Sucralose Targets the Insulin Signaling Pathway in the SH-SY5Y Neuroblastoma Cell Line
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Treatments
2.3. MTT Assay
2.4. Protein Assay
2.5. SDS-PAGE Electrophoresis and Western Blot
2.6. MALDI-TOF MS
2.7. Statistics
3. Results
3.1. Sucralose Combined with Levodopa Increased Cell Viability
3.2. Suppresion of Insulin Signaling Pathway after Sucralose Treatment
3.3. Insulin-Like Growth Factor Receptor 1 Beta Subunit (IGF1-Rβ) Is Downregulated following Sucralose Treatment
3.4. Sucralose Altered the Metabolic Response to Insulin and Levodopa–MALDI-TOF MS Analysis
3.5. Insulin Plus Sucralose Increases Long-Chain Fatty Acid, Sphingolipid and Tryptophan Metabolites
3.6. Administration of Levodopa with High Sucrose Suppresses Lipid Synthesis
4. Discussion
4.1. Sucralose May Be an Insulin Disruptor
4.2. Sucralose Alters IGF1 Sensitivity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DuBois, G.E.; Prakash, I. Non-Caloric Sweeteners, Sweetness Modulators, and Sweetener Enhancers. Annu. Rev. Food Sci. Technol. 2012, 3, 353–380. [Google Scholar] [CrossRef]
- Rippe, J.M.; Angelopoulos, T.J. Relationship between Added Sugars Consumption and Chronic Disease Risk Factors: Current Understanding. Nutrients 2016, 8, 697. [Google Scholar] [CrossRef] [Green Version]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Cohen, Y.; Valdés-Mas, R.; Mor, U.; Dori-Bachash, M.; Federici, S.; Zmora, N.; Leshem, A.; Heinemann, M.; Linevsky, R.; et al. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 2022, 185, 3307–3328.e19. [Google Scholar] [CrossRef]
- Rios-Leyvraz, M.; Montez, J. Health Effects of the Use of Non-Sugar Sweeteners: A Systematic Review and Meta-Analysis; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Nakagawa, Y.; Nagasawa, M.; Yamada, S.; Hara, A.; Mogami, H.; Nikolaev, V.O.; Lohse, M.J.; Shigemura, N.; Ninomiya, Y.; Kojima, I. Sweet Taste Receptor Expressed in Pancreatic β-Cells Activates the Calcium and Cyclic AMP Signaling Systems and Stimulates Insulin Secretion. PLoS ONE 2009, 4, e5106. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.A.; Owyang, C. Sugars, Sweet Taste Receptors, and Brain Responses. Nutrients 2017, 9, 653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, H.-J.; Kokrashvili, Z.; Theodorakis, M.J.; Carlson, O.D.; Kim, B.-J.; Zhou, J.; Kim, H.H.; Xu, X.; Chan, S.L.; Juhaszova, M.; et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc. Natl. Acad. Sci. USA 2007, 104, 15069–15074. [Google Scholar] [CrossRef]
- Andersen, A.; Lund, A.; Knop, F.K.; Vilsbøll, T. Glucagon-like peptide 1 in health and disease. Nat. Rev. Endocrinol. 2018, 14, 390–403. [Google Scholar] [CrossRef]
- Pepino, M.Y.; Tiemann, C.D.; Patterson, B.W.; Wice, B.M.; Klein, S. Sucralose Affects Glycemic and Hormonal Responses to an Oral Glucose Load. Diabetes Care 2013, 36, 2530–2535. [Google Scholar] [CrossRef] [Green Version]
