Stokland, O. Catecholamine release during laparoscopic fundoplication with high and low doses of remifentanil. Acta Anaesthesiol. Scand. 2003, 47, 267–273. [Google Scholar] [CrossRef]
- Lobo, D.N.; Gianotti, L.; Adiamah, A.; Barazzoni, R.; Deutz, N.E.P.; Dhatariya, K.; Greenhaff, P.L.; Hiesmayr, M.; Hjort Jakobsen, D.; Klek, S.; et al. Perioperative nutrition: Recommendations from the ESPEN expert group. Clin. Nutr. 2020, 39, 3211–3227. [Google Scholar]
- Powell-Tuck, J. Nutritional interventions in critical illness. Proc. Nutr. Soc. 2007, 66, 16–24. [Google Scholar] [CrossRef]
- Fredrix, E.W.; Soeters, P.B.; von Meyenfeldt, M.F.; Saris, W.H. Resting energy expenditure in cancer patients before and after gastrointestinal surgery. JPEN J. Parenter. Enter. Nutr. 1991, 15, 604–607. [Google Scholar] [CrossRef]
- Sasaki, M.; Okamoto, H.; Johtatsu, T.; Kurihara, M.; Iwakawa, H.; Tanaka, T.; Shiomi, H.; Naka, S.; Kurumi, Y.; Tani, T. Resting energy expenditure in patients undergoing pylorus preserving pancreatoduodenectomies for bile duct cancer or pancreatic tumors. J. Clin. Biochem. Nutr. 2011, 48, 183–186. [Google Scholar] [CrossRef]
- Chinda, D.; Shimoyama, T. Assessment of physical stress during the perioperative period of endoscopic submucosal dissection. World J. Gastroenterol. 2022, 28, 4508–4515. [Google Scholar] [CrossRef] [PubMed]
- Kudo, S.; Chinda, D.; Shimoyama, T.; Yasuda, K.; Akitaya, K.; Arai, T.; Miyazawa, K.; Hayamizu, S.; Yanagimachi, M.; Tsukamoto, T.; et al. Influence of Esophageal Endoscopic Submucosal Dissection on the Changes of Energy Metabolism during the Perioperative Period. Cancers 2022, 14, 2015. [Google Scholar] [CrossRef] [PubMed]
- Chinda, D.; Shimoyama, T.; Miyazawa, K.; Arai, T.; Hayamizu, S.; Yanagimachi, M.; Tsukamoto, T.; Akitaya, K.; Tatsuta, T.; Kawaguchi, S.; et al. Estimation of perioperative invasiveness of colorectal endoscopic submucosal dissection evaluated by energy metabolism. J. Clin. Biochem. Nutr. 2018, 63, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Chinda, D.; Shimoyama, T.; Hayamizu, S.; Miyazawa, K.; Arai, T.; Yanagimachi, M.; Tsukamoto, T.; Mikami, T.; Fukuda, S. Energy metabolism during the perioperative period of gastric endoscopic submucosal dissection. J. Clin. Biochem. Nutr. 2017, 61, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Minami, H.; Isomoto, H.; Miuma, S.; Kobayashi, Y.; Yamaguchi, N.; Urabe, S.; Matsushima, K.; Akazawa, Y.; Ohnita, K.; Takeshima, F.; et al. New endoscopic indicator of esophageal achalasia: “pinstripe pattern”. PLoS ONE 2015, 10, e0101833. [Google Scholar] [CrossRef]
- Iwakiri, K.; Hoshihara, Y.; Kawami, N.; Sano, H.; Tanaka, Y.; Umezawa, M.; Kotoyori, M.; Nomura, T.; Miyashita, M.; Sakamoto, C. The appearance of rosette-like esophageal folds (“esophageal rosette”) in the lower esophagus after a deep inspiration is a characteristic endoscopic finding of primary achalasia. J. Gastroenterol. 2010, 45, 422–425. [Google Scholar] [CrossRef]
