Differences in Fecal Short-Chain Fatty Acids between Alcoholic Fatty Liver-Induced Cirrhosis and Non-alcoholic (Metabolic-Associated) Fatty Liver-Induced Cirrhosis
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol. 2019, 70, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.C.; Kioh, D.Y.; Yap, G.C.; Lee, B.W.; Chan, E.C. A novel LCMSMS method for quantitative measurement of short-chain fatty acids in human stool derivatized with 12C- and 13C-labelled aniline. J. Pharm. Biomed. Anal. 2017, 138, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Pingitore, A.; Chambers, E.S.; Hill, T.; Maldonado, I.R.; Liu, B.; Bewick, G.; Morrison, D.J.; Preston, T.; Wallis, G.A.; Tedford, C.; et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes. Metab. 2017, 19, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.J.; Sellmann, C.; Engstler, A.J.; Ziegenhardt, D.; Bergheim, I. Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH). Br. J. Nut. 2015, 114, 1745–1755. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S. Alcohol, liver disease and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 235–246. [Google Scholar] [CrossRef]
- Milosevic, I.; Vujovic, A.; Barac, A.; Djelic, M.; Korac, M.; Radovanovic Spurnic, A.; Gmizic, I.; Stevanovic, O.; Djordjevic, V.; Lekic, N.; et al. Gut-Liver Axis, Gut Microbiota, and Its Modulation in the Management of Liver Diseases: A Review of the Literature. Int. J. Mol. Sci. 2019, 20, 395. [Google Scholar] [CrossRef]
- Qin, N.; Yang, F.; Li, A.; Prifti, E.; Chen, Y.; Shao, L.; Guo, J.; Le Chatelier, E.; Yao, J.; Wu, L.; et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014, 513, 59–64. [Google Scholar] [CrossRef]
- Bloom, P.P.; Luévano, J.M., Jr.; Miller, K.J.; Chung, R.T. Deep stool microbiome analysis in cirrhosis reveals an association between short-chain fatty acids and hepatic encephalopathy. Ann. Hepatol. 2021, 25, 100333. [Google Scholar] [CrossRef]
- Jin, M.; Kalainy, S.; Baskota, N.; Chiang, D.; Deehan, E.C.; McDougall, C.; Tandon, P.; Martínez, I.; Cervera, C.; Walter, J.; et al. Faecal microbiota from patients with cirrhosis has a low capacity to ferment non-digestible carbohydrates into short-chain fatty acids. Liver Int. 2019, 39, 1437–1447. [Google Scholar] [CrossRef]
- Manzoor, R.; Ahmed, W.; Afify, N.; Memon, M.; Yasin, M.; Memon, H.; Rustom, M.; Al Akeel, M.; Alhajri, N. Trust Your Gut: The Association of Gut Microbiota and Liver Disease. Microorganisms 2022, 10, 1045. [Google Scholar] [CrossRef]
- Fang, J.; Yu, C.H.; Li, X.J.; Yao, J.M.; Fang, Z.Y.; Yoon, S.H.; Yu, W.Y. Gut dysbiosis in nonalcoholic fatty liver disease: Pathogenesis, diagnosis, and therapeutic implications. Front. Cell Infect. Microbiol. 2022, 12, 997018. [Google Scholar] [CrossRef]
- Zeng, S.; Schnabl, B. Roles for the mycobiome in liver disease. Liver Int. 2022, 42, 729–741. [Google Scholar] [CrossRef]
- Abenavoli, L.; Maurizi, V.; Rinninella, E.; Tack, J.; Di Berardino, A.; Santori, P.; Rasetti, C.; Procopio, A.C.; Boccuto, L.; Scarpellini, E. Fecal Microbiota Transplantation in NAFLD Treatment. Medicina 2022, 58, 1559. [Google Scholar] [CrossRef]
- Reshetova, M.S.; Zolnikova, O.Y.; Ivashkin, V.T.; Ivashkin, K.V.; Appolonova, S.A.; Lapina, T.L. Gut Microbiota and its Metabolites in Pathogenesis of NAFLD. Russ. J. Gastroenterol. Hepatol. Coloproctol. 2022, 32, 75–88. [Google Scholar] [CrossRef]
- Philips, C.A.; Schnabl, B.; Bajaj, J.S. Gut Microbiome and Alcohol-associated Liver Disease. J. Clin. Exp. Hepatol. 2022, 12, 1349–1359. [Google Scholar] [CrossRef]
- Tilg, H.; Adolph, T.E.; Trauner, M. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab. 2022, 34, 1700–1718. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, F.; Lu, H.; Wang, B.; Chen, Y.; Lei, D.; Wang, Y.; Zhu, B.; Li, L. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology 2011, 54, 562–572. [Google Scholar] [CrossRef]
- Maslennikov, R.; Ivashkin, V.; Efremova, I.; Alieva, A.; Kashuh, E.; Tsvetaeva, E.; Poluektova, E.; Shirokova, E.; Ivashkin, K. Gut dysbiosis is associated with poorer long-term prognosis in cirrhosis. World J. Hepatol. 2021, 13, 557–570. [Google Scholar] [CrossRef]
- Bajaj, J.S.; Ridlon, J.M.; Hylemon, P.B.; Thacker, L.R.; Heuman, D.M.; Smith, S.; Sikaroodi, M.; Gillevet, P.M. Linkage of gut microbiome with cognition in hepatic encephalopathy. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G168–G175. [Google Scholar] [CrossRef]
- Anand, S.; Mande, S.S. Host-microbiome interactions: Gut-Liver axis and its connection with other organs. NPJ Biofilms Microbiomes 2022, 8, 89. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of alcohol-related liver disease. J. Hepatol. 2018, 69, 154–181. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://patents.google.com/patent/RU2220755C1/ru (accessed on 1 January 2021).
