Associations between Plasma Lipid Mediators and Chronic Daily Headache Outcomes in Patients Randomized to a Low Linoleic Acid Diet with or without Added Omega-3 Fatty Acids
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients and Dietary Methods
2.2. Measures of Functional and Psychological Dimensions of Pain
2.3. Sample Collection
2.4. Free Oxylipin Extraction
2.5. Oxylipin Analysis by UPLC-MS/MS
2.6. Data and Statistical Analysis
3. Results
3.1. Effect of Dietary Intervention on Plasma-Free Oxylipins within H3-L6 and L6 Groups
3.2. Effect of Dietary Intervention on Plasma-Free Oxylipins between the H3-L6 and L6 Groups
3.3. Association between 12-Week Changes in Plasma-Free Oxylipins and Pain Frequency and Intensity
3.4. Association between 12-Week Changes in Plasma-Free Oxylipins and Functional Dimensions of Pain
3.5. Association between 12-Week Changes in Plasma-Free Oxylipins and Psychological Dimensions of Pain
3.6. Summary of Findings
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | arachidonic acid |
ALA | alpha-linolenic acid |
BSI-18 | Brief Symptom Inventory |
CDHs | Chronic daily headaches |
COX | cyclooxygenase |
CYP | cytochrome |
DGLA | di-homo-gamma-linolenic acid |
DHA | docosahexaenoic acid |
EDTA | ethylenediaminetetraacetic acid |
EPA | eicosapentaneoic acid |
HIT-6 | Headache Impact Test-6 |
LA | linoleic acid |
LOQ PUFA | limit of quantification Polyunsaturated fatty acid |
sEH | soluble epoxide hydrolase |
SF-12 | Medical Outcomes Study Short Forms 12 |
SPE | solid phase extraction |
TRPV | transient receptor potential vanilloid |
UPLC-MS/MS | ultra high-pressure liquid chromatography-tandem mass spectrometry |
References
- Saper, J.R. Chronic daily headache: Transformational migraine, chronic migraine, and related disorders. Curr. Neurol. Neurosci. Rep. 2008, 8, 100–107. [Google Scholar] [CrossRef]
- Coeytaux, R.R.; Linville, J.C. Chronic daily headache in a primary care population: Prevalence and headache impact test scores. Headache 2007, 47, 7–12. [Google Scholar] [CrossRef]
- Mula, M.; Viana, M.; Jauch, R.; Schmitz, B.; Bettucci, D.; Cavanna, A.E.; Strigaro, G.; Tota, M.G.; Israel, H.; Reuter, U.; et al. Health-related quality of life measures and psychiatric comorbidity in patients with migraine. Eur. J. Neurol. 2009, 16, 1017–1021. [Google Scholar] [CrossRef]
- Raggi, A.; Covelli, V.; Schiavolin, S.; Giovannetti, A.M.; Cerniauskaite, M.; Quintas, R.; Leonardi, M.; Sabariego, C.; Grazzi, L.; D’Amico, D. Psychosocial difficulties in patients with episodic migraine: A cross-sectional study. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2016, 37, 1979–1986. [Google Scholar] [CrossRef]
- Goadsby, P.J. Bench to bedside advances in the 21st century for primary headache disorders: Migraine treatments for migraine patients. Brain J. Neurol. 2016, 139, 2571–2577. [Google Scholar] [CrossRef]
- Irimia, P.; Palma, J.-A.; Fernandez-Torron, R.; Martinez-Vila, E. Refractory migraine in a headache clinic population. BMC Neurol. 2011, 11, 94. [Google Scholar] [CrossRef]
- Wagner, K.; Inceoglu, B.; Hammock, B.D. Soluble epoxide hydrolase inhibition, epoxygenated fatty acids and nociception. Prostaglandins Other Lipid Mediat. 2011, 96, 76–83. [Google Scholar] [CrossRef]