- Bredenoord, A.J.; Fox, M.; Kahrilas, P.J.; Pandolfino, J.E.; Schwizer, W.; Smout, A.J.; International High Resolution Manometry Working Group. Chicago classification criteria of esophageal motility disorders defined in high resolution esophageal pressure topography. Neurogastroenterol. Motil. 2012, 24 (Suppl. S1), 57–65. [Google Scholar] [CrossRef]
- Kahrilas, P.J.; Bredenoord, A.J.; Fox, M.; Gyawali, C.P.; Roman, S.; Smout, A.J.; Pandolfino, J.E. International High Resolution Manometry Working Group. The Chicago Classification of esophageal motility disorders, v3.0. Neurogastroenterol. Motil. 2015, 27, 160–174. [Google Scholar] [CrossRef]
- Eckardt, V.F. Clinical presentations and complications of achalasia. Gastrointest. Endosc. Clin. N. Am. 2001, 11, 281–292. [Google Scholar] [CrossRef]
- Tamura, T.; Ichinoseki, N.; Yoshimura, T.; Torii, Y. Development and evaluation of a simple calorimeter for the measurement of resting metabolism. Clin. Exp. Pharmacol. Physiol. 2002, 29 (Suppl. S4), S2–S6. [Google Scholar] [CrossRef]
- Wells, J.C.; Fuller, N.J. Precision and accuracy in a metabolic monitor for indirect calorimetry. Eur. J. Clin. Nutr. 1998, 52, 536–540. [Google Scholar] [CrossRef]
- Harris, J.A.; Benedict, F.G. A Biometric Study of Human Basal Metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Long, C.L.; Schaffel, N.; Geiger, J.W.; Schiller, W.R.; Blakemore, W.S. Metabolic response to injury and illness: Estimation of energy and protein needs from indirect calorimetry and nitrogen balance. JPEN J. Parenter. Enter. Nutr. 1979, 3, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, M.; Liu, M.; Wada, A.; Otsuka, T.; Nishimura, A. Resting Energy Expenditure in Patients with Stroke during the Subacute Phases—Relationships with Stroke Types, Location, Severity of Paresis, and Activities of Daily Living. Cerebrovasc. Dis. 2015, 39, 170–175. [Google Scholar] [CrossRef]
- Ferreira, L.G.; Santos, L.F.; Anastácio, L.R.; Lima, A.S.; Correia, M.I. Resting energy expenditure, body composition, and dietary intake: A longitudinal study before and after liver transplantation. Transplantation 2013, 96, 579–585. [Google Scholar] [CrossRef]
- Yatabe, T.; Kitagawa, H.; Yamashita, K.; Hanazaki, K.; Yokoyama, M. Energy expenditure measured using indirect calorimeter after minimally invasive esophagectomy in ventilated postoperative patients. Asia Pac. J. Clin. Nutr. 2014, 23, 555–559. [Google Scholar]
- Kalnins, D.; Pencharz, P.B.; Grasemann, H.; Solomon, M. Energy expenditure and nutritional status in pediatric patients before and after lung transplantation. J. Pediatr. 2013, 163, 1500–1502. [Google Scholar] [CrossRef] [PubMed]
- Bendavid, I.; Lobo, D.N.; Barazzoni, R.; Cederholm, T.; Coëffier, M.; de van der Schueren, M.; Fontaine, E.; Hiesmayr, M.; Laviano, A.; Pichard, C.; et al. The centenary of the Harris-Benedict equations: How to assess energy requirements best? Recommendations from the ESPEN expert group. Clin. Nutr. 2021, 40, 690–701. [Google Scholar] [CrossRef]
- Tignanelli, C.J.; Andrews, A.G.; Sieloff, K.M.; Pleva, M.R.; Reichert, H.A.; Wooley, J.A.; Napolitano, L.M.; Cherry-Bukowiec, J.R. Are Predictive Energy Expenditure Equations in Ventilated Surgery Patients Accurate? J. Intensive Care Med. 2019, 34, 426–431. [Google Scholar] [CrossRef]
