Benzisothiazolinone: Pharmacokinetics, Tissue Distribution, and Mass Balance Studies in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Animals
2.3. Pharmacokinetic Studies of BIT in Rats
2.3.1. Oral Administration of BIT in Rats
2.3.2. Dermal Application
2.4. Inhalation Exposure Study
2.4.1. Inhalation-Delivered Dose Calculation
2.4.2. Inhalation Exposure
2.5. Disposition Studies of BIT in Rats
2.5.1. Tissue Distribution Studies after Oral Administration of BIT in Rats
2.5.2. Mass Balance Study of [14C]-BIT in Rats
2.6. LC–MS/MS Analytical Method for the Quantification of BIT in Biological Samples
2.7. Pharmacokinetic and Statistical Analysis
3. Results
3.1. Pharmacokinetic Studies of BIT in Rats
3.1.1. Oral Administration of BIT in Rats
3.1.2. Dermal Application of BIT in Rats
3.1.3. Inhalation Exposure of BIT in Rats
3.2. Disposition Studies of BIT in Rats
3.2.1. Tissue Distribution Studies after Oral Administration of BIT in Rats
3.2.2. Mass Balance Study of [14C]-BIT in Rats
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUCinf | Area under the plasma concentration-time curve from time zero to infinity |
AUCt | Area under the plasma concentration-time curve within the time span of zero to last |
Ae0–24 h | Percentage of BIT excreted as an unchanged form over the 24-h urine |
BDC | Bile duct cannulated |
BIT | Benzisothiazolinone |
BLQ | Below the lower limit of quantification |
Cmax | Peak plasma concentration |
CMIT | Chloromethylisothiazolinone |
F | Bioavailability |
kp | Tissue-to-plasma partition coefficient |
LC–MS/MS | Liquid chromatography with tandem mass spectrometry |
LLOQ | Lower limit of quantification |
LSC | Liquid scintillation counting |
MIT | Methylisothiazolinone |
NOAEL | No observed adverse effect level |
RMV | Represents respiratory minute volume, which is the respiratory rate multiplied by the tidal volume |
t1/2 | Terminal half-life |
Tmax | Time to reach a Cmax |
Vdss | Apparent volume of distribution at steady state |
References
- Heo, J.J.; Kim, U.J.; Oh, J.E. Simultaneous quantitative analysis of four isothiazolinones and 3-iodo-2-propynyl butyl carbamate present in hygienic consumer products. Environ. Eng. Res. 2018, 24, 137–143. [Google Scholar] [CrossRef]
- Park, D.U.; Choi, Y.Y.; Ahn, J.J.; Lim, H.K.; Kim, S.K.; Roh, H.S.; Cheong, H.K.; Leem, J.H.; Koh, D.H.; Jung, H.J.; et al. Relationship between exposure to household humidifier disinfectants and risk of lung injury: A family-based study. PLoS ONE 2015, 10, e0124610. [Google Scholar] [CrossRef] [PubMed]
- Marrero-Aleman, G.; Borrego, L.; Antuna, A.G.; Macias Montes, A.; Perez Luzardo, O. Isothiazolinones in cleaning products: Analysis with liquid chromatography tandem mass spectrometry of samples from sensitized patients and market. Contact Derm. 2020, 82, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Novick, R.M.; Nelson, M.L.; Unice, K.M.; Keenan, J.J.; Paustenbach, D.J. Estimation of the safe use concentrations of the preservative 1,2-benzisothiazolin-3-one (BIT) in consumer cleaning products and sunscreens. Food Chem. Toxicol. 2013, 56, 60–66. [Google Scholar] [CrossRef] [PubMed]
- SCCS. Opinion on Benzisothiazolinone. Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_099.pdf (accessed on 27 March 2023).
- Aalto-Korte, K.; Ackermann, L.; Henriks-Eckerman, M.L.; Valimaa, J.; Reinikka-Railo, H.; Leppanen, E.; Jolanki, R. 1,2-benzisothiazolin-3-one in disposable polyvinyl chloride gloves for medical use. Contact Derm. 2007, 57, 365–370. [Google Scholar] [CrossRef] [PubMed]
- IMAP. Benzisothiazolinone and Its Salts: Human Health Tier II Assessment. Available online: https://www.industrialchemicals.gov.au/sites/default/files/Benzisothiazolinone%20and%20its%20salts_Human%20health%20tier%20II%20assessment.pdf (accessed on 27 March 2023).