- Xiong, J.; Chen, X.; Zhao, Z.; Liao, Y.; Zhou, T.; Xiang, Q. A potential link between plasma short-chain fatty acids, TNF-α level and disease progression in non-alcoholic fatty liver disease: A retrospective study. Exp. Ther. Med. 2022, 3, 598. [Google Scholar] [CrossRef] [PubMed]
- Roy, C.C.; Kien, C.L.; Bouthillier, L.; Levy, E. Short-chain fatty acids: Ready for prime time? Nutr. Clin. Pract. 2006, 21, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.H. Short chain fatty acids in the human colon. Gut 1981, 22, 763–779. [Google Scholar] [CrossRef]
- Bloemen, J.G.; Venema, K.; van de Poll, M.C.; Damink, S.W.O.; Buurman, W.A.; Dejong, C.H. Short chain fatty acids exchange across the gut and liver in humans measured at surgery. Clin. Nutr. 2009, 28, 657–661. [Google Scholar] [CrossRef]
- Posma, J.M.; Garcia-Perez, I.; Frost, G.; Aljuraiban, G.S.; Chan, Q.; Van Horn, L.; Daviglus, M.; Stamler, J.; Holmes, E.; Elliott, P.; et al. Nutriome–metabolome relationships provide insights into dietary intake and metabolism. Nat. Food 2020, 1, 426–436. [Google Scholar] [CrossRef]
- Kendrick, S.F.W.; O’Boyle, G.; Mann, J.; Zeybel, M.; Palmer, J.; Jones, D.E.J.; Day, C.P. Acetate, the key modulator of inflammatory responses in acute alcoholic hepatitis. Hepatology 2010, 51, 1988–1997. [Google Scholar] [CrossRef]
- Sahuri-Arisoylu, M.; Brody, L.P.; Parkinson, J.R.; Parkes, H.; Navaratnam, N.; Miller, A.D.; Thomas, E.L.; Frost, G.; Bell, J.D. Reprogramming of hepatic fat accumulation and ‘browning’ of adipose tissue by the short-chain fatty acid acetate. Int. J. Obes. 2016, 40, 955–963. [Google Scholar] [CrossRef]
Patients with Cirrhosis (n = 40) | Healthy Controls (n = 20) | p | |
---|---|---|---|
Age, years | 57 [51–64] | 56 [52–59] | 0.712 |
Male/Female | 21/19 | 9/11 | 0.392 |
Body mass index, kg/m2 | 29.2 [24.5–32.0] | 26.4 [24.6–26.8] | 0.044 |
Waist, cm | 113 [102–119] | 87 [81–93] | <0.001 |
Serum cholesterol, mmol/L | 4.5 [3.4–5.9] | 4.4 [4.2–4.8] | 0.975 |
Serum triglycerides, mmol/L | 1.57 [1.21–1.72] | 0.83 [0.61–1.27] | <0.001 |
Serum glucose, mmol/L | 6.1 [5.1–7.4] | 4.8 [4.6–5.0] | <0.001 |
Alanine aminotransferase, U/L | 42 [22–78] | 19 [17–24] | <0.001 |
Aspartate aminotransferase, U/L | 50 [38–89] | 16 [11–19] | <0.001 |
Hemoglobin, g/L | 130 [120–139] | 135 [132–138] | 0.086 |
Alcohol consumption, doses/ week | 27 [1–36] | 1 [0–2] | 0.001 |
ALC (n = 24) | MET (n = 16) | p | |
---|---|---|---|
Age, years | 55 [44–62] | 60 [54–65] | 0.132 |
Male/Female | 15/9 | 6/10 | 0.110 |
Body mass index, kg/m2 | 25.2 [22.9–29.4] | 32.1 [30.7–33.1] | <0.001 |
Waist, cm | 108 [98–114] | 118 [116–124] | <0.001 |
Child–Pugh score | 6 [5–7] | 5 [5–7] | 0.610 |
Child–Pugh class, A/B | 17/7 | 11/5 | 0.580 |