- Nichol, A.D.; Salame, C.; Rother, K.I.; Pepino, M.Y. Effects of Sucralose Ingestion versus Sucralose Taste on Metabolic Responses to an Oral Glucose Tolerance Test in Participants with Normal Weight and Obesity: A Randomized Crossover Trial. Nutrients 2019, 12, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bueno-Hernández, N.; Esquivel-Velázquez, M.; Alcántara-Suárez, R.; Gómez-Arauz, A.Y.; Espinosa-Flores, A.J.; de León-Barrera, K.L.; Mendoza-Martínez, V.M.; Medina, G.A.S.; León-Hernández, M.; Ruiz-Barranco, A.; et al. Chronic sucralose consumption induces elevation of serum insulin in young healthy adults: A randomized, double blind, controlled trial. Nutr. J. 2020, 19, 3. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.D.; Corkey, B.E.E.; Istfan, N.W.; Apovian, C.M. Hyperinsulinemia: An Early Indicator of Metabolic Dysfunction. J. Endocr. Soc. 2019, 3, 1727–1747. [Google Scholar] [CrossRef] [PubMed]
- Barrios-Correa, A.A.; Estrada, J.A.; Martel, C.; Olivier, M.; López-Santiago, R.; Contreras, I. Chronic Intake of Commercial Sweeteners Induces Changes in Feeding Behavior and Signaling Pathways Related to the Control of Appetite in BALB/c Mice. BioMed Res. Int. 2018, 2018, 3628121. [Google Scholar] [CrossRef] [Green Version]
- Debras, C.; Chazelas, E.; Sellem, L.; Porcher, R.; Druesne-Pecollo, N.; Esseddik, Y.; de Edelenyi, F.S.; Agaësse, C.; De Sa, A.; Lutchia, R.; et al. Artificial sweeteners and risk of cardiovascular diseases: Results from the prospective NutriNet-Santé cohort. BMJ 2022, 378, e071204. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, N.D.; Khan, T.A.; Wang, L.; Zhang, R.; Chiavaroli, L.; Au-Yeung, F.; Lee, J.J.; Noronha, J.C.; Comelli, E.M.; Mejia, S.B.; et al. Association of Low- and No-Calorie Sweetened Beverages as a Replacement for Sugar-Sweetened Beverages With Body Weight and Cardiometabolic Risk: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e222092. [Google Scholar] [CrossRef]
- Laviada-Molina, H.; Molina-Segui, F.; Pérez-Gaxiola, G.; Cuello-García, C.; Arjona-Villicaña, R.; Espinosa-Marrón, A.; Martinez-Portilla, R.J. Effects of nonnutritive sweeteners on body weight and BMI in diverse clinical contexts: Systematic review and meta-analysis. Obes. Rev. 2020, 21, e13020. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.E.; Perez, V. Low-calorie sweeteners and body weight and composition: A meta-analysis of randomized controlled trials and prospective cohort studies. Am. J. Clin. Nutr. 2014, 100, 765–777. [Google Scholar] [CrossRef] [Green Version]
- van Zessen, R.; Flores-Dourojeanni, J.P.; Eekel, T.; Reijen, S.v.D.; Lodder, B.; Omrani, A.; Smidt, M.P.; Ramakers, G.M.; van der Plasse, G.; Stuber, G.D.; et al. Cue and Reward Evoked Dopamine Activity Is Necessary for Maintaining Learned Pavlovian Associations. J. Neurosci. 2021, 41, 5004–5014. [Google Scholar] [CrossRef]
- Li, Z.S.; Pham, T.D.; Tamir, H.; Chen, J.J.; Gershon, M.D. Enteric Dopaminergic Neurons: Definition, Developmental Lineage, and Effects of Extrinsic Denervation. J. Neurosci. 2004, 24, 1330–1339. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.-Y.; Pei, Y. Insulin Neuroprotection and the Mechanisms. Chin. Med. J. 2015, 128, 976–981. [Google Scholar] [CrossRef]
