Establishment of a Rapid LAMP Assay for Aeromonas hydrophila and Comparison with the Application of qPCR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Samples
2.2. Pre-Treatment and DNA Extraction of Samples
2.3. LAMP Primer Design and Specificity Comparison
2.4. Real-Time Fluorescent Quantitative PCR (qPCR)
2.5. LAMP Fluorescence Method
2.6. Specificity Analysis
2.7. Amplification Efficiency
2.8. Sensitivity Testing
2.9. Comparison of Actual Sample Detection Based on qPCR, LAMP
3. Results
3.1. Specificity Analysis
3.2. Amplification Efficiency Analysis
3.3. Sensitivity Testing
3.4. Comparative Analysis of qPCR and LAMP Assays for the Detection of Real Samples
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cabral, J.P.S. Water microbiology. Bacterial pathogens and water. Int. J. Environ. Res. Public Health 2010, 7, 3657–3703. [Google Scholar] [CrossRef]
- Li, J.; Ni, X.D.; Liu, Y.J.; Lu, C.P. Detection of three virulence genes alt, ahp and aerA in Aeromonas hydrophila and their relationship with actual virulence to zebrafish. J. Appl. Microbiol. 2011, 110, 823–830. [Google Scholar] [CrossRef]
- Janda, J.M.; Abbott, S.L. The genus Aeromonas: Taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 2010, 23, 35–73. [Google Scholar] [CrossRef] [Green Version]
- Balsalobre, L.C.; Dropa, M.; Matté, G.R.; Matté, M.H. Molecular detection of enterotoxins in environmental strains of Aeromonas hydrophila and Aeromonas jandaei. J. Water Health 2009, 7, 685–691. [Google Scholar] [CrossRef] [Green Version]
- Daskalov, H. The importance of Aeromonas hydrophila in food safety. Food Control 2006, 17, 474–483. [Google Scholar] [CrossRef]
- Bakiyev, S.; Smekenov, I.; Zharkova, I.; Kobegenova, S.; Sergaliyev, N.; Absatirov, G.; Bissenbaev, A. Isolation, identification, and characterization of pathogenic Aeromonas hydrophila from critically endangered Acipenser baerii. Aquac. Rep. 2022, 26, 101293. [Google Scholar] [CrossRef]
- Tsai, Y.-H.; Shen, S.-H.; Yang, T.-Y.; Chen, P.-H.; Huang, K.-C.; Lee, M.S. Monomicrobial necrotizing fasciitis caused by Aeromonas hydrophila and Klebsiella pneumoniae. Med. Princ. Pract. 2015, 24, 416–423. [Google Scholar] [CrossRef]
- Fernández-Bravo, A.; Figueras, M.J. An update on the genus Aeromonas: Taxonomy, epidemiology, and pathogenicity. Microorganisms 2020, 8, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, Y.; Wang, Q.; Li, Y.; Wang, Y.; Yin, J.; Ren, Y.; Liu, C.; Liu, X.; Wang, Y.; Zeng, W. Development of a real-time recombinase polymerase amplification assay for rapid detection of Aeromonas hydrophila. J. Fish Dis. 2021, 44, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Carnahan, A.M.; Behram, S.; Joseph, S.W. Aerokey II:A flexiblekey for identifying clinical Aeromonas species. J. Clin. Microbiol. 1991, 29, 2843–2849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longyant, S.; Chaiyasittrakul, K.; Rukpratanporn, S.; Chaivisuthangkura, P.; Sithigorngul, P. Simple and direct detection of Aeromonas hydrophila infection in the goldfish, Carassius auratus (L.), by dot blotting using specific monoclonal antibodies. J. Fish Dis. 2010, 33, 973–984. [Google Scholar] [CrossRef] [PubMed]
- Delamare, A.P.L.; Echeverrigaray, S.; Duarte, K.R.; Gomes, L.H.; Costa, S.O.P. Production of a monoclonal antibody against Aeromonas hydrophila and its application to bacterial identification. J. Appl. Microbiol. 2002, 92, 936–940. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.H.; Chen, P.H.; Yu, P.A.; Chen, C.L.; Kuo, L.T.; Huang, K.C. A multiplex PCR assay for detection of Vibrio vulnificus, Aeromonas hydrophila, methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus agalactiae from the isolates of patients with necrotizing fasciitis. Int. J. Infect. Dis. 2019, 81, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Wang, Z.; Wang, Z.; Zhao, B.; Xu, X. Establishment on Real-Time PCR Method for Detection of Aeromonas hydrophila. Mod. Prev. Med. 2012, 39, 3339–3341. Available online: https://kns.cnki.net/kcms2/article/abstract?v=TC3HGDY_hVa_713QCSarl5bzU3XRQ2i9Pij1e1cqp8GjnY1HUHnVhTs8ao2kfNfrtmSV_nbGPN8pLoSm2F_M7SpLAsDNy2z_wpjAkS0wykXz6XdOsFl2uejHWZJArQsC&uniplatform=NZKPT&language=CHS (accessed on 10 July 2012).