Esophageal varices, grade 0–1/2–3 | 19/5 | 11/5 | 0.351 |
Ascites, present/absent | 6/18 | 5/11 | 0.467 |
Minimal hepatic encephalopathy, present/absent | 4/20 | 4/12 | 0.399 |
Serum total protein, g/L | 71.0 [67.5–75.5] | 70.5 [67.5–76.5] | 0.978 |
Serum albumin, g/L | 39.6 [37.2–44.7] | 37.1 [34.2–40.8] | 0.068 |
Serum total bilirubin, μmol/L | 28.6 [23.8–33.4] | 20.2 [13.6–27.4] | 0.007 |
Serum cholesterol, mmol/L | 4.5 [2.8–7.0] | 4.4 [3.7–5.2] | 0.934 |
Serum HDL cholesterol, mmol/L | 1.4 [0.9–2.5] | 1.1 [0.9–1.3] | 0.113 |
Serum LDL cholesterol, mmol/L | 2.6 [2.1–3.7] | 2.7 [2.0–3.3] | 0.638 |
Serum triglycerides, mmol/L | 1.32 [1.05–1.69] | 2.14 [1.65–2.65] | <0.001 |
Serum uric acid | 353 [288–428] | 247 [217–274] | <0.001 |
Serum glucose, mmol/L | 5.8 [4.6–6.7] | 6.7 [5.8–8.1] | 0.028 |
Alanine aminotransferase, U/L | 40 [18–75] | 42 [31–78] | 0.294 |
Aspartate aminotransferase, U/L | 55 [34–112] | 49 [43–70] | 0.782 |
Gamma glutamyl transferase, U/L | 77 [44–758] | 60 [53–68] | 0.464 |
Alkaline phosphatase, U/L | 98 [87–120] | 91 [70–105] | 0.163 |
C-reactive protein, mg/L | 3.6 [1.7–6.9] | 2.5 [1.7–4.4] | 0.214 |
Fibrinogen, g/L | 3.2 [2.6–3.8] | 4.2 [3.8–4.4] | <0.001 |
Prothrombin index (Quick test), % | 75 [64–91] | 81 [77–86] | 0.269 |
IgG, g/L | 10.9 [9.4–13.9] | 15.6 [13.1–17.0] | 0.011 |
IgM, g/L | 1.6 [1.5–1.8] | 1.2 [1.1–1.3] | <0.001 |
Hemoglobin, g/L | 130 [115–139] | 130 [124–138] | 0.525 |
White blood cells, 109/L | 5.5 [4.8–6.1] | 5.8 [4.6–6.2] | 0.751 |
Neutrophils, 109/L | 2.8 [2.3–4.1] | 2.9 [2.5–3.1] | 0.890 |
Lymphocytes, 109/L | 1.5 [1.1–2.2] | 2.1 [1.6–2.6] | <0.024 |
Platelets, 109/L | 145 [99–187] | 147 [103–180] | 0.761 |
Portal vein diameter, cm | 12.5 [11.7–13.7] | 12.1 [11.4–12.8] | 0.258 |
Splenic vein diameter, cm | 7.0 [6.4–8.8] | 7.8 [6.6–8.5] | 0.761 |
Alcohol consumption, doses/week | 36 [32–38] | 1 [0–1] | <0.001 |
ALC (n = 24) | MET (n = 16) | CON (n = 20) | ALC vs. MET | ALC vs. CON | MET vs. CON | |
---|---|---|---|---|---|---|
Fecal SCFA, mg/g | 5.31 [3.65–7.11] | 3.20 [2.13–4.22] | 10.2 [9.76–10.7] | <0.001 | <0.001 | <0.001 |
Fecal acetate, mg/g | 3.14 [2.30–4.49] | 2.12 [1.03–2.28] | 5.87 [5.65–6.04] | <0.001 | <0.001 | <0.001 |
Fecal propionate, mg/g | 1.11 [0.78–1.36] | 0.58 [0.46–0.81] | 1.77 [1.70–1.83] | <0.001 | <0.001 | <0.001 |
Fecal butyrate, mg/g | 0.68 [0.46–1.10] | 0.35 [0.28–0.48] | 1.69 [1.66–1.77] | 0.001 | <0.001 | <0.001 |
Fecal isoacids, mg/g | 0.27 [0.22–0.33] | 0.23 [0.21–0.31] | 0.62 [0.59–0.64] | 0.276 | <0.001 | <0.001 |
Fraction of acetate, % | 64.5 [60.2–66.9] | 62.8 [56.3–66.8] | 61.8 [56.0–67.5] | 0.320 | 0.458 | 0.927 |
Fraction of propionate, % | 21.0 [18.6–24.7] | 22.7 [19.8–26.3] | 19.1 [8.7–19.8] | 0.923 | 0.017 | 0.043 |