- Colamartino, M.; Santoro, M.; Duranti, G.; Sabatini, S.; Ceci, R.; Testa, A.; Padua, L.; Cozzi, R. Evaluation of Levodopa and Carbidopa Antioxidant Activity in Normal Human Lymphocytes In Vitro: Implication for Oxidative Stress in Parkinson’s Disease. Neurotox. Res. 2015, 27, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Barbagallo, M. Type 2 diabetes mellitus and Alzheimer’s disease. World J. Diabetes 2014, 5, 889–893. [Google Scholar] [CrossRef] [Green Version]
- Cheong, J.L.Y.; de Pablo-Fernandez, E.; Foltynie, T.; Noyce, A.J. The Association Between Type 2 Diabetes Mellitus and Parkinson’s Disease. J. Park. Dis. 2020, 10, 775–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bendlin, B. Antidiabetic therapies and Alzheimer disease. Dialog. Clin. Neurosci. 2019, 21, 83–91. [Google Scholar] [CrossRef]
- Craft, S.; Raman, R.; Chow, T.W.; Rafii, M.S.; Sun, C.-K.; Rissman, R.A.; Donohue, M.C.; Brewer, J.B.; Jenkins, C.; Harless, K.; et al. Safety, Efficacy, and Feasibility of Intranasal Insulin for the Treatment of Mild Cognitive Impairment and Alzheimer Disease Dementia: A Randomized Clinical Trial. JAMA Neurol. 2020, 77, 1099–1109. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.S. The catecholaldehyde hypothesis: Where MAO fits in. J. Neural Transm. 2020, 127, 169–177. [Google Scholar] [CrossRef]
- Qin, C.; Zhang, S.; Yuan, Q.; Liu, M.; Jiang, N.; Zhuang, L.; Huang, L.; Wang, P. A Cell Co-Culture Taste Sensor Using Different Proportions of Caco-2 and SH-SY5Y Cells for Bitterness Detection. Chemosensors 2022, 10, 173. [Google Scholar] [CrossRef]
- Korecka, J.A.; van Kesteren, R.E.; Blaas, E.; Spitzer, S.O.; Kamstra, J.H.; Smit, A.B.; Swaab, D.F.; Verhaagen, J.; Bossers, K. Phenotypic Characterization of Retinoic Acid Differentiated SH-SY5Y Cells by Transcriptional Profiling. PLoS ONE 2013, 8, e63862. [Google Scholar] [CrossRef] [Green Version]
- Roberts, A.; Renwick, A.; Sims, J.; Snodin, D. Sucralose metabolism and pharmacokinetics in man. Food Chem. Toxicol. 2000, 38, 31–41. [Google Scholar] [CrossRef]
- Daher, M.; Fahd, C.; Nour, A.A.; Sacre, Y. Trends and amounts of consumption of low-calorie sweeteners: A cross-sectional study. Clin. Nutr. ESPEN 2022, 48, 427–433. [Google Scholar] [CrossRef]
- FDA: Aspartame and Other Sweeteners in Food. Available online: https://www.fda.gov/food/food-additives-petitions/aspartame-and-other-sweeteners-food (accessed on 10 June 2023).
- Sylvetsky, A.C.; Walter, P.J.; Garraffo, H.M.; Robien, K.; Rother, K.I. Widespread sucralose exposure in a randomized clinical trial in healthy young adults. Am. J. Clin. Nutr. 2017, 105, 820–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quick Start Bradford Protein Assay. Instruction Manual (BIORAD). Available online: https://www.biorad.com/webroot/web/pdf/lsr/literature/4110065A.pdf (accessed on 9 June 2023).