- Shin, H.B.; Yoon, J.; Lee, Y.; Kim, M.S.; Lee, K. Comparison of MALDI-TOF MS, housekeeping gene sequencing, and 16S rRNA gene sequencing for identification of Aeromonas clinical isolates. Yonsei Med. J. 2015, 56, 550–555. [Google Scholar] [CrossRef] [Green Version]
- Tichoniuk, M.; Gwiazdowska, D.; Ligaj, M.; Filipiak, M. Electrochemical detection of foodborne pathogen Aeromonas hydrophila by DNA hybridization biosensor. Biosens. Bioelectron. 2010, 26, 1618–1623. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef] [Green Version]
- Wong, Y.P.; Othman, S.; Lau, Y.L.; Radu, S.; Chee, H.Y. Loop-mediated isothermal amplification (LAMP): A versatile technique for detection of micro-organisms. J. Appl. Microbiol. 2018, 124, 626–643. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Yu, H.; Peng, Z.Q.; Yu, Y.Y.; Xie, J.F.; Yang, Y. Visual and rapid detection of Plesiomonas shigelloides using loop-mediated isothermal amplification method. Lett. Appl. Microbiol. 2019, 69, 411–416. [Google Scholar] [CrossRef]
- Zhou, S.; Huang, Q.; Yu, M.; Li, Y.; Zheng, X.; Xiu, Y. Rapid visual detection of Aeromonas salmonicida by loop-mediated isothermal amplification with hydroxynaphthol blue dye. J. Fish Dis. 2021, 44, 1993–2001. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, B.; Cao, G.; Hu, X.; Wei, Y.; Yi, J.; Zhou, Y.; Pan, G.; Wang, J.; Xue, R.; et al. Identification and rapid diagnosis of the pathogen responsible for haemorrhagic disease of the gill of Allogynogenetic crucian carp. J. Virol. Methods 2015, 219, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Duan, X.; Peng, Y.; Rui, Y. Rapid detection of a novel B1-β-lactamase gene, blaAFM-1 using a loop-mediated isothermal amplification (LAMP) assay. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 80. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Yang, L.; Wang, L.; Sun, R.; Shearer, J.E.; Sun, F. Rapid Detection of Clostridium botulinum in Food Using Loop-Mediated Isothermal Amplification (LAMP). Int. J. Environ. Res. Public Health 2021, 18, 4401. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.F.; Qiu, J.Q.; Hu, K.; Yang, X.L.; An, J. Stability of Virulence Genes of Aeromonas hydrophila Strains During Subculture. Biotechnol. Bull. 2011, 9, 130–135. [Google Scholar] [CrossRef]
- General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. SN/T 0751-2010 Determination of Aeromonas hydrophila in Foods for Import and Export. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SCSD000006217879&DbName=SCSD (accessed on 27 May 2010).
- Zhu, D.L.; Li, A.H.; Qian, D.; Wang, J.G. Advances in virulence genes of Aeromonas hydrophila. J. Hydro Dyn. 2004, 28, 80–84. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?FileName=SSWX200401014&DbName=CJFQ2004 (accessed on 20 January 2004).
Method | Primer Probe (Site) | Nucleic Acid Sequences (5′ → 3′) | Source |
---|---|---|---|
LAMP | F3(516–534 bp) | ACTTGTTCTTGGTGGTCAC | This research |
B3 | CAACGACAGCGACACC | ||
FIP(F1c + F2) (646–663 bp + 571–588 bp) | CTGGTCAAGACGGTGGTGGTTGGTGGCGGTATCGTA | ||
BIP(B1c + B2) (507–529 bp + 572–588 bp) | GCCACTTGAACTTGTTCTTGGTGTACGATACCGCCACCAA | ||
LoopF | TCAACGACAGCGACACC | ||
LoopB(531–548 bp) | GTCACCTTCTCGCTCAGG | ||
qPCR | FW | ACC GCA AGA TCA ACG A TA CCG AGT | RONG W, et al. [14] |
RV | ATC CAG CGA GAT CCG CAC TAT CTT | ||
Probe | FAM-AAC ATC TCG CTG GTT TAC CGG GTC AA-TAMRA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Yang, C.; Zhang, X.; Hu, B.; Zhang, H.; Zhang, Z.; Kuang, W.; Zheng, Q.; Cao, J. Establishment of a Rapid LAMP Assay for Aeromonas hydrophila and Comparison with the Application of qPCR. Metabolites 2023, 13, 841. https://doi.org/10.3390/metabo13070841
Gao Z, Yang C, Zhang X, Hu B, Zhang H, Zhang Z, Kuang W, Zheng Q, Cao J. Establishment of a Rapid LAMP Assay for Aeromonas hydrophila and Comparison with the Application of qPCR. Metabolites. 2023; 13(7):841. https://doi.org/10.3390/metabo13070841
Chicago/Turabian StyleGao, Zihui, Chunhua Yang, Xiaobo Zhang, Bing Hu, Huang Zhang, Zhihong Zhang, Wendong Kuang, Qiuyue Zheng, and Jijuan Cao. 2023. "Establishment of a Rapid LAMP Assay for Aeromonas hydrophila and Comparison with the Application of qPCR" Metabolites 13, no. 7: 841. https://doi.org/10.3390/metabo13070841
APA StyleGao, Z., Yang, C., Zhang, X., Hu, B., Zhang, H., Zhang, Z., Kuang, W., Zheng, Q., & Cao, J. (2023). Establishment of a Rapid LAMP Assay for Aeromonas hydrophila and Comparison with the Application of qPCR. Metabolites, 13(7), 841. https://doi.org/10.3390/metabo13070841