- Morisseau, C.; Inceoglu, B.; Schmelzer, K.; Tsai, H.J.; Jinks, S.L.; Hegedus, C.M.; Hammock, B.D. Naturally occurring monoepoxides of eicosapentaenoic acid and docosahexaenoic acid are bioactive antihyperalgesic lipids. J. Lipid Res. 2010, 51, 3481–3490. [Google Scholar] [CrossRef]
- Xu, Z.Z.; Liu, X.J.; Berta, T.; Park, C.K.; Lu, N.; Serhan, C.N.; Ji, R.R. Neuroprotectin/protectin D1 protects against neuropathic pain in mice after nerve trauma. Ann. Neurol. 2013, 74, 490–495. [Google Scholar] [CrossRef]
- Park, C.K.; Lu, N.; Xu, Z.Z.; Liu, T.; Serhan, C.N.; Ji, R.R. Resolving TRPV1- and TNF-alpha-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1. J. Neurosci. 2011, 31, 15072–15085. [Google Scholar] [CrossRef]
- Inceoglu, B.; Jinks, S.L.; Ulu, A.; Hegedus, C.M.; Georgi, K.; Schmelzer, K.R.; Wagner, K.; Jones, P.D.; Morisseau, C.; Hammock, B.D. Soluble epoxide hydrolase and epoxyeicosatrienoic acids modulate two distinct analgesic pathways. Proc. Natl. Acad. Sci. USA 2008, 105, 18901–18906. [Google Scholar] [CrossRef] [PubMed]
- Inceoglu, B.; Jinks, S.L.; Schmelzer, K.R.; Waite, T.; Kim, I.H.; Hammock, B.D. Inhibition of soluble epoxide hydrolase reduces LPS-induced thermal hyperalgesia and mechanical allodynia in a rat model of inflammatory pain. Life Sci. 2006, 79, 2311–2319. [Google Scholar] [CrossRef] [PubMed]
- Patwardhan, A.M.; Akopian, A.N.; Ruparel, N.B.; Diogenes, A.; Weintraub, S.T.; Uhlson, C.; Murphy, R.C.; Hargreaves, K.M. Heat generates oxidized linoleic acid metabolites that activate TRPV1 and produce pain in rodents. J. Clin. Investig. 2010, 120, 1617–1626. [Google Scholar] [CrossRef] [PubMed]
- Patwardhan, A.M.; Scotland, P.E.; Akopian, A.N.; Hargreaves, K.M. Activation of TRPV1 in the spinal cord by oxidized linoleic acid metabolites contributes to inflammatory hyperalgesia. Proc. Natl. Acad. Sci. USA 2009, 106, 18820–18824. [Google Scholar] [CrossRef] [PubMed]
- Levine, J.D.; Lam, D.; Taiwo, Y.O.; Donatoni, P.; Goetzl, E.J. Hyperalgesic properties of 15-lipoxygenase products of arachidonic acid. Proc. Natl. Acad. Sci. USA 1986, 83, 5331–5334. [Google Scholar] [CrossRef]
- Devor, M.; White, D.M.; Goetzl, E.J.; Levine, J.D. Eicosanoids, but not tachykinins, excite C-fiber endings in rat sciatic nerve-end neuromas. Neuroreport 1992, 3, 21–24. [Google Scholar] [CrossRef]
- Gouveia-Figueira, S.; Nording, M.L.; Gaida, J.E.; Forsgren, S.; Alfredson, H.; Fowler, C.J. Serum levels of oxylipins in achilles tendinopathy: An exploratory study. PLoS ONE 2015, 10, e0123114. [Google Scholar] [CrossRef]
- Hellström, F.; Gouveia-Figueira, S.; Nording, M.L.; Björklund, M.; Fowler, C.J. Association between plasma concentrations of linoleic acid-derived oxylipins and the perceived pain scores in an exploratory study in women with chronic neck pain. BMC Musculoskelet. Disord. 2016, 17, 103. [Google Scholar] [CrossRef]
- Taha, A.Y.; Cheon, Y.; Faurot, K.F.; Macintosh, B.; Majchrzak-Hong, S.F.; Mann, J.D.; Hibbeln, J.R.; Ringel, A.; Ramsden, C.E. Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools. Prostaglandins Leukot. Essent. Fat. Acids 2014, 90, 151–157. [Google Scholar] [CrossRef]