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 2011, 37, 911–917. [Google Scholar] [CrossRef]
- Yoon, M.-S. The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling. Nutrients 2017, 9, 1176. [Google Scholar] [CrossRef]
- Kearney, A.L.; Norris, D.M.; Ghomlaghi, M.; Wong, M.K.L.; Humphrey, S.J.; Carroll, L.; Yang, G.; Cooke, K.C.; Yang, P.; Geddes, T.A.; et al. Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. Elife 2021, 10, e66942. [Google Scholar] [CrossRef] [PubMed]
- Carter, Y.M.; Kunnimalaiyaan, S.; Chen, H.; Gamblin, T.C.; Kunnimalaiyaan, M. Specific glycogen synthase kinase-3 inhibition reduces neuroendocrine markers and suppresses neuroblastoma cell growth. Cancer Biol. Ther. 2014, 15, 510–515. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xiong, L.; Wang, G.; Wan, W.; Zhong, C.; Zu, H. Insulin-like growth factor-1 protects SH-SY5Y cells against β-amyloid-induced apoptosis via the PI3K/Akt-Nrf2 pathway. Exp. Gerontol. 2017, 87, 23–32. [Google Scholar] [CrossRef]
- Gatie, M.I.; Kelly, G.M. Metabolic profile and differentiation potential of extraembryonic endoderm-like cells. Cell Death Discov. 2018, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Imberdis, T.; Negri, J.; Ramalingam, N.; Terry-Kantor, E.; Ho, G.P.H.; Fanning, S.; Stirtz, G.; Kim, T.-E.; Levy, O.A.; Young-Pearse, T.L.; et al. Cell models of lipid-rich α-synuclein aggregation validate known modifiers of α-synuclein biology and identify stearoyl-CoA desaturase. Proc. Natl. Acad. Sci. USA 2019, 116, 20760–20769. [Google Scholar] [CrossRef] [Green Version]
- Alsharhan, H.; Ficicioglu, C. Disorders of phenylalanine and tyrosine metabolism. Transl. Sci. Rare Dis. 2020, 5, 3–58. [Google Scholar] [CrossRef]
- O’sullivan, A.J.; Pigat, S.; O’mahony, C.; Gibney, M.J.; McKevitt, A.I. Probabilistic modelling to assess exposure to three artificial sweeteners of young Irish patients aged 1–3 years with PKU and CMPA. Food Addit. Contam. Part A 2016, 33, 1660–1671. [Google Scholar] [CrossRef]
- Cao, H.; Gerhold, K.; Mayers, J.R.; Wiest, M.M.; Watkins, S.M.; Hotamisligil, G.S. Identification of a Lipokine, a Lipid Hormone Linking Adipose Tissue to Systemic Metabolism. Cell 2008, 134, 933–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Vijayakumar, A.; Kahn, B.B. Metabolites as regulators of insulin sensitivity and metabolism. Nat. Rev. Mol. Cell Biol. 2018, 19, 654–672. [Google Scholar] [CrossRef]
- Oxenkrug, G. Insulin Resistance and Dysregulation of Tryptophan–Kynurenine and Kynurenine–Nicotinamide Adenine Dinucleotide Metabolic Pathways. Mol. Neurobiol. 2013, 48, 294–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osama, H.; Narumiya, S.; Hayaishi, O.; Iinuma, H.; Takeuchi, T.; Umezawa, H. Inhibition of brain prostaglandin D synthetase and prostaglandin D2 dehydrogenase by some saturated and unsaturated fatty acids. Biochim. Biophys. Acta 1983, 752, 251–258. [Google Scholar] [PubMed]
- Ren, X.; Zhou, L.; Terwilliger, R.; Newton, S.S.; de Araujo, I.E. Sweet taste signaling functions as a hypothalamic glucose sensor. Front. Integr. Neurosci. 2009, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Sethi, S.; Bouret, S.G. Non-nutritive Sweeteners Induce Hypothalamic ER Stress Causing Abnormal Axon Outgrowth. Front. Endocrinol. 2019, 10, 876. [Google Scholar] [CrossRef] [Green Version]