- Donadon, M.; Mimmo, A.; Costa, G.; Cimino, M.; Viganò, L.; Palmisano, A.; Torzilli, G. Measurement of Total Liver Volume Using the Energy Expenditure: A New Formula. World J. Surg. 2018, 42, 3350–3356. [Google Scholar] [CrossRef]
- Sato, N.; Oyamatsu, M.; Tsukada, K.; Suzuki, T.; Hatakeyama, K.; Muto, T. Serial changes in contribution of substrates to energy expenditure after transthoracic esophagectomy for cancer. Nutrition 1997, 13, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, H.; Sasaki, M.; Johtatsu, T.; Kurihara, M.; Iwakawa, H.; Akabane, M.; Hoshino, N.; Yamamoto, H.; Murata, S.; Yamaguchi, T.; et al. Resting energy expenditure and nutritional status in patients undergoing transthoracic esophagectomy for esophageal cancer. J. Clin. Biochem. Nutr. 2011, 49, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y. Estimation of energy need-should stress factor and activity factor be considered? JPEEN J. Parrenter. Eteral Nutr. 2010, 25, 573–579, (In Japanese with English Abstract). [Google Scholar]
- McEwen, B.S. Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur. J. Pharmacol. 2008, 583, 174–185. [Google Scholar] [CrossRef]
- Kowatari, K.; Suzuki, K.; Kudo, S.; Yamada, M.; Liu, Q.; Danjo, K.; Umeda, T.; Nakaji, S.; Sugawara, K. Applicability of chemiluminescence to assess the degree of operative stress in patients undergoing spinal surgery. Luminescence 1999, 14, 331–334. [Google Scholar] [CrossRef]
- Yokota, K.; Nishihira, T.; Shineha, R.; Sayama, J.; Nitta, Y.; Kimura, M.; Mori, S. Association between elevated plasma granulocyte colony-stimulating factor and the degree of surgical stress in patients undergoing gastrointestinal surgery. Surg. Today 1995, 25, 579–584. [Google Scholar] [CrossRef]
- Khan, F.A.; Kamal, R.S.; Mithani, C.H.; Khurshid, M. Effect of general anaesthesia and surgery on neutrophil function. Anaesthesia 1995, 50, 769–775. [Google Scholar] [CrossRef]
- Kato, M.; Suzuki, H.; Murakami, M.; Akama, M.; Matsukawa, S.; Hashimoto, Y. Elevated plasma levels of interleukin-6, interleukin-8, and granulocyte colony-stimulating factor during and after major abdominal surgery. J. Clin. Anesth. 1997, 9, 293–298. [Google Scholar] [CrossRef]
- Menezes, T.M.; Dias, M.O.; Dos Reis, R.; Elias, J., Jr.; Lucchesi, F.R.; Araujo, R.L.C. Prognostic value of muscle depletion assessed by computed tomography for surgical outcomes of cancer patients undergoing total esophagectomy and gastrectomy. J. Surg. Oncol. 2020, 121, 814–822. [Google Scholar] [CrossRef]
- Chinda, D.; Shimoyama, T.; Arai, T.; Sawada, K.; Akitaya, K.; Kudo, S.; Yasuda, K.; Miyazawa, K.; Akimoto, N.; Sato, S.; et al. Usefulness of serum opsonic activity measured by chemiluminescence method to assess the invasiveness of colorectal endoscopic mucosal dissection. Free Radic. Res. 2020, 54, 810–817. [Google Scholar] [CrossRef]