- Ramsden, C.E.; Faurot, K.R.; Zamora, D.; Palsson, O.S.; MacIntosh, B.A.; Gaylord, S.; Taha, A.Y.; Rapoport, S.I.; Hibbeln, J.R.; Davis, J.M.; et al. Targeted alterations in dietary n-3 and n-6 fatty acids improve life functioning and reduce psychological distress among patients with chronic headache: A secondary analysis of a randomized trial. Pain 2015, 156, 587–596. [Google Scholar] [CrossRef]
- Ramsden, C.E.; Faurot, K.R.; Zamora, D.; Suchindran, C.M.; Macintosh, B.A.; Gaylord, S.; Ringel, A.; Hibbeln, J.R.; Feldstein, A.E.; Mori, T.A.; et al. Targeted alteration of dietary n-3 and n-6 fatty acids for the treatment of chronic headaches: A randomized trial. Pain 2013, 154, 2441–2451. [Google Scholar] [CrossRef]
- Ramsden, C.E.; Ringel, A.; Feldstein, A.E.; Taha, A.Y.; MacIntosh, B.A.; Hibbeln, J.R.; Majchrzak-Hong, S.F.; Faurot, K.R.; Rapoport, S.I.; Cheon, Y.; et al. Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostaglandins Leukot. Essent. Fat. Acids 2012, 87, 135–141. [Google Scholar] [CrossRef]
- Domenichiello, A.F.; Jensen, J.R.; Zamora, D.; Horowitz, M.; Yuan, Z.X.; Faurot, K.; Mann, J.D.; Mannes, A.J.; Ramsden, C.E. Identifying oxidized lipid mediators as prognostic biomarkers of chronic posttraumatic headache. Pain 2020, 161, 2775–2785. [Google Scholar] [CrossRef]
- Ramsden, C.E.; Zamora, D.; Faurot, K.R.; MacIntosh, B.; Horowitz, M.; Keyes, G.S.; Yuan, Z.-X.; Miller, V.; Lynch, C.; Honvoh, G.; et al. Dietary alteration of n-3 and n-6 fatty acids for headache reduction in adults with migraine: Randomized controlled trial. BMJ 2021, 374, n1448. [Google Scholar] [CrossRef]
- Bergstrom, S.; Duner, H.; von Euler, U.S.; Pernow, B.; Sjovall, J. Observations on the effects of infusion of prostaglandin E in man. Acta Physiol. Scand. 1959, 45, 145–151. [Google Scholar] [CrossRef]
- Pardy, B.J.; Lewis, J.D.; Eastcott, H.H. Preliminary experience with prostaglandins E1 and I2 in peripheral vascular disease. Surgery 1980, 88, 826–832. [Google Scholar]
- Inceoglu, B.; Wagner, K.M.; Yang, J.; Bettaieb, A.; Schebb, N.H.; Hwang, S.H.; Morisseau, C.; Haj, F.G.; Hammock, B.D. Acute augmentation of epoxygenated fatty acid levels rapidly reduces pain-related behavior in a rat model of type I diabetes. Proc. Natl. Acad. Sci. USA 2012, 109, 11390–11395. [Google Scholar] [CrossRef]
- Taha, A.Y.; Hennebelle, M.; Yang, J.; Zamora, D.; Rapoport, S.I.; Hammock, B.D.; Ramsden, C.E. Regulation of rat plasma and cerebral cortex oxylipin concentrations with increasing levels of dietary linoleic acid. Prostaglandins Leukot. Essent. Fat. Acids 2018, 138, 71–80. [Google Scholar] [CrossRef]
- Ramsden, C.E.; Ringel, A.; Majchrzak-Hong, S.F.; Yang, J.; Blanchard, H.; Zamora, D.; Loewke, J.D.; Rapoport, S.I.; Hibbeln, J.R.; Davis, J.M.; et al. Dietary linoleic acid-induced alterations in pro- and anti-nociceptive lipid autacoids: Implications for idiopathic pain syndromes? Mol. Pain 2016, 12, 1744806916636386. [Google Scholar] [CrossRef]
- Dahlof, C.G.; Dimenas, E. Migraine patients experience poorer subjective well-being/quality of life even between attacks. Cephalalgia 1995, 15, 31–36. [Google Scholar] [CrossRef]