- Kwak, S.; Choi, Y.S.; Na, H.G.; Bae, C.H.; Song, S.Y.; Kim, H.G.; Kim, Y.D. Benzisothiazolinone upregulates the MUC5AC expression via ERK1/2, p38, and NF-kappaB pathways in airway epithelial cells. Toxicol. Res. 2019, 8, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Hidalgo, E.; Schneider, D.; von Goetz, N.; Delmaar, C.; Siegrist, M.; Hungerbuhler, K. Aggregate consumer exposure to isothiazolinones via household care and personal care products: Probabilistic modelling and benzisothiazolinone risk assessment. Environ. Int. 2018, 118, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.F.; Bae, S.H.; Choi, E.J.; Park, J.B.; Kim, S.O.; Jang, M.J.; Park, G.H.; Shin, W.G.; Oh, E.; Bae, S.K. Evaluation of the in vitro/in vivo drug interaction potential of BST204, a purified dry extract of ginseng, and its four bioactive ginsenosides through cytochrome P450 inhibition/induction and UDP-glucuronosyltransferase inhibition. Food Chem. Toxicol. 2014, 68, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.J.; Huang, Z.; Lee, C.B.; Chae, S.U.; Bae, S.H.; Bae, S.K. Analytical method development of benzisothiazolinone, a biocide, using LC-MS/MS and a pharmacokinetic application in rat biological matrices. Molecules 2023, 28, 845. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.J.; Collins, C.J.; Coombs, D.W.; Gilkison, I.S.; Hardy, C.J.; Healey, G.; Karantabias, G.; Johnson, N.; Karlsson, A.; Kilgour, J.D.; et al. Association of Inhalation Toxicologists (AIT) working party recommendation for standard delivered dose calculation and expression in non-clinical aerosol inhalation toxicology studies with pharmaceuticals. Inhal. Toxicol. 2008, 20, 1179–1189. [Google Scholar] [CrossRef] [PubMed]
- Mainelis, G.; Seshadri, S.; Garbuzenko, O.B.; Han, T.; Wang, Z.; Minko, T. Characterization and application of a nose-only exposure chamber for inhalation delivery of liposomal drugs and nucleic acids to mice. J. Aerosol Med. Pulm. Drug Deliv. 2013, 26, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.K.; Yang, K.H.; Aryal, D.K.; Kim, Y.G.; Lee, M.G. Pharmacokinetics of amitriptyline and one of its metabolites, nortriptyline, in rats: Little contribution of considerable hepatic first-pass effect to low bioavailability of amitriptyline due to great intestinal first-pass effect. J. Pharm. Sci. 2009, 98, 1587–1601. [Google Scholar] [CrossRef] [PubMed]
- Cawello, W.; Braun, M.; Andreas, J.O. Drug delivery and transport into the central circulation: An example of zero-order in vivo absorption of rotigotine from a transdermal patch formulation. Eur. J. Drug Metab. Pharmacokinet. 2018, 43, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Kim, M.G.; Kim, M.G.; Shin, B.S.; Kim, K.B.; Lee, J.B.; Paik, S.H.; Yoo, S.D. Simultaneous determination of phenoxyethanol and its major metabolite, phenoxyacetic acid, in rat biological matrices by LC-MS/MS with polarity switching: Application to ADME studies. Talanta 2015, 144, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Edwards, C.D.; Luscombe, C.; Eddershaw, P.; Hessel, E.M. Development of a novel quantitative structure-activity relationship model to accurately predict pulmonary absorption and replace routine use of the isolated perfused respiring rat lung model. Pharm. Res. 2016, 33, 2604–2616. [Google Scholar] [CrossRef] [PubMed]
- Gruvberger, B.; Bruze, M. Can glutathione-containing emollients inactivate methylchloroisothiazolinone/methylisothiazolinone? Contact Derm. 1998, 38, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Davies, B.; Morris, T. Physiological parameters in laboratory animals and humans. Pharm. Res. 1993, 10, 1093–1095. [Google Scholar] [CrossRef] [PubMed]