- de Araujo, I.E. Sweet taste signaling and the formation of memories of energy sources. Front. Syst. Neurosci. 2011, 5, 99. [Google Scholar] [CrossRef] [Green Version]
- Reichelt, A.C.; Westbrook, R.F.; Morris, M.J. Integration of reward signalling and appetite regulating peptide systems in the control of food-cue responses. Br. J. Pharmacol. 2015, 172, 5225–5238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, C.; Tan, C.; Zhao, L.; Liang, Y.; Liu, G.; Liu, H.; Zhong, Y.; Liu, Z.; Mo, L.; Liu, X.; et al. Glucose metabolism impairment in Parkinson’s disease. Brain Res. Bull. 2023, 199, 110672. [Google Scholar] [CrossRef]
- Pang, S.Y.-Y.; Ho, P.W.-L.; Liu, H.-F.; Leung, C.-T.; Li, L.; Chang, E.E.S.; Ramsden, D.B.; Ho, S.-L. The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson’s disease. Transl. Neurodegener. 2019, 8, 23. [Google Scholar] [CrossRef]
- Willis, A.W.; Roberts, E.; Beck, J.C.; Fiske, B.; Ross, W.; Savica, R.; Eeden, S.K.V.D.; Tanner, C.M.; Marras, C. Incidence of Parkinson disease in North America. NPJ Park. Dis. 2022, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ritz, B. The Search for Environmental Causes of Parkinson’s Disease: Moving Forward. J. Parkinson’s Dis. 2018, 8, S9–S17. [Google Scholar] [CrossRef] [Green Version]
- Li, H.-X.; Zhang, C.; Zhang, K.; Liu, Y.-Z.; Peng, X.-X.; Zong, Q. Inflammatory bowel disease and risk of Parkinson’s disease: Evidence from a meta-analysis of 14 studies involving more than 13.4 million individuals. Front. Med. 2023, 10, 1137366. [Google Scholar] [CrossRef]
- Borghammer, P.; Berge, N.V.D. Brain-First versus Gut-First Parkinson’s Disease: A Hypothesis. J. Park. Dis. 2019, 9, S281–S295. [Google Scholar] [CrossRef] [PubMed]
- Ioghen, O.C.; Ceafalan, L.C.; Popescu, B.O. SH-SY5Y Cell Line In Vitro Models for Parkinson Disease Research—Old Practice for New Trends. J. Integr. Neurosci. 2023, 22, 20. [Google Scholar] [CrossRef]
- Skandrani, D.; Gaubin, Y.; Beau, B.; Murat, J.; Vincent, C.; Croute, F. Effect of selected insecticides on growth rate and stress protein expression in cultured human A549 and SH-SY5Y cells. Toxicol. Vitr. 2006, 20, 1378–1386. [Google Scholar] [CrossRef]
- Niyomchan, A.; Visitnonthachai, D.; Suntararuks, S.; Ngamsiri, P.; Watcharasit, P.; Satayavivad, J. Arsenic impairs insulin signaling in differentiated neuroblastoma SH-SY5Y cells. Neurotoxicology 2018, 66, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.-T.; Chen, K.-Y.; Wang, W.; Chiu, J.-Y.; Wu, D.; Chao, T.-Y.; Hu, C.-J.; Chau, K.-Y.D.; Bamodu, O.A. Insulin Resistance Promotes Parkinson’s Disease through Aberrant Expression of α-Synuclein, Mitochondrial Dysfunction, and Deregulation of the Polo-Like Kinase 2 Signaling. Cells 2020, 9, 740. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.-H.; Quirion, R. Insulin-like growth factor-1 (IGF-1) induces the activation/phosphorylation of Akt kinase and cAMP response element-binding protein (CREB) by activating different signaling pathways in PC12 cells. BMC Neurosci. 2006, 7, 51. [Google Scholar] [CrossRef] [Green Version]
- Birnbaum, M.J. Turning down insulin signaling. J. Clin. Investig. 2001, 108, 655–659. [Google Scholar] [CrossRef]