- Ramsden, C.E.; Mann, J.D.; Faurot, K.R.; Lynch, C.; Imam, S.T.; MacIntosh, B.A.; Hibbeln, J.R.; Loewke, J.; Smith, S.; Coble, R.; et al. Low omega-6 vs. low omega-6 plus high omega-3 dietary intervention for chronic daily headache: Protocol for a randomized clinical trial. Trials 2011, 12, 97. [Google Scholar] [CrossRef] [PubMed]
- MacIntosh, B.A.; Ramsden, C.E.; Faurot, K.R.; Zamora, D.; Mangan, M.; Hibbeln, J.R.; Mann, J.D. Low-n-6 and low-n-6 plus high-n-3 diets for use in clinical research. Br. J. Nutr. 2013, 110, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Schuchardt, J.P.; Schmidt, S.; Kressel, G.; Dong, H.; Willenberg, I.; Hammock, B.D.; Hahn, A.; Schebb, N.H. Comparison of free serum oxylipin concentrations in hyper- vs. normolipidemic men. Prostaglandins Leukot. Essent. Fat. Acids 2013, 89, 19–29. [Google Scholar] [CrossRef]
- Yang, J.; Schmelzer, K.; Georgi, K.; Hammock, B.D. Quantitative profiling method for oxylipin metabolome by liquid chromatography electrospray ionization tandem mass spectrometry. Anal. Chem. 2009, 81, 8085–8093. [Google Scholar] [CrossRef]
- Hennebelle, M.; Otoki, Y.; Yang, J.; Hammock, B.D.; Levitt, A.J.; Taha, A.Y.; Swardfager, W. Altered soluble epoxide hydrolase-derived oxylipins in patients with seasonal major depression: An exploratory study. Psychiatry Res. 2017, 252, 94–101. [Google Scholar] [CrossRef]
- Zivkovic, A.M.; Yang, J.; Georgi, K.; Hegedus, C.; Nording, M.L.; O’Sullivan, A.; German, J.B.; Hogg, R.J.; Weiss, R.H.; Bay, C.; et al. Serum oxylipin profiles in IgA nephropathy patients reflect kidney functional alterations. Metab. Off. J. Metab. Soc. 2012, 8, 1102–1113. [Google Scholar] [CrossRef]
- Yu, D.; Hennebelle, M.; Sahlas, D.J.; Ramirez, J.; Gao, F.; Masellis, M.; Cogo-Moreira, H.; Swartz, R.H.; Herrmann, N.; Chan, P.C.; et al. Soluble Epoxide Hydrolase-Derived Linoleic Acid Oxylipins in Serum Are Associated with Periventricular White Matter Hyperintensities and Vascular Cognitive Impairment. Transl. Stroke Res. 2019, 10, 522–533. [Google Scholar] [CrossRef]
- Ramsden, C.E.; Domenichiello, A.F.; Yuan, Z.X.; Sapio, M.R.; Keyes, G.S.; Mishra, S.K.; Gross, J.R.; Majchrzak-Hong, S.; Zamora, D.; Horowitz, M.S.; et al. A systems approach for discovering linoleic acid derivatives that potentially mediate pain and itch. Sci. Signal. 2017, 10, eaal5241. [Google Scholar] [CrossRef]
- Shaik, J.S.B.; Ahmad, M.; Li, W.; Rose, M.E.; Foley, L.M.; Hitchens, T.K.; Graham, S.H.; Hwang, S.H.; Hammock, B.D.; Poloyac, S.M. Soluble epoxide hydrolase inhibitor trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid is neuroprotective in rat model of ischemic stroke. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H1605–H1613. [Google Scholar] [CrossRef]
- Shearer, G.C.; Newman, J.W. Lipoprotein lipase releases esterified oxylipins from very low-density lipoproteins. Prostaglandins Leukot. Essent. Fat. Acids 2008, 79, 215–222. [Google Scholar] [CrossRef]
- Schebb, N.H.; Ostermann, A.I.; Yang, J.; Hammock, B.D.; Hahn, A.; Schuchardt, J.P. Comparison of the effects of long-chain omega-3 fatty acid supplementation on plasma levels of free and esterified oxylipins. Prostaglandins Other Lipid Mediat. 2014, 113, 21–29. [Google Scholar] [CrossRef]