- Faed, E.M. Protein binding of drugs in plasma, interstitial fluid and tissues: Effect on pharmacokinetics. Eur. J. Clin. Pharmacol. 1981, 21, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Gibaldi, M.; McNamara, P.J. Apparent volumes of distribution and drug binding to plasma proteins and tissues. Eur. J. Clin. Pharmacol. 1978, 13, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Cho, D.Y.; Bae, S.H.; Lee, J.K.; Kim, Y.W.; Kim, B.T.; Bae, S.K. Selective inhibition of cytochrome P450 2D6 by Sarpogrelate and its active metabolite, M-1, in human liver microsomes. Drug Metab. Dispos. 2014, 42, 33–39. [Google Scholar] [CrossRef] [PubMed]
Parameters (Units) | Single | Multiple (10 mg/kg) | |||
---|---|---|---|---|---|
5 mg/kg (n = 6) | 10 mg/kg (n = 6) | 50 mg/kg (n = 6) | Vehicle Group (n = 8) | For 7 Days (n = 8) | |
AUCt (μg/min/mL) | 2.98 ± 0.779 | 5.97 ± 0.774 | 59.3 ± 19.4 * | 6.03 ± 2.16 | 5.81 ± 1.24 |
AUCinf (μg/min/mL) | 3.20 ± 0.840 | 6.44 ± 0.784 | 64.9 ± 20.9 * | 6.59 ± 2.10 | 6.23 ± 1.29 |
t1/2 (min) | 46.8 ± 7.60 | 53.9 ± 10.4 | 226 ± 43.6 * | 52.3 ± 9.91 | 51.5 ± 13.7 |
Cmax (ng/mL) | 76.1 ± 24.5 | 219 ± 103 | 7920 ± 3240 * | 257 ± 106 | 262 ± 125 |
Tmax (min) a | 4 (3–30) | 3 (3–30) | 3 (3–5) | 3 (3–5) | 3 (3–15) |
GI24 h (% of dose) b | 0.0874 ± 0.0483 | 0.364 ± 0.251 | 0.870 ± 0.491 | 0.309 ± 0.184 | 0.269 ± 0.0903 |
Ae0–24 h (% of dose) c | 0.0288 ± 0.00721 | 0.0397 ± 0.00813 | 0.0430 ± 0.0108 | 0.0363 ± 0.0726 | 0.0510 ± 0.0662 |
F (%) d | 1.78 | 1.79 | 3.61 | 1.83 | 1.73 |
Parameters (Units) | Dermal Application Amount |
---|---|
30 mg/rat (n = 8) | |
Dermal absorbed amount for 4 h (mg) | 2.88 ± 0.136 |
AUCt (μg/min/mL) | 11.4 ± 4.45 |
AUCinf (μg/min/mL) | 14.0 ± 5.55 |
t1/2 (min) | 165 ± 51.9 |
Cmax (ng/mL) | 47.0 ± 23.2 |
Tmax (min) a | 90 (90–255) |
Relative F (%) b | 213 |
Time Interval (h) | Radioactivity of Excretion (% of Dose) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Intravenous | Dermal a | Oral in Intact Rats | Oral in BDC Rats | ||||||
Urinary Excretion | Fecal Excretion | Urinary Excretion | Fecal Excretion | Urinary Excretion | Fecal Excretion | Urinary Excretion | Fecal Excretion | Biliary Excretion | |
0–4 | 41.4 | 0.0139 | 1.24 | 0.164 | 29.6 | 0 | 43.6 | 0 | 0.490 |
4–8 | 64.7 | 0.528 | 20.2 | 0.121 | 62.2 | 0.509 | 65.5 | 0.0889 | 0.791 |
8–12 | 75.9 | 0.775 | 40.0 | 0.0170 | 79.0 | 0.988 | 77.3 | 0 | 1.09 |
12–24 | 84.9 | 1.16 | 48.7 | 0.282 | 86.2 | 1.43 | 83.2 | 0.0231 | 1.53 |
48–48 | 87.9 | 1.28 | 62.7 | 0.593 | 89.8 | 1.87 | 86.7 | 0.149 | 1.93 |
48–72 | 91.7 | 1.38 | 92.5 | 0.849 | 94.4 | 2.05 | 89.3 | 0.146 | 2.00 |
Swabs b | 3.88 | 7.15 | 2.23 | 2.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, S.J.; Bae, S.H.; Huang, Z.; Lee, S.; Lee, C.B.; Chae, S.U.; Park, J.B.; Kwon, M.; Chung, H.K.; Bae, S.K. Benzisothiazolinone: Pharmacokinetics, Tissue Distribution, and Mass Balance Studies in Rats. Metabolites 2023, 13, 584. https://doi.org/10.3390/metabo13050584
Jo SJ, Bae SH, Huang Z, Lee S, Lee CB, Chae SU, Park JB, Kwon M, Chung HK, Bae SK. Benzisothiazolinone: Pharmacokinetics, Tissue Distribution, and Mass Balance Studies in Rats. Metabolites. 2023; 13(5):584. https://doi.org/10.3390/metabo13050584
Chicago/Turabian StyleJo, Seong Jun, Soo Hyeon Bae, Zhouchi Huang, Sangyoung Lee, Chae Bin Lee, Soon Uk Chae, Jung Bae Park, Mihye Kwon, Hye Kyung Chung, and Soo Kyung Bae. 2023. "Benzisothiazolinone: Pharmacokinetics, Tissue Distribution, and Mass Balance Studies in Rats" Metabolites 13, no. 5: 584. https://doi.org/10.3390/metabo13050584
APA StyleJo, S. J., Bae, S. H., Huang, Z., Lee, S., Lee, C. B., Chae, S. U., Park, J. B., Kwon, M., Chung, H. K., & Bae, S. K. (2023). Benzisothiazolinone: Pharmacokinetics, Tissue Distribution, and Mass Balance Studies in Rats. Metabolites, 13(5), 584. https://doi.org/10.3390/metabo13050584