- Chiu, S.-L.; Chen, C.-M.; Cline, H.T. Insulin Receptor Signaling Regulates Synapse Number, Dendritic Plasticity, and Circuit Function In Vivo. Neuron 2008, 58, 708–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, W.; Sakaguchi, M.; Kleinridders, A.; Pino, G.G.-D.; Dreyfuss, J.M.; O’neill, B.T.; Ramirez, A.K.; Pan, H.; Winnay, J.N.; Boucher, J.; et al. Domain-dependent effects of insulin and IGF-1 receptors on signalling and gene expression. Nat. Commun. 2017, 8, 14892. [Google Scholar] [CrossRef] [Green Version]
- Ramalingam, M.; Kim, S.-J. The Neuroprotective Role of Insulin Against MPP+-Induced Parkinson’s Disease in Differentiated SH-SY5Y Cells. J. Cell. Biochem. 2016, 117, 917–926. [Google Scholar] [CrossRef]
- Cheng, B.; Maffi, S.K.; Martinez, A.A.; Acosta, Y.P.V.; Morales, L.D.; Roberts, J.L. Insulin-like growth factor-I mediates neuroprotection in proteasome inhibition-induced cytotoxicity in SH-SY5Y cells. Mol. Cell. Neurosci. 2011, 47, 181–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welcome, M.O.; Mastorakis, N.E. Emerging Concepts in Brain Glucose Metabolic Functions: From Glucose Sensing to How the Sweet Taste of Glucose Regulates Its Own Metabolism in Astrocytes and Neurons. NeuroMolecular Med. 2018, 20, 281–300. [Google Scholar] [CrossRef]
- Swithers, S.E. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol. Metab. 2013, 24, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Schiffman, S.S.; Rother, K.I. Sucralose, A Synthetic Organochlorine Sweetener: Overview Of Biological Issues. J. Toxicol. Environ. Health Part B Crit. Rev. 2013, 16, 399–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Solution Name | Solution Composition |
---|---|
Phosphate buffered saline with protease inhibitors | 1x PBS, 0.32 M sucrose (Acros Organics, Morris Plains, NJ, USA), 1 mM PMSF (Acros Organics, Morris Plains, NJ, USA), 5 mM NaF (Acros Organics, Morris Plains, NJ, USA), 1 mM Na3VO4 (Sigma-Aldrich, St. Louis, MO, USA), 1 mM EDTA (Sigma-Aldrich, St. Louis, MO, USA), 1 tablet of Complete Mini Protease Inhibitor on 10 mL of buffer (Roche, Basel, Switzerland) |
MTT Solubilization Solution | 10% Triton X-100 (Fisher Scientific, Fair Lawn, NJ, USA), 0.1 N HCl (Gram mol, Zagreb, Croatia) in anhydrous isopropanol (Gram mol, Zagreb, Croatia) |
6x Laemmli buffer | 0.35 M Tris base (pH 6.8) (Fisher Scientific, Waltham, MA, USA), 10% SDS (Sigma-Aldrich, Saint Louis, MO, USA), 30% glycerol (Acros Organics, Morris Plains, NJ, USA), 9.3% DTT (Acros Organics, NJ, USA) |
Electrophoresis buffer | 25 mM Tris base, 192 mM glycine (Fisher Scientific, Waltham, MA, USA) and 0.1% SDS |
Towbin buffer | 25 mM Tris base, 192 mM glycine, 20% methanol (Gram-Mol, Zagreb Croatia) in distilled water |
1x phosphate buffer (PBS) | 137 mM NaCl (Gram-Mol, Zagreb Croatia), 2.7 mM KCl (Kemika, Zagreb Croatia), 10 mM Na2HPO4 (Acros Organics, Morris Plains, NJ, USA), 1.8 mM KH2PO4 (Fisher Scientific, Loughborough, UK) |
Bovine serum albumin (BSA) solution | 3% BSA (Sigma-Aldrich, St. Louis, MO, USA) in 1x PBS-T |
Antibody | Class | Origin | Manufacturer and Catalog Number | Catalog Number | Dilution Ratio |
---|---|---|---|---|---|