- Zhang, Z.; Emami, S.; Hennebelle, M.; Morgan, R.K.; Lerno, L.A.; Slupsky, C.M.; Lein, P.J.; Taha, A.Y. Linoleic acid-derived 13-hydroxyoctadecadienoic acid is absorbed and incorporated into rat tissues. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2021, 1866, 158870. [Google Scholar] [CrossRef]
- Schuster, S.; Johnson, C.D.; Hennebelle, M.; Holtmann, T.; Taha, A.Y.; Kirpich, I.A.; Eguchi, A.; Ramsden, C.E.; Papouchado, B.G.; McClain, C.J.; et al. Oxidized linoleic acid metabolites induce liver mitochondrial dysfunction, apoptosis, and NLRP3 activation in mice. J. Lipid Res. 2018, 59, 1597–1609. [Google Scholar] [CrossRef]
- Taha, A.Y.; Blanchard, H.C.; Cheon, Y.; Ramadan, E.; Chen, M.; Chang, L.; Rapoport, S.I. Dietary Linoleic Acid Lowering Reduces Lipopolysaccharide-Induced Increase in Brain Arachidonic Acid Metabolism. Mol. Neurobiol. 2017, 54, 4303–4315. [Google Scholar] [CrossRef]
- Sylvestre, D.A.; Taha, A.Y. Long-chain omega-3 polyunsaturated fatty acids and neuroinflammation—Efficacy may depend on dietary alpha-linolenic and linoleic acid background levels. Brain Behav. Immun. 2019, 76, 3–4. [Google Scholar] [CrossRef]
- Lands, B. Historical perspectives on the impact of n-3 and n-6 nutrients on health. Prog. Lipid Res. 2014, 55, 17–29. [Google Scholar] [CrossRef]
- Bieglmayer, C.; Hofer, G.; Kainz, C.; Reinthaller, A.; Kopp, B.; Janisch, H. Concentrations of various arachidonic acid metabolites in menstrual fluid are associated with menstrual pain and are influenced by hormonal contraceptives. Gynecol. Endocrinol. 1995, 9, 307–312. [Google Scholar] [CrossRef]
Compound | H3-L6 Group (n = 22) 1 | L6 Group (n = 23) 1 | Both Groups (n = 45) | Between-Group (Week 12) 5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
nmol/L | Baseline 2 Median (IQR) | Median Percent Change 3 | Pre-vs-Post p-Value 4 | Baseline 2 Median (IQR) | Median Percent Change 3 | Pre-vs-Post p-Value 4 | Median Percent Change 3 | Pre-vs-Post p-Value 4 | Coef | p-Value |
Docosahexaenoic acid (DHA, 22:6 n-3)-derived oxylipins | ||||||||||
13(14)-EpDPE | 0.01 (0.00, 0.01) | 206.73 | 0.006 | 0.01 (0.01, 0.03) | 2.83 | 0.465 | 61.09 | 0.009 | 0.01 | 0.257 |
16(17)-EpDPE | 0.54 (0.22, 1.00) | 165.00 | 0.002 | 0.89 (0.33, 1.38) | 9.45 | 0.715 | 80.34 | 0.005 | 0.77 | 0.023 |
19(20)-EpDPE | 1.22 (0.85, 2.03) | 183.91 | 0.002 | 1.54 (0.81, 2.33) | 29.76 | 0.362 | 72.24 | 0.001 | 1.44 | 0.027 |
10,11-DiHDPE | 0.15 (0.08, 0.22) | 178.22 | 0.024 | 0.15 (0.07, 0.26) | 13.93 | 0.484 | 46.26 | 0.020 | −0.25 | 0.894 |
13,14-DiHDPE | 0.19 (0.17, 0.26) | 66.18 | 0.067 | 0.17 (0.13, 0.26) | 32.87 | 0.059 | 47.56 | 0.009 | −1.46 | 0.473 |
16,17-DiHDPE | 0.43 (0.19, 0.54) | 79.30 | 0.042 | 0.46 (0.27, 0.59) | −6.17 | 0.523 | 36.60 | 0.023 | −1.49 | 0.672 |
19,20-DiHDPE | 2.82 (2.27, 3.97) | 79.70 | 0.031 | 2.56 (1.84, 3.28) | 48.38 | 0.036 | 48.39 | 0.003 | −28.16 | 0.257 |
α-linolenic acid (ALA, 18:3 n-3)-derived oxylipins | ||||||||||
9-HOTrE | 0.71 (0.38, 1.08) | 13.78 | 0.685 | 0.48 (0.39, 0.66) | 35.11 | 0.153 | 14.97 | 0.531 | 0.03 | 0.850 |
9(10)-EpODE | 2.14 (0.90, 3.23) | 17.82 | 0.223 | 2.70 (0.90, 6.99) | 72.95 | 0.563 | 22.56 | 0.229 | −1.29 | 0.411 |
12(13)-EpODE | 1.20 (0.56, 1.86) | −13.06 | 0.615 | 1.79 (0.88, 3.49) | 2.55 | 0.543 | 1.11 | 0.538 | −0.60 | 0.413 |