- Wright, C.D.; Kucharczuk, J.C.; O’Brien, S.M.; Grab, J.D.; Allen, M.S. Society of Thoracic Surgeons General Thoracic Surgery Database. Predictors of major morbidity and mortality after esophagectomy for esophageal cancer: A Society of Thoracic Surgeons General Thoracic Surgery Database risk adjustment model. J. Thorac. Cardiovasc. Surg. 2009, 137, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Tokioka, S.; Umegaki, E.; Murano, M.; Takeuchi, N.; Takeuchi, T.; Kawakami, K.; Yoda, Y.; Kojima, Y.; Higuchi, K. Utility and problems of endoscopic submucosal dissection for early gastric cancer in elderly patients. J. Gastroenterol. Hepatol. 2012, 27 (Suppl. S3), 63–69. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Hatta, W.; Tsuji, Y.; Yoshio, T.; Yabuuchi, Y.; Hoteya, S.; Doyama, H.; Nagami, Y.; Hikichi, T.; Kobayashi, M.; et al. Risk Factors for Bleeding After Endoscopic Submucosal Dissection for Gastric Cancer in Elderly Patients Older Than 80 Years in Japan. Clin. Transl. Gastroenterol. 2021, 12, e00404. [Google Scholar] [CrossRef]
- Kim, N.Y.; Lee, H.S.; Lee, K.Y.; Jeon, S.; Choi, S.Y.; Joo, H.J.; Kim, J.E.; Kim, S.Y. Impact of BMI on Complications of Gastric Endoscopic Submucosal Dissection. Dig. Dis. 2021, 39, 301–309. [Google Scholar] [CrossRef]
- Tachikawa, J.; Chiba, H.; Okada, N.; Arimoto, J.; Ashikari, K.; Kuwabara, H.; Nakaoka, M.; Higurashi, T.; Goto, T.; Nakajima, A. Impact of obesity in colorectal endoscopic submucosal dissection: Single-center retrospective cohort study. BMC Gastroenterol. 2021, 21, 74. [Google Scholar] [CrossRef] [PubMed]
- Mannen, K.; Tsunada, S.; Hara, M.; Yamaguchi, K.; Sakata, Y.; Fujise, T.; Noda, T.; Shimoda, R.; Sakata, H.; Ogata, S.; et al. Risk factors for complications of endoscopic submucosal dissection in gastric tumors: Analysis of 478 lesions. J. Gastroenterol. 2010, 45, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Hisada, H.; Tamura, N.; Tsuji, Y.; Nagao, S.; Fukagawa, K.; Miura, Y.; Mizutani, H.; Ohki, D.; Yakabi, S.; Minatsuki, C.; et al. The impact of sarcopenia on adverse events associated with gastric endoscopic submucosal dissection. Surg. Endosc. 2022, 36, 6387–6395. [Google Scholar] [CrossRef]
- Ito, N.; Funasaka, K.; Miyahara, R.; Furukawa, K.; Yamamura, T.; Ishikawa, T.; Ohno, E.; Nakamura, M.; Kawashima, H.; Hirooka, Y.; et al. Relationship between psoas muscle index and long-term survival in older patients aged ≥ 80 years after endoscopic submucosal dissection for gastric cancer. Int. J. Clin. Oncol. 2022, 27, 729–738. [Google Scholar] [CrossRef]
- Itaba, S.; Iboshi, Y.; Nakamura, K.; Ogino, H.; Sumida, Y.; Aso, A.; Yoshinaga, S.; Akiho, H.; Igarashi, H.; Kato, M.; et al. Low-frequency of bacteremia after endoscopic submucosal dissection of the stomach. Dig. Endosc. 2011, 23, 69–72. [Google Scholar] [CrossRef]
Variables | n/Median (Range) |
---|---|
Sex (male:female) | 26:19 |
Age (years) | 57 (24–83) |
BMI (kg/m2) | 21.4 (16.2–30.4) |
Esophageal motility disorders | |
Esophageal achalasia | |
Type I | 34 |
Type II | 7 |
Unknown | 2 |
EGJOO | 2 |
Eckardt score | 5 (3–10) |
Length of myotomy (cm) | 10 (5–18) |
Operation time (min) | 90 (48–158) |
Complications | |
Bleeding | 1 (2.2%) |
Pneumonia | 1 (2.2%) |
Fever (>38 °C) | 3 (6.7%) |