Anti-protein kinase B (AKT) | IgG, monoclonal | Mouse | Cell Signaling, Danvers, MA, USA | 2920S | 1:1000 |
Anti-protein kinase B–phosphorylated on serine 473 (pAKT) | IgG, monoclonal | Rabbit | Cell Signaling, Danvers, MA, USA | 9271S | 1:1000 |
Anti-glycogen synthase kinase 3 α + β (GSK3 α/β) | IgG, monoclonal | Rabbit | Cell Signaling, Danvers, MA, USA | 5676S | 1:1000 |
Anti-glycogen synthase kinase 3 alpha/beta phosphorylated at serine 21/serine 9 (pGSK3 α/β) | IgG, monoclonal | Rabbit | Cell Signaling, Danvers, MA, USA | 9331S | 1:1000 |
Anti-insulin-like growth factor receptor–β subunit (IGF1Rβ) | IgG, polyclonal | Rabbit | Santa Cruz, CA, USA | sc-713 | 1:500 |
Anti-mouse antibody labeled with biotin (αMO-biotin) | IgG | Goat | Jackson ImmunoResearch, West Grove, PA, USA | 115–065-071 | 1:20,000 |
Anti-rabbit antibody labeled with biotin (αRB-biotin) | IgG | Goat | Jackson ImmunoResearch, West Grove, PA, USA | 111–065-144 | 1:20,000 |
Tentatively Annotated Compounds | KEGG ID | Adduct | m/z | Sucralose 0 mM | Sucralose 0.2 mM | Sucralose 2 mM | Sucralose 20 mM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No Treat. | Insulin | L-dopa | No Treat. | Insulin | L-Dopa | No Treat. | Insulin | L-dopa | No Treat. | Insulin | L-Dopa | ||||
Palmitoleic acid | C08362 | M-H2O-H | 235.2 | 173,075 ± 1049 | 51,885 ± 14,980 | 31,168 ± 12,818 | |||||||||
Myristic acid | C06424 | M+NH4 | 246.2 | 0 | 3269 ± 844 | ||||||||||
Arachidic acid | C06425 | M-H | 311.3 | 109,061 ± 20,504 | 53,144 ± 5819 | 195,335 ± 35,076 | 210,885 ± 45,574 | 272,520 ± 55,464 | |||||||
Docosanoic acid | C08281 | M+H-H2O | 323.3 | 11,556 ± 2554 | 3889 ± 2740 | 21,899 ± 1121 | 5188 ± 2100 | ||||||||
Oleic acid | C00712 | M+HAc-H | 341.3 | 46,931 ± 8604 | 0 | ||||||||||
Eicosenoic acid | C16526 | M+HAc-H | 369.3 | 20,669 ± 2962 | 44,696 ± 6296 | 40,722 ± 8668 | |||||||||
4-Hydroxysphinganine | C12145 | M+HAc-H | 376.3 | 0 | 68,161 ± 25,986 | ||||||||||
4-Hydroxy-phenyl-acetyl-glutamic acid | C05595 | M+Cl | 316.1 | 0 | 65,001 ± 22,413 | ||||||||||
6-Hydroxymelatonin | C05643 | M+NH4 | 266.2 | 2528 ± 2416 | 10,080 ± 1726 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čović, M.; Zjalić, M.; Mihajlović, L.; Pap, M.; Wagner, J.; Mandić, D.; Debeljak, Ž.; Heffer, M. Sucralose Targets the Insulin Signaling Pathway in the SH-SY5Y Neuroblastoma Cell Line. Metabolites 2023, 13, 817. https://doi.org/10.3390/metabo13070817
Čović M, Zjalić M, Mihajlović L, Pap M, Wagner J, Mandić D, Debeljak Ž, Heffer M. Sucralose Targets the Insulin Signaling Pathway in the SH-SY5Y Neuroblastoma Cell Line. Metabolites. 2023; 13(7):817. https://doi.org/10.3390/metabo13070817
Chicago/Turabian StyleČović, Marina, Milorad Zjalić, Lovro Mihajlović, Marianna Pap, Jasenka Wagner, Dario Mandić, Željko Debeljak, and Marija Heffer. 2023. "Sucralose Targets the Insulin Signaling Pathway in the SH-SY5Y Neuroblastoma Cell Line" Metabolites 13, no. 7: 817. https://doi.org/10.3390/metabo13070817
APA StyleČović, M., Zjalić, M., Mihajlović, L., Pap, M., Wagner, J., Mandić, D., Debeljak, Ž., & Heffer, M. (2023). Sucralose Targets the Insulin Signaling Pathway in the SH-SY5Y Neuroblastoma Cell Line. Metabolites, 13(7), 817. https://doi.org/10.3390/metabo13070817