15(16)-EpODE | 7.54 (4.30, 11.96) | 28.56 | 0.338 | 7.95 (4.57, 16.49) | 42.46 | 0.248 | 31.24 | 0.144 | −1.25 | 0.652 |
9,10-DiHODE | 0.20 (0.13, 0.70) | 13.16 | 0.733 | 0.25 (0.15, 0.38) | 7.25 | 0.162 | 7.25 | 0.439 | −1.69 | 0.308 |
15,16-DiHODE | 12.59 (7.01, 22.68) | 34.51 | 0.072 | 12.40 (9.25, 17.63) | 26.69 | 0.144 | 30.75 | 0.032 | −79.37 | 0.356 |
Arachidonic acid (AA, 20:4 n-6)-derived oxylipins | ||||||||||
5-HETE | 0.78 (0.55, 1.32) | −19.10 | 0.168 | 1.01 (0.72, 1.31) | −7.00 | 0.346 | −13.63 | 0.098 | −0.05 | 0.753 |
8-HETE | 0.34 (0.14, 0.73) | −16.10 | 0.408 | 0.41 (0.26, 1.14) | −46.62 | 0.191 | −20.59 | 0.174 | −0.02 | 0.835 |
11-HETE | 0.27 (0.15, 0.49) | −2.98 | 0.935 | 0.41 (0.17, 0.54) | −13.64 | 0.212 | −13.64 | 0.433 | 0.004 | 0.961 |
12-HETE | 2.43 (1.51, 3.67) | −17.48 | 0.445 | 2.44 (1.58, 4.27) | 17.14 | 0.670 | 3.32 | 0.400 | −0.26 | 0.611 |
15-HETE | 1.33 (0.83, 1.74) | 3.88 | 0.808 | 1.44 (0.75, 2.52) | −9.74 | 0.503 | −7.08 | 0.765 | −0.04 | 0.896 |
8,9-DiHETrE | 0.43 (0.34, 0.56) | −37.52 | 0.026 | 0.39 (0.29, 0.61) | 2.02 | 0.648 | −23.55 | 0.234 | −4.12 | 0.259 |
11,12-DiHETrE | 0.72 (0.56, 0.96) | −17.73 | 0.115 | 0.64 (0.53, 0.80) | 7.10 | 0.201 | −4.28 | 0.826 | −6.37 | 0.152 |
8(9)-EpETrE | 0.81 (0.36, 1.26) | −17.17 | 0.592 | 0.99 (0.48, 1.74) | 35.23 | 0.429 | 4.97 | 0.861 | −0.61 | 0.035 |
11(12)-EpETrE | 1.82 (1.26, 2.89) | 13.01 | 0.884 | 3.15 (1.17, 6.21) | 21.00 | 0.670 | 19.37 | 0.648 | −1.06 | 0.209 |
14(15)-EpETrE | 1.74 (1.11, 2.79) | −22.84 | 0.961 | 2.98 (1.04, 4.65) | 29.91 | 0.523 | 8.00 | 0.731 | −0.77 | 0.226 |
PGF2a | 6.59 (5.16, 8.62) | 21.26 | 0.050 | 5.90 (4.23, 6.65) | 22.06 | 0.048 | 22.06 | 0.006 | −0.57 | 0.785 |
Di-homo-gamma-linolenic acid (DGLA, 20:3 n-6)-derived oxylipins | ||||||||||
15(S)-HETrE | 1.41 (0.97, 1.72) | −25.76 | 0.236 | 1.30 (0.97, 1.67) | −8.68 | 0.394 | −9.26 | 0.160 | −0.09 | 0.662 |
Linoleic acid (LA, 18:2 n-6)-derived oxylipins | ||||||||||
9-HODE | 6.68 (4.82, 8.89) | −10.55 | 0.338 | 5.96 (4.53, 7.78) | 23.26 | 0.144 | 6.99 | 0.835 | −0.85 | 0.460 |
13-HODE | 13.53 (9.62, 19.78) | −17.60 | 0.115 | 11.51 (9.49, 15.79) | 12.25 | 0.378 | −0.14 | 0.531 | −1.93 | 0.448 |
9-oxo-ODE | 7.15 (2.84, 10.37) | −27.91 | 0.140 | 4.93 (3.12, 8.66) | 28.89 | 0.042 | 2.63 | 0.897 | −2.67 | 0.033 |
9(10)-EpOME | 82.58 (41.10, 128.79) | −2.31 | 0.884 | 112.74 (53.98, 256.28) | 7.13 | 0.927 | 1.75 | 0.915 | −77.80 | 0.121 |
12(13)-EpOME | 22.52 (14.62, 32.13) | −6.08 | 0.527 | 29.34 (13.69, 58.24) | 1.19 | 0.976 | −1.06 | 0.680 | −14.83 | 0.166 |
9,10-DiHOME | 3.73 (2.70, 5.33) | −18.19 | 0.372 | 3.55 (2.53, 7.85) | 24.12 | 0.362 | −6.42 | 0.977 | −39.49 | 0.243 |
12,13-DiHOME | 7.89 (5.68, 15.66) | −18.21 | 0.445 | 7.37 (4.84, 14.01) | −0.18 | 0.761 | −8.12 | 0.748 | −56.20 | 0.352 |
9,10,13-TriHOME | 3.03 (2.50, 6.02) | −19.57 | 0.014 | 3.38 (2.39, 5.96) | −3.93 | 0.976 | −11.36 | 0.105 | −11.40 | 0.362 |
9,12,13-TriHOME | 5.04 (4.46, 10.97) | 3.66 | 0.987 | 6.38 (4.07, 11.10) | −12.67 | 0.563 | −4.69 | 0.460 | −20.35 | 0.347 |