Fraction of butyrate, % | 14.8 [11.3–17.8] | 12.9 [11.3–15.0] | 17.1 [15.3–21.0] | 0.590 | 0.008 | 0.033 |
Fraction of isoacids, % | 5.8 [3.1–7.0] | 8.2 [7.4–10.0] | 5.9 [5.8–6.0] | <0.001 | 0.860 | <0.001 |
Isoacid/unbrached acid ratio | 0.06 [0.03–0.08] | 0.08 [0.07–0.11] | 0.07 [0.07–0.07] | <0.001 | 0.564 | <0.001 |
Alcoholic Fatty Liver Disease | |||
---|---|---|---|
Minimal Hepatic Encephalopathy Present (n = 4) | Minimal Hepatic Encephalopathy Absent (n = 20) | p | |
Fecal SCFA, mg/g | 4.95 [4.11–6.72] | 5.56 [3.65–7.11] | 0.698 |
Fecal acetate, mg/g | 3.03 [2.30–4.28] | 3.14 [2.29–4.49] | 1.000 |
Fecal propionate, mg/g | 0.95 [0.63–1.36] | 1.11 [0.88–1.36] | 0.588 |
Fecal butyrate, mg/g | 0.52 [0.36–1.05] | 0.76 [0.49—1.10] | 0.670 |
Fecal isoacids, mg/g | 0.28 [0.26–0.36] | 0.25 [0.21–0.33] | 0.373 |
Non-alcoholic (metabolic-associated) fatty liver disease | |||
Minimal hepatic encephalo- pathy present (n = 4) | Minimal hepatic encephalopathy absent (n = 12) | p | |
Fecal SCFA, mg/g | 4.22 [3.75–4.40] | 3.29 [2.32–3.86] | 0.034 |
Fecal acetate, mg/g | 2.45 [2.17–2.50] | 1.75 [1.26–2.28] | 0.025 |
Fecal propionate, mg/g | 0.72 [0.63–0.82] | 0.60 [0.43–0.80] | 0.431 |
Fecal butyrate, mg/g | 0.48 [0.45–0.50] | 0.37 [0.34–0.43] | 0.060 |
Fecal isoacids, mg/g | 0.38 [0.37–0.42] | 0.27 [0.23–0.33] | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Zolnikova, O.; Maslennikov, R.; Reshetova, M.; Poluektova, E.; Bogacheva, A.; Zharkova, M.; Ivashkin, V. Differences in Fecal Short-Chain Fatty Acids between Alcoholic Fatty Liver-Induced Cirrhosis and Non-alcoholic (Metabolic-Associated) Fatty Liver-Induced Cirrhosis. Metabolites 2023, 13, 859. https://doi.org/10.3390/metabo13070859
Cao X, Zolnikova O, Maslennikov R, Reshetova M, Poluektova E, Bogacheva A, Zharkova M, Ivashkin V. Differences in Fecal Short-Chain Fatty Acids between Alcoholic Fatty Liver-Induced Cirrhosis and Non-alcoholic (Metabolic-Associated) Fatty Liver-Induced Cirrhosis. Metabolites. 2023; 13(7):859. https://doi.org/10.3390/metabo13070859
Chicago/Turabian StyleCao, Xinlu, Oksana Zolnikova, Roman Maslennikov, Maria Reshetova, Elena Poluektova, Arina Bogacheva, Maria Zharkova, and Vladimir Ivashkin. 2023. "Differences in Fecal Short-Chain Fatty Acids between Alcoholic Fatty Liver-Induced Cirrhosis and Non-alcoholic (Metabolic-Associated) Fatty Liver-Induced Cirrhosis" Metabolites 13, no. 7: 859. https://doi.org/10.3390/metabo13070859
APA StyleCao, X., Zolnikova, O., Maslennikov, R., Reshetova, M., Poluektova, E., Bogacheva, A., Zharkova, M., & Ivashkin, V. (2023). Differences in Fecal Short-Chain Fatty Acids between Alcoholic Fatty Liver-Induced Cirrhosis and Non-alcoholic (Metabolic-Associated) Fatty Liver-Induced Cirrhosis. Metabolites, 13(7), 859. https://doi.org/10.3390/metabo13070859