Pneumoperitoneum | 14 (31.1%) |
Day of POEM | POD 1 | POD 3 | |
---|---|---|---|
REE (kcal) | 1125.0 (520.7–1669.0) | 1389.3 ** (497.6–2278.0) | 1190.3 (510.2–1874.0) |
BW (kg) | 57.5 (32.7–94.1) | 58.7 (33.1–93.0) | 56.4 ** (32.2–92.0) |
REE/BW | 19.6 (14.4–28.9) | 24.5 ** (9.1–35.6) | 20.9 * (13.7–31.9) |
REE/BEE | 0.89 (0.59–1.28) | 1.06 * (0.47–1.56) | 0.94 (0.61–1.36) |
Stress factor | 1 | 1.20 * (0.54–1.66) | 1.03 (0.74–1.52) |
Day of POEM | POD 1 | POD 3 | |
---|---|---|---|
WBC (/µL) | 4900 (1990–11,000) | 11410 * (5640–17,150) | 5135 (2440–9710) |
Neutrophils (/µL) | 2681 (919–8389) | 9483 * (4698–14,837) | 2996 (1093–7260) |
CRP (mg/dL) | 0.07 (0.00–2.72) | 11.41 * (5.64–17.15) | 1.71 * (0.39–10.28) |
Variables | n | Day of POEM | POD 1 | Changes in the Ratio of REE |
---|---|---|---|---|
Eckardt score | ||||
5 | 23 | 19.4 | 23.7 | 1.20 |
(14.8–28.8) | (10.8–31.4) | (0.60–1.65) | ||
6 | 22 | 20.4 | 24.6 | 1.20 |
(14.4–28.9) | (9.1–35.6) | (0.56–1.57) | ||
Operation time (min) | ||||
<90 | 22 | 20.2 | 24.6 | 1.17 |
(14.8–23.2) | (9.1–31.4) | (1.10–1.66) | ||
≥90 | 23 | 19.5 | 24.3 | 1.21 |
(14.4–28.9) | (15.0–35.6) | (0.84–1.57) | ||
Length of myotomy (cm) | ||||
<10 | 20 | 19.5 | 23.6 | 1.07 |
(14.4–23.2) | (9.1–28.2) | (0.56–1.56) | ||
≥10 | 25 | 20 | 25.6 | 1.30 * |
(14.7–28.9) | (10.8–35.6) | (0.73–1.66) |
Variables | Estimates | SE | Odds Ratio | p-Value |
---|---|---|---|---|
Eckardt score | −0.3962 | 0.7642 | 0.6729 | 0.6042 |
Operation time | −0.2643 | 0.6844 | 0.7678 | 0.6994 |
Length of myotomy | 2.2365 | 0.7743 | 9.3608 | 0.0039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chinda, D.; Shimoyama, T.; Fujiwara, S.; Kaizuka, M.; Yasuda, K.; Akitaya, K.; Arai, T.; Sawada, Y.; Hayamizu, S.; Tatsuta, T.; et al. Assessment of the Physical Invasiveness of Peroral Endoscopic Myotomy during the Perioperative Period Based on Changes in Energy Metabolism. Metabolites 2023, 13, 969. https://doi.org/10.3390/metabo13090969
Chinda D, Shimoyama T, Fujiwara S, Kaizuka M, Yasuda K, Akitaya K, Arai T, Sawada Y, Hayamizu S, Tatsuta T, et al. Assessment of the Physical Invasiveness of Peroral Endoscopic Myotomy during the Perioperative Period Based on Changes in Energy Metabolism. Metabolites. 2023; 13(9):969. https://doi.org/10.3390/metabo13090969
Chicago/Turabian StyleChinda, Daisuke, Tadashi Shimoyama, Sae Fujiwara, Masatoshi Kaizuka, Kohei Yasuda, Kazuki Akitaya, Tetsu Arai, Yohei Sawada, Shiro Hayamizu, Tetsuya Tatsuta, and et al. 2023. "Assessment of the Physical Invasiveness of Peroral Endoscopic Myotomy during the Perioperative Period Based on Changes in Energy Metabolism" Metabolites 13, no. 9: 969. https://doi.org/10.3390/metabo13090969
APA StyleChinda, D., Shimoyama, T., Fujiwara, S., Kaizuka, M., Yasuda, K., Akitaya, K., Arai, T., Sawada, Y., Hayamizu, S., Tatsuta, T., Kikuchi, H., Yanagimachi, M., Mikami, T., Sakuraba, H., & Fukuda, S. (2023). Assessment of the Physical Invasiveness of Peroral Endoscopic Myotomy during the Perioperative Period Based on Changes in Energy Metabolism. Metabolites, 13(9), 969. https://doi.org/10.3390/metabo13090969