Pain Frequency and Intensity 2 | Functional Dimensions of Pain 3 | Psychological Dimensions of Pain 3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Oxylipins | Headache Days/Month | Headache Hours/Day | HIT-6 4 | SF-12 (Physical) 5 | SF-12 (Mental) 5 | BSI-18 6 | ||||||
Coef | p-Value | Coef | p-Value | Coef | p-Value | Coef | p-Value | Coef | p-Value | Coef | p-Value | |
Docosahexaenoic acid (DHA, 22:6 n-3)-derived oxylipins | ||||||||||||
13(14)-EpDPE | 1.8% | (0.6483) | 2.0% | (0.7458) | −0.23 | (0.0837) | 0.20 | (0.1302) | 0.11 | (0.4086) | −0.19 | (0.0965) |
16(17)-EpDPE | −18% | (<0.0001) | −20% | (0.0036) | −0.37 | (0.0029) | 0.33 | (0.0088) | 0.21 | (0.1103) | −0.20 | (0.0874) |
19(20)-EpDPE | −12% | (0.0032) | −9.4% | (0.1530) | −0.33 | (0.0134) | 0.31 | (0.0171) | 0.12 | (0.3895) | −0.21 | (0.0966) |
10,11-DiHDPE | 4.4% | (0.1971) | 6.0% | (0.2679) | 0.15 | (0.2558) | −0.23 | (0.0835) | −0.11 | (0.4099) | 0.05 | (0.7115) |
13,14-DiHDPE | 2.3% | (0.5229) | 2.0% | (0.7236) | 0.16 | (0.2338) | −0.21 | (0.0948) | −0.12 | (0.3610) | 0.10 | (0.4271) |
16,17-DiHDPE | 5.5% | (0.1078) | 7.2% | (0.1771) | 0.16 | (0.2406) | −0.07 | (0.5902) | −0.17 | (0.2223) | 0.09 | (0.4899) |
19,20-DiHDPE | 4.1% | (0.2537) | 5.7% | (0.2930) | 0.07 | (0.5764) | −0.05 | (0.7244) | −0.19 | (0.1500) | 0.08 | (0.5385) |
α-linolenic acid (ALA, 18:3 n-3)-derived oxylipins | ||||||||||||
9-HOTrE | 18% | (<0.0001) | 0.57% | (0.9105) | 0.08 | (0.5477) | −0.19 | (0.1159) | 0.11 | (0.4280) | −0.05 | (0.7179) |
9(10)-EpODE | 7.3% | (0.0511) | 12% | (0.0384) | 0.15 | (0.2624) | −0.05 | (0.7379) | 0.04 | (0.8008) | 0.05 | (0.7033) |
12(13)-EpODE | 4.0% | (0.2940) | 6.7% | (0.2528) | 0.09 | (0.5221) | 0.01 | (0.9594) | 0.03 | (0.8493) | 0.05 | (0.7188) |
15(16)-EpODE | 4.7% | (0.2214) | 7.5% | (0.1993) | 0.08 | (0.5717) | 0.01 | (0.9670) | 0.10 | (0.4889) | <0.01 | (0.9861) |
9,10-DiHODE | 0.033% | (0.9930) | −2.8% | (0.6255) | 0.07 | (0.6035) | −0.06 | (0.6533) | 0.06 | (0.6612) | 0.07 | (0.5826) |
15,16-DiHODE | 0.54% | (0.8795) | 1.2% | (0.8312) | 0.12 | (0.3581) | −0.04 | (0.7920) | −0.10 | (0.4819) | 0.11 | (0.3997) |
Arachidonic acid (AA, 20:4 n-6)-derived oxylipins | ||||||||||||
5-HETE | 1.6% | (0.7222) | −1.6% | (0.8172) | 0.01 | (0.9426) | −0.12 | (0.3785) | 0.25 | (0.0928) | −0.08 | (0.5711) |
8-HETE | −12% | (0.0102) | −17% | (0.0305) | −0.11 | (0.4388) | −0.10 | (0.4683) | 0.16 | (0.2527) | 0.07 | (0.6100) |
11-HETE | 14% | (0.0006) | 6.1% | (0.2755) | 0.07 | (0.6195) | −0.18 | (0.2082) | <0.01 | (0.9824) | 0.18 | (0.1888) |
12-HETE | 15% | (0.0001) | 9.4% | (0.0893) | 0.15 | (0.2525) | −0.11 | (0.4289) | −0.06 | (0.6640) | 0.13 | (0.3103) |
15-HETE | 11% | (0.0090) | −2.8% | (0.6514) | −0.13 | (0.3239) | −0.09 | (0.5070) | 0.08 | (0.5821) | 0.07 | (0.6061) |
8,9-DiHETrE | −8.4% | (0.0671) | −9.1% | (0.2630) | −0.28 | (0.0330) | −0.03 | (0.8149) | 0.02 | (0.8790) | 0.05 | (0.6827) |
11,12-DiHETrE | −2.4% | (0.5243) | −2.6% | (0.6650) | 0.09 | (0.4836) | −0.02 | (0.9063) | 0.05 | (0.7491) | −0.04 | (0.7481) |
8(9)-EpETrE | 2.1% | (0.6445) | 9.5% | (0.1691) | 0.09 | (0.5347) | 0.06 | (0.6779) | −0.09 | (0.5303) | 0.03 | (0.8261) |
11(12)-EpETrE | −0.81% | (0.8467) | 5.2% | (0.4154) | 0.06 | (0.6491) | 0.08 | (0.5437) | −0.01 | (0.9487) | <0.01 | (0.9961) |
14(15)-EpETrE | −1.7% | (0.6988) | 12% | (0.0652) | 0.03 | (0.8374) | 0.03 | (0.8291) | <0.01 | (0.9961) | −0.01 | (0.9561) |
PGF2α | 0.029% | (0.9934) | 2.7% | (0.5889) | −0.06 | (0.6586) | 0.02 | (0.8749) | 0.01 | (0.9673) | −0.09 | (0.4417) |
Di-homo-gamma-linolenic acid (DGLA, 20:3 n-6)-derived oxylipins | ||||||||||||
15(S)-HETrE | 8.7% | (0.0308) | 6.6% | (0.2767) | 0.13 | (0.3464) | −0.24 | (0.0621) | 0.15 | (0.2840) | 0.07 | (0.5864) |
Linoleic acid (LA, 18:2 n-6)-derived oxylipins | ||||||||||||
9-HODE | 28% | (<0.0001) | 3.0% | (0.5760) | 0.14 | (0.2949) | −0.18 | (0.1752) | 0.17 | (0.2151) | −0.11 | (0.4081) |
13-HODE | 21% | (<0.0001) | 3.6% | (0.4991) | 0.11 | (0.4104) | −0.20 | (0.1229) | 0.05 | (0.7338) | −0.07 | (0.5639) |
9-oxo-ODE | 18% | (0.0002) | 4.5% | (0.5133) | 0.18 | (0.1809) | −0.29 | (0.0381) | −0.01 | (0.9367) | 0.06 | (0.6381) |
9(10)-EpOME | 3.6% | (0.3374) | 6.2% | (0.2735) | 0.08 | (0.5686) | 0.07 | (0.6058) | −0.06 | (0.6874) | 0.08 | (0.5263) |
12(13)-EpOME | 1.3% | (0.7251) | 7.1% | (0.2143) | 0.06 | (0.6699) | <0.01 | (0.9946) | −0.01 | (0.9720) | 0.05 | (0.6912) |
9,10-DiHOME | −3.5% | (0.3647) | −6.9% | (0.2766) | 0.06 | (0.6422) | 0.04 | (0.7489) | 0.03 | (0.8580) | 0.09 | (0.4577) |
12,13-DiHOME | −5.9% | (0.1342) | −6.9% | (0.3002) | 0.08 | (0.5720) | −0.01 | (0.9582) | −0.03 | (0.8357) | 0.10 | (0.4579) |
9,10,13-TriHOME | 6.3% | (0.0300) | 3.8% | (0.3761) | 0.17 | (0.1890) | −0.02 | (0.8971) | −0.29 | (0.0296) | 0.22 | (0.0709) |
9,12,13-TriHOME | 6.1% | (0.0342) | 4.6% | (0.2777) | 0.18 | (0.1738) | −0.03 | (0.8403) | 0.11 | (0.4990) | 0.22 | (0.0598) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Q.; Yang, J.; Zamora, D.; Horowitz, M.; Faurot, K.R.; MacIntosh, B.A.; Mann, J.D.; Hammock, B.D.; Ramsden, C.E.; Taha, A.Y. Associations between Plasma Lipid Mediators and Chronic Daily Headache Outcomes in Patients Randomized to a Low Linoleic Acid Diet with or without Added Omega-3 Fatty Acids. Metabolites 2023, 13, 690. https://doi.org/10.3390/metabo13060690
Shen Q, Yang J, Zamora D, Horowitz M, Faurot KR, MacIntosh BA, Mann JD, Hammock BD, Ramsden CE, Taha AY. Associations between Plasma Lipid Mediators and Chronic Daily Headache Outcomes in Patients Randomized to a Low Linoleic Acid Diet with or without Added Omega-3 Fatty Acids. Metabolites. 2023; 13(6):690. https://doi.org/10.3390/metabo13060690
Chicago/Turabian StyleShen, Qing, Jun Yang, Daisy Zamora, Mark Horowitz, Keturah R. Faurot, Beth A. MacIntosh, J. Douglas Mann, Bruce D. Hammock, Christopher E. Ramsden, and Ameer Y. Taha. 2023. "Associations between Plasma Lipid Mediators and Chronic Daily Headache Outcomes in Patients Randomized to a Low Linoleic Acid Diet with or without Added Omega-3 Fatty Acids" Metabolites 13, no. 6: 690. https://doi.org/10.3390/metabo13060690
APA StyleShen, Q., Yang, J., Zamora, D., Horowitz, M., Faurot, K. R., MacIntosh, B. A., Mann, J. D., Hammock, B. D., Ramsden, C. E., & Taha, A. Y. (2023). Associations between Plasma Lipid Mediators and Chronic Daily Headache Outcomes in Patients Randomized to a Low Linoleic Acid Diet with or without Added Omega-3 Fatty Acids. Metabolites, 13(6), 690. https://doi.org/10.3390/metabo13060690